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1. Overview
This lecture discusses monotone comparative statics of fixed points. This is a tool that you
can use for research in a variety of topics and fields.

Here are some examples of questions that have been addressed using these tools:

– (Macro) Comparative statics on equilibrium prices and quantities when there is a demand
shock induced by a change in consumers’ preferences (e.g. Acemoglu and Jensen, 2015).

– (Econometrics) Nonparametric partial identification of treatment response with social in-
teractions (e.g. Lazzati 2015, with an application to studying the effect of police per capita on
crime rates).

– (Health) Empirical antitrust implications of centralised matching systems on wages of med-
ical residents (e.g. Agarwal, 2015).1

– (Education) The empirical consequences of affirmative action in university admission (e.g.
Dur et al., 2020; Aygün and Bó, 2021).

Needless to say that theorems on fixed points and comparative statics are the bread and butter
of theoretical research.

2. Ordering Sets – Again
Recall the notion of strong set order ≥ss (Topkis, 1979, 1998; Milgrom and Shannon, 1994),
where ≥ss is a binary relation on 2X for some partially ordered set (X ,≥):

Definition 1. We say that S′ strong set dominates S (writing S′ ≥ss S) if ∀x′ ∈ S′, x ∈ S,
x∨ x′ ∈ S′ and x∧ x′ ∈ S.
∗Last updated: 23 September 2025.
† Department of Economics, University College London; duarte.goncalves@ucl.ac.uk. Please do not share these
notes with people outside of this class.

1Fun fact: Nobel Prize winner, Alvin Roth not only made fundamental contributions to the theory of market de-
sign leveraging on lattice theory, these contributions then underlied crucial reforms in the US national residency
matching program and organ donation programs, which he helped redesign. See https://www.nobelprize.org/
uploads/2018/06/advanced-economicsciences2012.pdf.
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Asmentioned previously, this ordering of sets can be too demanding and therefore inapplicable
to many situations.

One case where the strong set order is often unreasonable is when we want to compare sets
of fixed points when some fundamental changes. For instance, suppose that you have a set of
players I and each player i can choose strategies si in Si. Their choices — characterised by
some model, not necessarily best responses — are given by a mapping Bi : S−i ×Θi â Si that
depends on their opponents’ choices and some parameter θi. You characterise the set of fixed
points F (B,θ), that is, the set of choices that are consistent, si ∈ Bi(s−i,θi) for every i ∈ I ,
and how they depend on θ. One major issue is that is hardly ever going to be the case that the
sets of equilibria are strong-set ordered. This is because if s and s′ are equilibrium strategy
profiles in two different games, it is going to be extremely difficult to have that s∨s′ and s∧s′

be equilibrium strategy profiles in either. So, to start with, we need a less stringent way of
ordering sets. This is one possible motivation for the weak set order (Che et al., 2021).

Definition 2. We say that

(i) S′ upper weak set dominates S (writing S′ ≥uws S) if ∀x ∈ S, ∃x′ ∈ S′ such that x′ ≥ x;

(ii) S′ lower weak set dominates S (S′ ≥lws S) if ∀x′ ∈ S′, ∃x ∈ S such that x′ ≥ x;

(iii) S′ weak set dominates S (S′ ≥ws S) if S′ both upper and weak set dominates S; that is,
≥ws=≥uws ∩≥lws.

How do these two set orders compare?

Lemma 1. (i) The strong set order is transitive and antisymmetric on non-empty sets. It is not

necessarily either reflexive or irreflexive.

(ii) The weak set order is transitive and reflexive,2 but not necessarily antisymmetric.

(iii) For all nonempty subsets S,T ⊆ X , S ≥ss T =⇒ S ≥ws T .

(iv) The strong set order is closed under intersection, i.e. for all non-empty S,S′,T,T ′ ⊆ X such

that S′ ≥ss S and T ′ ≥ss T , S′∩T ′ ≥ss S∩T . It is not necessarily closed under union.

(v) The weak set order is closed under union, i.e. for all non-empty S,S′,T,T ′ ⊆ X such that

S′ ≥ws S and T ′ ≥ws T , S′∪T ′ ≥ws S∪T . It is not necessarily closed under intersection.

Exercise 1. Prove Lemma 1.

Exercise 2. Assume the conditions in Exercise 1 in Lecture Note 4. Provide necessary and suffi-

cient conditions on w′,w ≥ 0, p′, p ∈Rk++ so that B(p′,w′)≥ws B(p,w).
2Hence, a preorder.
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3. Fixed-Point Theorems
In this section we’ll discuss two fixed-point theorems that are based on the strong and weak
set orders. We will make use of them to show existence of equilibria later on when we look at
comparative statics.

3.1. Tarski and Zhou Fixed-Point Theorems

Let X be a lattice.3

Definition 3. A function f : X → X is said to be monotone if it is order-preserving, i.e.
x ≥ y =⇒ f (x) ≥ f (y). A correspondence F : X â X is said to be monotone if x ≥ y =⇒
F(x)≥ss F(y).

Let F (F) := {x ∈ X | x ∈ F(x)} denote the set of fixed points of a self-correspondence F on X ;
we will abuse notation and write as well F ( f ) := {x ∈ X | x = f (x)} to denote the set of fixed
points of a self-map f on X .

Tarski’s (1955) fixed-point theorem pertains to functions and was later generalised to corre-
spondences by Zhou (1994). It can be stated as follows:

Theorem1. (Tarski, 1955) Let X be a complete lattice and f be a self-map on X . If f is monotone,

then F ( f ) is a non-empty complete lattice.

We will prove a more humble statement:

Lemma 2. Let X be a complete lattice and f be a self-map on X . If f is monotone, then F ( f ) is

nonempty and has a largest element.

Proof. Let S := {x ∈ X : f (x)≥ x}. As X is a complete lattice f (infX X )≥ infX X , and therefore
S ̸= ;. As S ⊆ X and X is a complete lattice, y := supX S ∈ X . Then, for any x ∈ S,

y≥ x =⇒ f (y)≥ f (x)≥ x as f is monotone and x ∈ S

=⇒ f (y)≥ y as f (y) is an upper bound of S and y= sup
X

S

=⇒ f ( f (y))≥ f (y) as f is monotone

=⇒ f (y) ∈ S

=⇒ y := sup
X

S ≥ f (y)

=⇒ y= f (y) by antisymmetry.

We provide a heuristic proof in the Appendix A to the lecture notes for completeness, but you
3We omit the dependence on ≥ to not overburden the text.
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don’t need to know it; check it at your own risk.

Zhou (1994) then generalised the theorem to monotone correspondences:

Theorem 2. (Zhou 1994, Theorem 1) Let X be a complete lattice and F : X â X be nonempty-

valued. If F is monotone and, ∀x ∈ X , F(x) is a complete sublattice, then (F (F),≥) is nonempty

complete lattice.

Again, we leave the details to the Appendix B, but we state a counterpart to Lemma 2 that
requires only that very lemma (which we showed above) to prove it.

Lemma 3. Let X be a complete lattice and F : X â X be nonempty-valued. If F is monotone

and, ∀x ∈ X , F(x) is a complete sublattice, then (F (F),≥) is nonempty and has a largest element.

Exercise 3. Prove Lemma 3 by relying only on Lemma 2.

3.2. Li–Che–Kim–Kojima Fixed Point Theorem

Let F : X âY , where X ,Y are partially ordered sets. For S ∈ 2X , we write F(S) :=∪x∈SF(x).

Definition 4. F is said to be

(i) upper weak set monotone if F(x′)≥uws F(x) ∀x′ ≥ x;

(ii) lower weak set monotone if F(x′)≥lws F(x) ∀x′ ≥ x;

(iii) weak set monotone if F(x′)≥ws F(x) ∀x′ ≥ x;

(iv) strong set monotone if F(x′)≥ss F(x) ∀x′ ≥ x.

Lemma 4. (Che et al., 2021, Lemma 2) Let F : X â Y , where X ,Y are partially ordered sets. If

F is weak set monotone, then for any subsets S′,S ⊆ X such that S′ ≥ws S, F(S′)≥ws F(S).

In the sequel we will say that a set X is a compact partially ordered metric space; you can read
“compact subset a Euclidean space” (Rk).4 In fact, as in applications it will be often assumed
that X is a subset of a Euclidean space, it may be convenient to know that in this case X being
a compact lattice is equivalent to it being a complete lattice.5,6

Theorem 3. (Li 2014; Che et al. 2021, Theorem 6) Let X be a compact partially ordered metric

space. Let F : X â X be a nonempty- and closed-valued correspondence on X . If F is upper (resp.

lower) weak set monotone and ∃x, y ∈ X such that x ≤ y ∈ F(x) (resp. x ≥ y ∈ F(x)), then it admits

a maximal (resp. minimal) fixed point.

4More rigorously, we use this to mean that it is endowed with the metric and natural topology induced by its
partial order (≥), and then we assume it is compact with respect to this topology.

5Note that we are saying a complete lattice, not a complete sublattice of Rk! An example: {(0,0), (1,0), (0,1), (2,2)}
is a complete lattice, a sublattice of R2, but not a complete sublattice of R2.

6The observation generalises more broadly, in that a complete lattice will, in many domains of interest, imply it
is also compact; see Che et al. (2021, Theorem S2).
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Proving the result goes far beyond the scope of this class; for those who are interested, a brief
sketch of the steps is in the Appendix C.

4. Monotone Comparative Statics on Fixed Points
Villas-Boas (1997) proved weak monotone comparative statics results for functions that are
very general. The first considers decreasing functions:

Theorem4. ((Villas-Boas, 1997, Theorem 3)) Let (X ,≥) be a preordered set, and f , g : X → X .

If (i) f ≫ g, (ii) ∀x, y ∈ X : x ≥ y =⇒ f (y)≥ f (x),

then ∀x ∈F ( f ), y ∈F (g), ¬(y> x).

Proof. Suppose not, i.e., ∃x ∈F ( f ), y ∈F (g) : y> x. Then

(i) f (y)> g(y) ∵ f ≫ g;

(ii) g(y)= y ∵ y ∈F (g);

(iii) y> x, by assumption;

(iv) x = f (x) ∵ x ∈F ( f ); and

(v) f (x)≥ f (y) ∵ y> x =⇒ y≥ x =⇒ f (x)≥ f (y);

a contradiction.

The next theorem considers increasing functions:

Theorem 5. (Villas-Boas, 1997, Theorems 4 and 5) Let X be a partially ordered set, and f , g :

X → X .

(i) If (i) ∀x ∈ X , X≥x is a complete lattice, and (ii) f is weakly increasing, then for every fixed

point of g, x ∈F (g) such that f (x)≥ (>) x, there is a fixed point of f y ∈F ( f ) for which y≥ (>)x.

If in addition f ≥ (>)g, then ∀x ∈F (g), ∃y ∈F ( f ) such that y≥ (>)x.

(ii) If (i) ∀x ∈ X , Xx≤ is a complete lattice, and (ii) g is weakly increasing, then for every fixed

point of f , y ∈F ( f ) such that y≥ (>)g(y), there is a fixed point of g x ∈F (g) for which y≥ (>)x.

If in addition f ≥ (>)g, then ∀y ∈F ( f ), ∃x ∈F (g) such that y≥ (>)x.

Proof. We will prove (i); the proof for (ii) is symmetric.
Let x∗ ∈F (g) : f (x∗)≥ (>) x∗. By monotonicity, f (x)≥ (>) x∗ ∀x ∈ X≥x∗ . Let f̃ : X≥x∗ → X≥x∗ ,
where f̃ (x) = f (x). Now apply Tarki’s fixed point theorem (for (i), Lemma 2 is enough) and
conclude that ∃y ∈ X≥x∗ such that f (y)= y≥ (>) x∗.

As we will see in the next section, Theorem 5 pairs very well with the strong set order to
obtain comparative statics for equilibria. In addition, Villas-Boas (1997) provides extensions for
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Banach spaces and correspondences under very general conditions, which may prove useful if
you are doing some complicated functional optimisation (as is sometimes the case in macro).

Che et al. (2021, Theorem 7) provide results for correspondences that are adjusted to the weak
set order.

Theorem 6. (Che et al., 2021, Theorem 7) Let X be a compact partially ordered metric space and

F,G : X â X .

(i) If F (F) ̸= ;, G is upper weak set monotone, nonempty- and closed-valued,

and G(x) upper weak set dominates F(x) for every x ∈ X ,

then the set of fixed points of G upper weak set dominate those of F .

(ii) If F (G) ̸= ;, F is lower weak set monotone, nonempty- and closed-valued,

and G(x) lower weak set dominates F(x) for every x ∈ X ,

then the set of fixed points of G lower weak set dominate those of F .

Proof. Take any x∗ ∈ F (F). For any S ⊆ X , define S≥x∗ := {x ∈ S | x ≥ x∗} and S+(F) := {x ∈
S | ∃y≥ x such that y ∈ F(x)} (S−(F) is analogously defined).
Let G̃ be a self-correspondence on X≥x∗ such that G̃(x) :=G(x)≥x∗ for any x ∈ X≥x∗ , that is, all
the elements in G(x) that dominate x∗.
We will prove that G̃ verifies the conditions for it to have a fixed point in X≥x∗ , thereby show-
ing upper weak set dominance.

(i) First, we want to show that X≥x∗ is a compact lattice. As any S closed, S≥x∗ is also closed,
and as X is compact metric space, then S≥x∗ is compact. Hence, X≥x∗ is compact.

(ii) Note that x∗ ∈ X+(G̃) ⊆ X≥x∗ . This is because as x∗ ∈ F(x∗) ≤uws G(x∗) and therefore
∃y ∈G(x∗) such that y≥ x∗, i.e. y ∈ G̃(x∗)=G(x∗)∩ X≥x∗ .
Closed-valuedness of G̃ follows from the facts that G is closed-valued and X≥x∗ is closed.

(iii) We show now that G̃ is nonempty-valued. As for all x ∈ X≥x∗ , G(x) ≥uws F(x∗) ∋ x∗, we
have for all x ∈ X≥x∗ , there is y ∈ G(x) such that y ≥ x∗; this in turn implies that any such
y ∈ G̃(x)=G(x)∩ X≥x∗ , and therefore G̃ is nonempty-valued.

(iv) Let us now show that G̃ is upper weak set monotone. ∀x, x′ ∈ X≥x∗ , such that x′ ≥ x, and
any y ∈ G̃(x) ⊆ G(x), ∃y′ ∈ G(x′) such that y′ ≥ y, as G is uws monotone. As y ≥ x∗, then
y′ ≥ x∗ =⇒ y′ ∈G(x′)∩ X≥x∗ = G̃(x′).

(v) Therefore, the conditions for G̃ to have a fixed point as per Theorem 3 are satisfied, and
∃y∗ ∈F (G̃)⊆F (G) such that y∗ ≥ x∗. We conclude F (G)≥uws F (F).

The proof for (ii) is symmetric.

Corollary 1. Let X be a compact partially ordered metric space and F,G : X â X . If F and G
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are nonempty- and closed-valued, F is lower weak set monotone, G is upper weak set monotone,

and G(x)≥ws F(x) for every x ∈ X , then F (G)≥ws F (F).

5. Games with Strategic Complementarities
In this section, we’ll define games is a reduced-form manner, so as to obtain results that are
applicable more generally. We call a reduced-form game G a tuple G = 〈I, X ,B〉, where
(i) I is a finite set of players, X = ×i∈I X i with X i denoting player i’s strategy space, and
B = (Bi)i∈I with Bi : X−i â X i being a correspondence that characterises player i’s behavior.
We will also abuse notation and write B(x) : X â X , such that B(x) :=×i∈IBi(x−i), where the
meaning is clear from the context. As B summarises all the components of our reduced-form
game7 we will denote the set of fixed points of G by F (B), defined in the same way as before,
F (B) := {x ∈ X | xi ∈ Bi(x−i)}.

Our goal is provide general results that say something like “if Bi increases, then the set of equi-
libria increases,” in a well-defined sense. For instance, if payoffs for a player’s action increase,
when can we say that the player will choose it more often? Another example: suppose that
the government decides to regulate prices for a specific good and imposes a price cap (e.g. EU
price regulation on pharmaceutical products). Howwill that change pricing strategies of firms
unaffected by the price cap? A similar question arises with quantity quotas — think about an
oil cartel.

Note that Bi may or may not be given as the best-response correspondence in a game, i.e.
Bi(x−i)= argmaxxi∈X i

ui(xi, x−i). This way of defining things has the virtue of being applica-
ble to equilibriummodels and solution concepts other than Nash equilibrium. After discussing
the results in terms of the properties of Bi that we need, we note how to get them from results
we already saw when discussing monotone comparative statics of individual choices.

Strong Complementarities. First let’s use Zhou’s fixed point theorem to show an equilib-
rium exists:

Theorem 7. Let X := ×i∈I be such that, ∀i ∈ I , X i is a complete lattice. If Bi : X−i â X i is

strong set monotone and nonempty- and complete-sublattice-valued for every i ∈ I , then the set

of fixed points of B, F (B), is a complete lattice.

Proof. As Bi is complete-sublattice-valued for every i ∈ I , B(x) is a complete sublattice of X (in
the product order). As Bi are monotone in the strong set order, then so is B. By Zhou’s fixed
point theorem (Theorem 2), the set of fixed points of B is a complete sublattice and therefore
has a largest and smallest element.
7Note that the definition of B depends on I and X
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Now let’s obtain the monotone comparative statics on the sets of equilibria:

Theorem 8. Let X := ×i∈I X i, X̃ := ×i∈I X̃ i be such that, ∀i ∈ I , X i, X̃ i are complete lattices

with respect to the same partial order, and X̃ i ≥ss X i. Let Bi : X−i â X i and B̃i : X̃−i â X̃ i be

strong set monotone and nonempty- and complete-sublattice-valued for every i ∈ I . If B̃i(x̃−i)≥ss

Bi(x−i) for every i ∈ I and x−i ∈ X−i, x̃−i ∈ X̃−i such that x̃−i ≥ x−i, then supF (B̃) F (B̃) ≥
supF (B) F (B) and infF (B̃) F (B̃)≥ infF (B) F (B).

Note that if the above result implies that (but is not equivalent to) F (B̃) weak set dominates

F (B).

Proof. As F (B̃),F (B) are lattices, their largest and smallest elements exist. We show that the
largest fixed point of B̃ is greater than the largest fixed point of B; the proof for the smallest
is symmetric.

Let b∗
i (x−i) := supX i

Bi(x−i) and bi∗(x−i) := infX i Bi(x−i). As Bi is complete-sublattice-valued,
b∗

i (x−i),bi∗(x−i) ∈ Bi(x−i). Let b∗(x) := supX B(x)= (b∗
i (x−i))i∈I and symmetrically for b∗(x).

Define b̃∗ and b̃∗ analogously, on X̃ .

Claim: The largest (smallest) fixed point of b∗ (b∗) is the largest (smallest) fixed point of B.
The proof of this claim is left as an exercise.

Claim: b̃∗(x̃)≥ b∗(x) for any x̃ ≥ x.
To see this, note that b̃∗(x̃) ∈ B̃(x̃) and b∗(x) ∈ B(x). As B̃i(x̃−i)≥ss Bi(x−i) for every i ∈ I and
x−i ∈ X−i, x̃−i ∈ X̃−i such that x̃−i ≥ x−i, then B̃(x̃)≥ss B(x) for x̃ ≥ x.8 Hence, x̃∨ x ∈ B̃(x̃) and
then x ≤ x̃∨ x ≤ b̃∗(x̃)= supX̃ B̃(x̃).

Claim: b̃∗ is monotone.
As B̃i is strong set monotone and complete-sublattice-valued for each i, so is B̃. Completeness
yields supX̃ B̃(x) ∈ B̃(x) for each x ∈ X̃ . Monotonicity implies that for any x ≥ y, supX̃ B̃(x)∨
supX̃ B̃(y) ∈ B̃(x). Therefore, b̃∗(x)= supX̃ B̃(x)≥ supX̃ B̃(x)∨supX̃ B̃(y)≥ supX̃ B̃(y)= b̃∗(y).

If X = X̃ , noting that X≥x is complete lattice for every x,9 we can just use Theorem 5. As
X ̸= X̃ , we will need an extra step:

Claim: Let x∗ and x̃∗ be the largest fixed points of b∗ and b̃∗. Then x̃∗ ≥ x∗.
Let X̃≥x∗ := {x ∈ X̃ | x ≥ x∗}.
As X̃ ≥ss X , for any x ∈ X̃ , x∗ ∈ X , x∨ x∗ ∈ X̃ , and therefore X̃≥x∗ is nonempty. As X̃ is a
complete lattice, so is X̃≥x∗ .
Define g̃∗ on X̃≥x∗ as g̃∗(x) = b̃∗(x). As ∀x ∈ X̃≥x∗ , x ≥ x∗, then g̃∗(x) = b̃∗(x) ≥ b∗(x∗), and
8This follows because the partial order on X , X̃ is the product order.
9The take any subset S ⊆ X≥x ⊆ X ; we have z := infX S ∈ X (as X is a complete lattice). Noting that x is a lower
bound for S and z is the greatest lower bound for S according to ≥, we have that x ≤ z ∈ X≥x.
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therefore g̃∗ is a self-map on a complete lattice.
As b̃∗ is monotone, so is g̃∗.
By Tarski’s fixed point theorem, g̃∗ has a fixed point y∗ ∈ X̃≥x∗ , which must be also a fixed
point of b̃∗, by definition of g̃∗. Then, x̃∗ = supF (B̃) F (B̃)≥ y∗ ≥ x∗.

Now let’s go back to normal-form games Γ = 〈I, X ,u〉, where I and X are as above and u =
(ui)i∈I , with ui : X → R denoting player i’s payoff. We define Bi as player i’s best-response
correspondence: Bi(x−i) := argmaxxi∈X i

ui(xi, x−i).

Given two normal-form games, Γ and Γ̃, what do we need in order to guarantee that (i) B̃i,Bi

are strong set monotone, (ii) B̃i(x̃−i) strong set dominates Bi(x−i) for every x̃ ≥ x, and (iii)
B̃i,Bi are complete-sublattice-valued? The answer to the first two points we already know
from our lecture on monotone comparative statics of individual choices. Let’s restate Milgrom
and Shannon’s (1994) Monoticity theorem:

Theorem 9. (Monotonicity; (Milgrom and Shannon, 1994, Theorem 4)) Let X be a lattice and

v,u be two real-valued functions on X . v and u are quasisupermodular and v single-crossing

dominates u if and only if, for S′ ≥ss S, X (S′;v)≥ss X (S;u).

as well as the following corollary:

Corollary 2. (Milgrom and Shannon, 1994, Corollary 2) Let X be a lattice, S a sublattice, and f

a real-valued function on X . If f is quasisupermodular, then X (S; f ) is a sublattice of S.

That is, it suffices that (a) X i, X̃ i to be (i) compact, and complete sublattices of a lattice Yi, and
(ii) X̃ i ≥ss X i; and (b) ui, ũi to be (i) quasisupermodular and continuous; and (ii) ũi ≥sc ui.

The existing literature focuses on changes in payoff functions. This gave rise to a very conve-
nient class of games, with properties naturally closely related to the ones above.

Definition 5. A class of games {Γ(t)}t∈T has strategic complementarities if Γ(t)= 〈I, X ,ut〉,
where I is finite, T is a partially ordered set, and, for all i ∈ I , X i is a compact lattice, ut

i : X →R

is upper semi-continuous in xi and continuous in x−i, quasisupermodular in xi, and satisfies
the single-crossing property in (xi; x−i, t).

The games satisfying the assumptions above are usually known as supermodular games.

Exercise 4. Consider an oligopolistic industry where each firm i ∈ I simultaneously chooses a

price pi ∈ [0,P i]. Profits are given by πi(pi, p−i) := (pi − ci)D i(pi, p−i), where D i(pi, p−i) :=
ai −bpi +∑

j ̸=i di j p j .

Show that the set of (pure strategy) Nash equilibria of the game is a nonempty complete lattice.

Games with strategic complementarities (also known as supermodular games) are particularly
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convenient since they provide an easy manner of characterising the largest and smallest Nash
equilibria:

Proposition 1. Let {Γ(t)}t∈T have strategic complementarities. For any t, let X NE(t) denote the

set of pure Nash equilibria of Γ(t).

X NE(t) is a complete lattice, monotone wrt t in the strong set order.

Furthermore, for any t, the largest and and smallest Nash equilibria are the largest and smallest

outcomes (resp.) survives IESDS.

Corollary 3. (a) A supermodular game has a pure strategy Nash equilibrium

(b) The greatest and least strategy profiles in the sets of (i) strategy profiles surviving IESDS, (ii)

rationalisable strategy profiles, (iii) correlated equilibria, and (iv) Nash equilibria exist and are

all the same.

(c) If a supermodular game has a unique Nash equilibrium, it is dominance solvable.

Exercise 5. Prove Proposition 1 and Corollary 3.

Note that Proposition 1 and Corollary 3 are not only of theoretical but also of practical interest.
Specifically, these results allow you to obtain the greatest and smallest (pure strategy) equi-
libria via a simple iterative procedure. This renders computation of relevant Nash equilibria
particularly simple.

Games with Weak Strategic Complementarities. We now provide weak set order coun-
terparts to Theorems 7 and 8.

Theorem 10. (Che et al., 2021, Theorem 9(i)) Let X := ×i∈I X i be such that, ∀i ∈ I , X i is a

compact partially ordered metric space, and Bi : X−i â X i is nonempty- and compact-valued. If

(i) ∃x, y ∈ X such that, for every i ∈ I , yi ∈ Bi(x−i) and yi ≥ xi (resp. ≤), and
(ii) for every i ∈ I , Bi is upper (resp. lower) weak set monotone,

then the set of fixed points of B, F (B), is nonempty.

Proof. Bi is nonempty- and compact-valued by assumption. B is nonempty- and closed-
valued, and upper (resp. lower) weak set monotone. Thus, by Theorem 3, F (B) ̸= ;.
Theorem 11. (Che et al., 2021, Theorem 9(ii)) Let X := ×i∈I X i be such that, ∀i ∈ I , X i is

a compact partially ordered metric space, and Bi, B̃i : X−i â X i are nonempty- and compact-

valued. If

(i) ∃x, y ∈ X such that, for every i ∈ I , yi ∈ B̃i(x−i) and yi ≥ xi (resp. ≤),
(ii) for every i ∈ I , B̃i is upper (resp. lower) weak set monotone, and B̃i(x−i)≥uws Bi(x−i) ∀x−i ∈
X−i (resp. ≥lws)
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then F (B̃)≥uws F (B) (resp. ≥lws) whenever the latter is nonempty.

Proof. By Theorem 10, F (B̃) ̸= ;. As B̃ upper (resp. lower) weak set dominates B, by Theorem
6, F (B̃)≥uws F (B) (resp. ≥lws).
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Appendix A. Proof of Tarki’s Fixed-Point Theorem (Theo-

rem 1)
To show that F ( f ) has a smallest element, we need to take a small detour.

First, we need to introduce the concept of an ordinal, which generalises the cardinal num-
bers. Think about the, as an extension of the natural numbers. An ordinal is the concept that
translates the size or cardinality of a set even when this set is not countable. For instance, R,
while uncountable, has a cardinality.

Definition 6. A binary relation > on X is said to be well-founded if for every nonempty
subset S ⊆ X , there is a minimal element y of S in S, that is, y ∈ S and Øx ∈ S such that
y> x.

The ordinal numbers are not only well-founded set, but also totally ordered. (Again think
about the natural numbers; are they well-founded? are they totally ordered?)

One important property of well-founded binary relations on sets is that we can apply a par-
ticular form of definition by recursion, called transfinite recursion. This goes as follows:

Theorem 12. (Transfinite/Noetherian recursion) Let (X ,≥) be a partially ordered set and >⊆
X ×X be well-founded. If, to each pair (x, g), where x ∈ X and g is a function on {y ∈ X | y< x},

H assigns an object H(x, g), then there is a unique function G on X such that, ∀x ∈ X , G(x) =
H(x,G |y∈X | y<x).

Theorem 13. (Transfinite/Noetherian induction) Let (X ,≥) be a partially ordered set and >⊆
X × X be well-founded. If ∀x ∈ X , property P being satisfied for all y < x implies that P is

satisfied for x, then P is satisfied for all x ∈ X .

We know that we can apply recursion and induction on countable sets. Transfinite recursion
an induction extend these notions to uncountable sets.

Lemma 5. (Echenique, 2005, Lemma 1) Let X be a complete lattice and f be a self-map on X . If

f is monotone, then (F ( f ),≥) has a smallest element.

Proof. Let η be an ordinal number with cardinality greater than X and define ξ := η+1. Let g :

ξ→ X be defined by transfinite recursion as follows: g(0)= infX X and g(β)= supX { f (g(α)) |
β>α}, for β> 0. Now note that f (g(0)) ≥ g(0)(= infX X ), and therefore by transfinite induc-
tion f (g(β)) ≥ g(β) for all ordinals β, and we conclude that g is monotone. As ξ has cardi-
nality larger than X , there is an ordinal γ< ξ such that g(γ) = g(γ+1) which further implies
that there is a smallest γ (the set of ordinals is well-founded and totally ordered) such that
f (g(γ))= f (g(γ))= g(γ). Therefore, the set of fixed points of f̃ is nonempty: F ( f ) ̸= ;.
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We now show that g(γ) is the smallest fixed point of f . If γ= 0 we are done, as g(0)= infX X .
If not, then g(0)< f (g(0)). Take any z ∈F ( f ). As, by monotononity of f , z = f (z)≥ f (g(0))≥
g(0), then, by transfinite induction z ≥ f (g(α)) for any α. Hence, z ≥ f (g(γ))= g(γ).

Theorem 14. (Tarski 1955; Echenique 2005, Theorem 2) Let X be a complete lattice and f be a

self-map on X . If f is monotone, then F ( f ) is a non-empty complete lattice.

Proof. By Lemma 5, F ( f ) is non-empty and has a smallest element. Let S ⊆ F ( f ) be non-
empty. We want to show that supF ( f ) S ∈F ( f ).

Let y := supX S and let Y := {x ∈ X | x ≥ y}, be the set of upper bounds on S. If y ∈ Y ,
then ∀x ∈ S, x ≤ y =⇒ x = f (x) ≤ f (y). Therefore, f (Y ) ⊆ Y . Let g = f |Y ; g is then a
monotone self-map on Y , a complete lattice. By Lemma 5, (F (g),≥) has a smallest element,
i.e. infX F (g) ∈ F (g) ⊆ F ( f )∩Y . By definition of g, minX F (g) = supF ( f ) S. The proof for
infF ( f ) S is symmetric.

Appendix B. Proof of Zhou’s Fixed-Point Theorem (Theo-

rem 2)
Lemma 6. (Echenique, 2005, Lemma 3) Let X be a complete lattice and F : X â X . If F is

monotone and, ∀x ∈ X , F(x) has a smallest element, then (F (F),≥) has a smallest element.

Proof. Let f : X → X be given by f (x) := minX F(x). By Lemma 5, (F ( f ),≥) has a smallest
element; denote it z. By construction, z ∈F (F), as z =minX F(z).

To see that z is the smallest element in (F (F),≥), take any e ∈F (F). Let g, and γ be defined
as in the proof for Lemma 5 with respect to f . Take any e ∈F (F). The steps are then identical:
As g(0) ≤ f (g(0)) ≤ e =⇒ f (g(α)) ≤ e for every ordinal α, by transfinite induction z = g(γ) =
f (g(γ))≤ e.

Theorem 15. (Zhou 1994, Theorem 1; Echenique 2005, Theorem 4) Let X be a complete lattice

and F : X â X . If F is monotone and, ∀x ∈ X , F(x) is a complete sublattice, then (F (F),≥) is

nonempty complete lattice.

Proof. Take any subset of fixed points E ⊆F (F), which exist, by Lemma 6.
We now show that supF (F) E exists. Let x := supX ) E and Y := {y ∈ X | x ≤ y}. Note that Y

is a complete lattice, as ∀S ⊆ X , x ≤ supX S ∈ X =⇒ supX S ∈ Y =⇒ supX S = supY S; an
analogous argument holds for infY S.

Define G : Y âY as G(y) :=Y ∩F(y); this is the set of elements in F(y) that are weakly larger
than x. The goal will be to show that G is (i) nonempty, (ii) monotone, and (iii) a complete
sublattice of Y . Then we (iv) apply the previous lemma and show that it has a smallest point
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in Y , and (v) conclude by saying that this fixed is also a fixed point in X and that it must be
in E. We now prove each of these claims:

(i) We want to show that G(y) ̸= ;. e ≤ x ≤ y, ∀e ∈ E and y ∈ Y . Then, ∀xy ∈ F(y) and as
e ∈ F(e), xy∨e ∈ F(y) by monotonicity of F . Fix an arbitrary xy ∈ F(y) and note that supX S =:

x ≤ supX {xy∨e ∈ X | e ∈ E} ∈ F(y) as F is a complete sublatttice of X (by assumption). Hence,
G(y) :=Y ∩F(y) ̸= ;.
(ii) Now we show that G is monotone. Take any y′ ≤ y ∈Y , z ∈G(y) and z′ ∈G(y′). Note that
y∧ y′ ∈ F(y) and y∨ y′ ∈ F(y′) as F is monotone. Furthermore, ∀e ∈ E, e ∈ F(e), e ≤ y ≤ y′,
and thus, y∧ y′ = (y∧ y′)∨ e ∈ F(y) and y∨ y′ = (y∨ y′)∨ e ∈ F(y′), again by monotonicity of
F .

(iii) ∀S ⊆G(y), infY S,supY S ∈G(y). To see this note that as F is a complete sublattice, and
as S ⊆ G(y) = F(y)∩Y , S ⊆ F(y), and then supY S = supX S ∩Y ∈ F(y), and analogously
for infY S. As ∀z ∈ S ⊆ Y , z ≥ x, supX S ∩Y ∈ Y =⇒ supX S ∩Y ∈ F(y)∩Y = G(y); and
analogously for the infY ∈ S.

(iv) All the hypotheses of Lemma 6 are satisfied, and therefore let y∗ ∈F (G) be the smallest
fixed point of G in Y . For any fixed point x∗ of F in X that is an upper bound on E, we must
have that x ≤ x∗ =⇒ x∗ ∈ F(x∗)∩Y =G(x∗), and therefore it is a fixed point of G in Y . Hence,
x∗ ≥ y∗. As y∗ ∈ G(y∗) = F(y∗)∩Y , y∗ is also a fixed point of F in X . We conclude that
y∗ = supF (F) E.

The proof that supF (F) E exists is symmetric.

AppendixC. Proof Sketch of LCKK’s Fixed-Point Theorem

(Theorem 3)
A very rough sketch of the main steps in the proof is as follows:

(1) X being a compact metric space implies that each nonempty chain has a least upper bound.

(2) Upper weak set monotonicity of F together with compactness allows for a proof for ex-
istence of a fixed point with the same spirit to finding the largest fixed point in Lemma 2 by
doing a monotone selection of F .

(3) For existence of amaximal fixed point, take any chain of fixed points. Compactness implies
that it admits a smallest upper bound and closed-valuedness and uws-monotocity of F will
(eventually — the proof is complex) yield that the smallest upper bound is a fixed point.

(4) As (3) holds for any chain of fixed points, appeal to Zorn’s Lemma to claim that there is a
maximal fixed point.
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