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1. Overview

In many circumstances, economic research involves taking a stance on the form of utility
functions that drive agents’ behaviour. This is true in applied research — where models are
then used to analyse policies with structural estimation and counterfactuals, or to identify a
particular effect — as it is in theory. Often, making simplifying assumptions are needed to
make progress, but it is important to keep in mind what each assumption implies, and what
it is ruling out. Our goal will be to develop a better understanding about common restrictions
that specific functional form assumptions impose on behaviour to be able to better evaluate

the limitations of any given model.

1.1. Notation

For simplicity, assume throughout that (X, d) is a metric space. For € > 0 and x € X, we denote
by Be(x) :={y € X | d(x,y) <€} for an open e-neighbourhood of x in X. For a set S, we denote
its closure by S.

2. Continuous Utility Representation

Why do we care about continuity! of our utility representation? Because, whenever the fea-

sible set is compact,? we are guaranteed the existence of a maximiser by Weierstrass extreme
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!Recall the definition: Let (X,dx) and (Y,dy) be two metric spaces. A function f : X — Y is continuous at
x0 € X if Ve > 0,36 > 0 such that Vx € {x' € X : dx(x',x0) < 6}, dy (f(x), f(x0)) < €. Equivalently, f is continuous
at xo € X if for every sequence {x,}, € X such that x, — xo, f(xn) — f(x0). A function is continuous if it is
continuous at all xg € X.

2When (X,dx) is a metric space, a set S is compact if and only if it is sequentially compact, that is, if every
sequence {x,}, has a convergent subsequence {x;;},, < {x,}, such that x,, — x* € S. Note that if ScY c X,
S is closed, and Y is compact, then S is compact. Moreover, if S is a compact set, then S is both closed and
bounded. The Heine-Borel Theorem shows that, in Euclidean spaces, the converse holds: if S is closed and
bounded, then S is compact.



value theorem:

Theorem 1. (Weierstrass Extreme Value Theorem) Let (X,dx) and (Y ,dy) be two metric
spaces. If f : X — Y is a continuous function and S a compact set in (X,dx), then f attains a

maximum and a minimum in S: argmax,.g f(x) # @ and argmin,.g f(x) # @.

We want to guarantee that utility maximising choices are well-defined (argmax, 4 u(x) # @)
in order to ensure that an agent’s behaviour can be represented as the outcome of utility
maximisation. And, in general, one way to do so is by restricting to compact feasible sets and

continuous utility functions.

In this section we will relate continuity properties of the utility representation to underlying

continuity properties of preferences and choices.

Definition 1. A preference relation 77 on X is continuous if for any two converging se-
quences, {Xp}n, {yntn € X, 2, — x and y,, — y, such that x,, 7~ y, Vn, we have x 7 y.

This next lemma is particularly useful to characterise continuity of preference relations:

Lemma 1. Let - be a preference relation on X, and > its asymmetric part. The following state-

ments are equivalent:

(i) 7 is continuous;

(ii) foranyxe€ X, X~ and X, are closed sets;
(iii) for anyxe€ X, X,» and X, are open sets;

(iv) for any x,y € X such that x >y, there is € > 0 such that Vx' € B¢(x),y' € B(y), x' > y'.

Exercise 1. Prove Lemma 1. (Hint: a standard way to go about it is to show (i) = (ii) = (iii)

= (iv) = (i).]

The main result in this section is Debreu’s (1954; 1964) Theorem:

Theorem 2. (Debreu’s Theorem) Let -, be a preference relation on X, and suppose that X ad-
mits a countable, order-dense subset Z. Then, 7~ is continuous if and only if 7~ admits a continuous

utility representation u : X — R.

We won’t prove the theorem in all its generality, but rather a more modest version of it in

which we will assume that X is convex, that is, Vx,y€ X and VA €[0,1], Ax+(1- A1)y e X:

Theorem 3. Let (X,d) be a convex metric space such that Va € [0,1], Vx,y € X, d(ax +(1 -
a)y,y) < ad(x,y). Let 2~ be a preference relation on a convex set X, and suppose that X admits

a countable, order-dense subset Z. Then, 77, is continuous if and only if 77, admits a continuous

3You can think about =, i.e., “implies”, as a preorder on the set of all statements, which is why if A = B =
C = A, we have, by transitivity, A = C,C = B,and B = A, and, hence, that A, B, and C are equivalent.



utility representation u : X — R.

Proof. < (if)

Take any {x,},, {yn}n € X such that x, — x, y, — ¥, and x,, 2~ y5,. Then, u(x,)—u(y,)=0,Vn
and, by continuity of u, lim, . u(x,) — u(y,) = u(x) —u(y) =0 = x = y.

— : (only if)

Assume that 3x,y € X : x> y — otherwise we can just set u(x) = ¢ for any constant c.

We will prove this part in three steps:

1. Show that Vx,y € X :x >y, there is z € Z such that x > z > y.
2. Construct a utility function u : X — R such that u(Z) is dense in [0, 1].

3. Show that u is continuous.

Lemma 2. Let (X,d) be a convex metric space such that Va € [0,1], Vx,y € X, d(ax+ (1 —
a)y,y) < ad(x,y). Let 7~ be a continuous preference relation on X, and > its asymmetric part.
Suppose that Z is a countable, order-dense subset of X. For any x,y € X :x >y, thereisze€ Z

such that x >z > y.

Proof. First we show existence of x' € X : x> x' > y.
For a €[0,1], let x, := ax+ (1 —a)y € X (by convexity of X). Define A :={a €[0,1] | x4 77 x}.
By completeness of 7~, 1 € A and, by assumption, as x >y, 0 ¢ A. Then, as A is nonempty and
bounded below, define a :=infA.
We now want to show that x, ~ x. Suppose that this is not the case.
Ifxy>x —=3e>0:x4-c>x by Lemma 1
—=a-€c€A
— a #ZinfA,

a contradiction. If instead,

X>xg = ' >0:x>x44e, VO<e<e by Lemma 1
= a+¢e>infA
— a ZinfA,
again a contradiction. As x ~ x4 > y, this means that, again, 3 >0:x4_ > y. Asa—e<a =

a—e€¢ A, and, therefore, x > x4 > y.

Now, we find a z € Z such that x > z > y: as Z is order-dense in X, then 3z € Z : x > xq_¢ 7

z>y. [

Lemma 3. Let (X,d) be a convex metric space such that Va € [0,1], Vx,y € X, d(ax + (1 -

a)y,y) < ad(x,y). Let -, be a continuous preference relation on X, and Z a countable order-



dense subset of X. There is a utility representation of 7, u : X — R such that u(X) is dense in
[0,1].

Proof. Without loss of generality, suppose that the maximal and minimal elements of X are
notinZ,i.e., Zm(argmaxiXUargmini X)=¢. Fixanorderon Z ={z1,29,...} and, for n = 2,
let Z, :={z1,...,2n—1}. We define u on Z by induction. Let u(z1) = 1/2. For any n > 1, (i) if
Jz,, € Z,, such that z,, ~ z,,, set u(z,) = u(zy,); (i) if 2, > 2, (resp. 2, > zp,) for all z,, € Z,,,
then set u(z,) := (1 + max,cz, u(2))/2 (resp. u(z,) := (0 +min,ez, u(2))/2); and (iii) if neither
(i) nor (ii) hold, then 3z,z,, € Z,, such that (a) zg > z,, > z;, and (b) B2’ € Z,, : 2y > 2 > 2z,
-z u(2))/2. Note

that, by Lemma 2, Vx,y€ X :x >y, 3z € Z : x > z > y. This implies that for any two elements

nor 2z, > 2 > 2, in which case set u(z,) := (minzez,.;>,, u(z) + max,cz, .,
Zn,2m € Z such that z,, > z,,, there is ¢,¢',¢" > n,m such that z, > z,, > 2y > z,, > 27, where
2y and z v exist because we removed the maximal and minimal elements of X from Z.

By construction, the set u(Z) corresponds to the set of dyadic numbers in (0,1), i.e., the set of
numbers that can be represented as m/2" for m,n € N and m < 2", which is dense in [0, 1].

If argmax- X is nonempty, we know that Vx,y € argmax,- X, we have that x ~ y, and then

we can assign u(x) = u(y) = 1; and analogously for x € argmin, X assign u(x) = 0.

Now we extend u to X by setting u(x) := sup{u(z) | z € Z and x > z} = sup,z__ u(z) and check
that it represents ;2. That x ~ y = u(x) = u(y) is immediate from the definition. To see that
x>y = u(x) > u(y), note that, by Lemma 2, 32,2’ € Z such that x >z > 2’ > y = u(x) =
u(z)>u(z’) =z u(y). As u(Z) cu(X)<[0,1] and u(Z) is dense in [0,1], then u(X) is dense in
[0,1]. ]

Finally, the last step: showing continuity of u as defined in the proof of Lemma 3. Take any
x € X \ (argmax- X Uargmin- X). By 2Lemmas and 3, for any € > 0, there are z,2' € Z such
that u(x) —€ < u(z) < u(x) < u(z’) < u(x) +e. By Lemma 1, we then have that 36 > 0 such
that Va' € Bs(x), u(x) —e < u(z) < u(x’) < u(2') < u(x) +e. To show that u is continuous at
x € argmax; X, note that by 2Lemmas and 3, for any € >0, there is z € Z such that u(x) —e <
u(z) < u(x) and by Lemma 1, 36 > 0 such that Vx' € Bs(x), u(x) —€ < u(z) < u(x’) < u(x) (the

proof for continuity of u at x € argmin, X is symmetric). [

Exercise 2. Prove that, if X is a convex subset of R* and - is a continuous preference relation on
X, then X admits a countable, order-dense subset. Conclude about the existence of a continuous

utility representation.

Note that even if 77 is a continuous preference relation on X, it does not mean that any utility
representation of 2~ is continuous. For instance, suppose that 7~ is a continuous preference
relation on R such that x = y <= x 7 y. Clearly, u(x) := x is a possible utility representation,

butsoisv(x):=xifx <1, v(x):=3x if x > 1, and v(1) := 2, and v is not continuous.



3. Convexity

If the former section dealt with having the agent’s choices well-defined for arbitrary compact
sets, this section will provide sufficient conditions for choices to be uniquely defined (i.e., a
singleton). For that, we will study a property of interest for a utility representation — quasi-

concavity — and the conditions on preferences that guarantee it.

Definition 2. A real-valued function « on a convex set X is (strictly) quasiconcave if Vx,y €
X and VA €[0,1] (resp. 1 €(0,1)), u(Ax + (1 - Ay)) = (>)min{u(x), u(y)}.

Definition 3. We say that a preference relation >~ on a convex set X is convex iff for any
x 7~y and any A € [0,1], we have that Ax +(1—A)y = y. It is said to be strictly convex if, in
addition, Vx -y, x # y, and any A1 € (0,1), Ax + (1 - 1)y > y.

This property can be interpreted as prefering mixtures to extremes (when indifferent with re-
spect to both): when the agent is indifferent between two elements (say “apple” and “banana”)
then they prefer to have a convex combination (A“apple”+(1 — 1)“banana”=:“fruit salad”) to

either of them.

In fact, quasiconcavity of the utility representation is equivalent to convexity of preferences:
Proposition 1. Let 7 be a preference relation on a convex set X and let u : X — R be a utility
representation. The following statements are equivalent:

(i) - is convex;

(ii) X, is convexVye X;

(iii) u is quasiconcave;

(iv) {x € X | u(x) =u} is convex Vu € R.

Moreover, - is strictly convex if and only if u is strictly quasiconcave.

Proof. (i) = (ii): Take any x,x’ € X, and let, without loss of generality (by completeness),
x7-x'. Then Ax+(1—-A)x’ = x' = y YA €[0,1] (by convexity and transitivity).
(i) <= (ii): By completeness, y € X5-,. As X, is convex, then Vx € X and 1 €[0,1], Ax +
A-Vyzy.
(i) < (iii): Take any x,y € X such that x 7~ y < u(x) = u(y), and any A €[0,1].
=~ convex <= Ax+(1-A)y -y
= u(Ax+(1-1)y) = u(y) = minfu(x), u(y)}
< u quasiconcave.

For the strict convexity of 7~ and strict quasiconcavity of u, replace 77 and = with > and >.

(iii) = (iv): Va,y € X 1 u(x),u(y) =2 u, u(Ax + (1 - A)y) = min{u(x),u(y)} = u, VA1 €[0,1] (by



quasiconcavity of u).

(iii) <= (iv): Vx,y € X, 1 €[0,1], Ax +(1 - Ay € {z € X | u(2) = min{u(x),u(y)}} by convexity
of {z € X | u(z) = min{u(x),u(y)}} and the fact that u(x),u(y) = min{u(x),u(y)}; then u(Ax +
(1-A)y) = minfu(x), u(y)}. =

Theorem 4. Let 77 be a convex preference relation on a convex set X. Then, for any convex
A €2 argmax, A is convex. If, in addition, - is strictly convex, then argmax,- A contains at

most one element.

Combining Proposition 1 and Theorem 4, we learn that the set of maximisers of a quasiconcave
function « on a convex set A, argmax, 4 #(x), is convex and, if u is strictly quasiconcave, it
has at most one element. This gives us a lot of structure on the agent’s choices and allows us
to make better predictions. In fact, pooling results we have shown so far, we can say that if
preferences are continuous and strictly convex, the agent will choose exactly one element out

of any compact and convex set of alternatives.

Exercise 3. Prove Theorem 4.

4. Monotonicity and Insatiability

A very natural property when X < R* is that of monotonicity, capturing the principle that

‘more is better, We define three notions of monotonicity:
Definition 4. (i) =~ is monotone if x>y = x 7 y;
(ii) = is strongly monotone if x = (>>)y = x = (>)y;*

(iii) 7 is strictly monotone if x >y (e, x=yandx #y) = x> .

A simple result ensues:

Proposition 2. Let =~ be a preference relation on X SR* and u : X — R a utility representation
of 7.

(i) 7 is monotone if and only if x =y = u(x) = u(y);

(ii) 77 is strongly monotone if and only if x = (>)y = u(x) = (>)u(y);

(iii) 77 is strictly monotone if and only ifx >y (x =y and x # y) = u(x) > u(y).

A related property is that of insatiability, the sense in which, for any alternative x, there is
always some other alternative y that is strictly preferred.

Definition 5. (i) We say that 7 is globally non-satiated if for any x € X, there is y € X such

“It is to be understood that x > y stands for x; > y; for all i € [k], whereas x > y simply denotes the asymmetric
part of =, x = y and =(y = x). That is, x > y if x; = y; for all i and x; > y; for some j.



that y > x.

(ii) It is locally non-satiated if for any x € X, and any € > 0, 3y € B(x) such that y > x.

Then we have that strict monotonicity = strong monotonicity = monotonicity and, if,
say, X = R, strong monotonicity = local non-satiation = global non-satiation.” While
non-satiation does not easily translate into properties of utility representations, we will see

later on that it plays an important role in consumer theory.

5. Homotheticity

Definition 6. A preference relation >~ on X = R* is homothetic if x = y = ax = ay,

Va=0.

Homotheticity of preferences will allow us to show that one can interpret aggregate demand
as choices by a representative consumer. We will defer on that result and instead focus on its

implications for utility representation.

Proposition 3. Let 7 be a continuous, homothetic, and strongly monotone preference relation
on X =R*. Then, it admits a continuous utility representation u : X — R that is homogeneous of

degree one.’

Exercise 4. Prove Proposition 3 by following the following steps:

(1) Show that, for any x € X thereisan a,a’ € R such that al - x 7~ a'l, wherel € R® is a vector

of ones.
(2) Show then that, for any x € X, there is a unique f, € R such that x ~ . 1.

(3) Define u(x) := B and show that u is continuous and homogeneous of degree one.

6. Separability

It is often the case that alternatives have different features. For instance, consider subscribing
to a gym, and you consider the location and the open hours. It may be the case that you
consider these two features separately, and then simply trade-off between the two. Or it may
be the case that if the gym is open and not too crowded after work hours, you prefer it to
be close to work as you can go with friends from work; but if it is usually too crowded, you
actually prefer it to be close to home. When preferences are separable, the problem in a sense
becomes simply a matter of assigning a value to each dimension and think about how you

trade these off. This is exactly what we are going to show.

>In general, monotonicity need not imply non-satiation: consider the trivial case where X is a singleton.
6That is, u(ax) = au(x), Ya = 0.



Let X := xjemX; % X, where each X is a dimension and [n]={1,...,n}. We write x_; € X_; :=
X jen\ i} X j X X and x = (xi,2-;).

Definition 7. A preference relation on X is said to be weakly separable in x;e,1X; if,
Vi € [n], for every x;,y; € X; and every x_;,y_; € X_;, we have that (x;,x_;) = (y;,x_;) <
(i, y-1) Z (i, y-i)-

Theorem 5. Let >~ be a preference relation on X = x ;¢(}X; x X that admits a utility represen-
tation u : X — R. Then, = is weakly separable in x;c[,1X; if and only if there are v,{u}ie[n],
where u; : X; — R, and v : X jenui(X;) x X — R such that u(x) = v(u1(x1), ..., un(x,),%) and v

is strictly increasing in its first n arguments.

Proof. <= (if) Follows immediately from the fact that v is strictly increasing in its first n
arguments.

= : (only if) We break the proof into steps:

(1) Define u;: Fix x* € X. For i € [n], let u;(x;) := u(x;,x7).

(2) Show that, for any x,y € X such that x =7, if u;(x;) = u;(y;) Vi € [n], then u(x) = u(y):

uilx;)) 2 ui(y;)Vielnl = ulx;,x”) =z uly;,x*,)Vie[n]
S (Y150 Yim15Xis Xit 1y ooy X, X) 25 (V15 0005 Yim 15 Yir X4 1005 %, £) Vi €[]
by weak separability
=xTy
by transitivity
= u(x) = u(y).
Moreover, it is also the case that if for some i u;(x;) > u;(y;), then u(x) > u(y).
(3) Define v: For any r € R” such that r; € u;(X;) Vi € [n], pick any x; € X; such that u;(x;) =

r;. For any x € X, and for any r € x;c[,jui(X;), let v(r, %) := u(x). By (2), v is strictly increasing

inr.
O]

Note that weak separability does not deliver additive separability, that is, it does not guarantee
that we can write u(x) = }_j¢nui(x;). For that we need preferences to be strongly separable
on X = X Xi:

Definition 8. A preference relation 7~ on X = x;¢[,1X; is strongly separable if VI C [n],
Vxr,y1 € xjer Xy and Vx_1,y_1 € x;eungX; =: X_1, we have that (x7,x_1) Z (y1,2-1) <
(e, y-0 Z 1, y-1).



In essence, strongly separable preferences are those that are separable not only in each dimen-

sion but in each group of dimensions.

We will also need a further definition: i € [n] is an essential component if 3x;,y; € X; and
x—; € X_; such that (x;,x_;) > (y;,%_;). The result — which we state without proof — is then

as follows:

Theorem 6. (Debreu, 1960) Let =~ be a continuous preference relation on a connected set X :=
X ien1Xi, such that 2~ admits a preference relation u : X — R, and there are at least three essential
components. If 7 is strongly separable, then there are {u}ie[n], where u; : X; — R, such that

u(x) = Xiern wi(xi).

7. Quasilinearity

One of the most widely used functional forms is quasilinear utility: u : Y xR — R such
that u(y,m) = v(y) + m for some v : Y — R. The first argument y is interpreted as an item,
while the second argument m is taken to be money (available to acquire other items). As it
is a recurrently assumed functional form — e.g., in contract theory, auctions, and mechanism
design — it is particularly important to understand precisely what assumptions on preference

relations are necessary to obtain this type of representation.

Theorem 7. Let 77, be a preference relation onY xR. 7~ admits a quasilinear utility representation
if and only if it satisfies the following properties:

(1) m'2m < (y,m") = (y,m),VyeY, m,m’ €R (money is good);

2) (y,m) = (y',m") <= (y,m+m") = (y,m'"+m"), Vy,y €Y, m,m',;m" € R (no wealth
effects);

(3) Vy,y' €Y,3dm,m' € R such that (y,m) ~ (y',m') (money can compensate).

Note that property (2) is needed in some way or another: after all, quasilinear preferences are
weakly separable.

Proof. = (only if):

(1) m'=2m < v(y)+m' zv(y)+m < (y,m') = (y,m),Vy €Y, m,m’ € R (money is good);

(2) (y,m)Z(y',m) <= v(y)+mzv(y)+m <= v(y)+m'zv(y)+m' <= (y,m)Z(y',m"),
Vy,y' €Y, m,m’ € R (no wealth effects);

(3) Vy,y' €Y, Im,m' € R such that v(y)—v(y)=m'-m < v(y)+m=v(y)+m' —

(y,m) ~(y',m') (money can compensate).

— (if):



Fix (y*,m*) €Y xR.
Step 1: there is a unique p : Y — R such that (y, p(y)) ~ (y*,m").
By (3), Im(y),m'(y) e R: (y,m(y)) ~ (y*,m'(y)) . By 2), (y,m(y)—m/(y)+ m*) ~(y*,m™). Let
p(y):=m(y)—m'(y)+m*. Suppose there is v : Y — R such that (y,v(y)) ~ (y*,m*) Vy €Y, but
v(y") # p(y") for some y' € Y. Then v(y') < (>)p(y’) implies by (1) that (y',v(y")) ~ (y*,m™*) ~
', p(")) > (<), v(y"), a contradiction of reflexivity of 7.
Step 2: Show that we can define v(y) := —p(y).
(y,m) 5 (Y, m) = (y,m-m'+p(y) = (', p(y) ~(y*,m*) by Step 1 and (2)
= m-m'+p(y)zp(y) by (1)
= -ply)+m=—-p(y)+m'

= vy)+m=v(y)+m'

8. Indifference Curves

What are indifference curves? At their very core, indifference curves are indifference sets:
[x].:={ye X | y ~x}. If X =R2, let’s define the ‘indifference curve’ that goes through y as a
function I(-,y) : R — R such that I(x1,y) :={x2 € R | (x1,x2) € [y]-}.

Exercise 5. Suppose that X = R2. Which properties on - guarantee that indifference curves

satisfy each of the following:

(i) have an empty interiour;
(ii) are continuous;

(iii) are downward sloping;
(iv) are convex.

Exercise 6. Let 7 be a preference relation on X . Suppose that theorem A states that if 77, satisfies
property Py, then there is a utility representation that satisfies property @ o and that, similarly,
theorem B states that if - satisfies property Pp, then there is a utility representation that satisfies
property @ g. Now suppose that you find that 77, satisfies both P4 and Pg. Can we guarantee that
there is a utility representation satisfying both @ o and Qp?

10



9. Further Reading

Standard References: Mas-Colell et al. (1995, Chapter 3C), Rubinstein (2018, Chapters 2, 4),
Kreps (2012, Chapter 2), Kreps (1988, Chapter 3).

Related questions/topics: Besides the topics mentioned on the previous notes, structural
properties of preferences are closely related to applications. In particular, with deriving objects
such as price indices, aggregation of preferences and demand systems, as well as with growth

and structural transformation.
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