ECON0106: Microeconomics

Lecture Notes on Correspondences*

Duarte Gonçalves[†] University College London

These lecture notes first introduces the concepts of correspondences and their continuity, and then discuss two important results, Kakutani's fixed point theorem and Berge's maximum theorem.

1. Definitions

Definition 1. A **correspondence** F from X to Y is a set-valued function that associates every element in X a subset of Y, denoted by $F: X \Rightarrow Y$ or $F: X \to 2^Y$, with $F(x) \subseteq Y$. For $A \subseteq X$, we define the image of F as $F(A) := \bigcup_{x \in A} F(x)$.

The set X is called the **domain** of the correspondence F, and Y is called the **codomain** of F. F(x) is called the **image** of point $x \in X$.

You may consider the concept of correspondence as a generalisation of functions, in the sense that F(x) is a set in Y instead of an element in Y. Clearly, a single-valued correspondence $F: X \Rightarrow Y$ can be viewed as a function from X to Y.

Listed below are some terminologies that we use to describe the properties of correspondences.

Definition 2. A correspondence $F: X \Rightarrow Y$ is said to be [property]-valued at $x_0 \in X$ if $F(x_0)$ is a [property] set. If F is [property]-valued at all $x_0 \in X$, we say F is [property]-valued. This [property] can be

- 1. non-empty
- 2. single (singleton)
- 3. open
- 4. closed
- 5. compact
- 6. convex

^{*}Last updated: 23 September 2025.

[†] Department of Economics, University College London; duarte.goncalves@ucl.ac.uk. Please do not share these notes with people outside of this class. The present lecture notes were largely based on math camp materials taught by Xingye Wu; naturally, all errors my own.

Notice that the 3 - 5 above requires Y to be a metric space (Y, d_Y) , and 6 requires Y to be a (real) vector space $(Y, +, \cdot)$.

1.1. Upper Hemi-continuity

Similar to functions, it is possible to talk about continuity of a correspondence if its domain and codomain are both metric spaces. However, there are two distinct notions of continuity for correspondences, known as *upper hemicontinuity* and *lower hemicontinuity*, and they capture different aspects of continuity of a correspondence. Let's first look at upper hemicontinuity.

Definition 3. Let (X, d_X) and (Y, d_Y) be metric spaces. The correspondence $F : X \Rightarrow Y$ is said to be **upper hemicontinuous (uhc) at** $x_0 \in X$ if \forall open set U in (Y, d_Y) such that $F(x_0) \subseteq U$, there is $\delta > 0$ such that $F(B_{\delta}(x_0)) \subseteq U$.

The correspondence $F: X \Rightarrow Y$ is said to be **upper hemicontinuous (uhc)** if it is upper hemicontinuous at x_0 for all $x_0 \in X$.

The definition requires that whenever the open set U covers the entire image of the point x_0 , then it must also entirely cover all nearby images. What is not allowed by uhc at x_0 is sudden appearance of a chunk of image *outside* of U when x deviates from x_0 .

For example, consider the correspondence $F_1 : \mathbb{R} \Rightarrow \mathbb{R}$ defined as¹

$$F_1(x) := \begin{cases} \{0\}, & \text{if } x \le 0 \\ [-1, 1], & \text{if } x > 0 \end{cases}$$

Clearly F_1 fails to be uhc at 0, because if we let U := (-1/2, 1/2), whenever x moves away a little from 0 to the right, the image $F_1(x)$ becomes [-1,1], which is not covered by U. The problem of this correspondence at 0 is that many new points suddenly appear when x deviate from 0 to the right, and this is a violation of uhc. Therefore, uhc can be intuitively interpreted as "no sudden appearance of a chunk of image when deviating from a point." (note this is stronger than uhc requires though)

Consider a slightly different correspondence $F_2: \mathbb{R} \Rightarrow \mathbb{R}$ defined as

$$F_2(x) := \begin{cases} \{0\}, & \text{if } x < 0 \\ [-1, 1], & \text{if } x \ge 0 \end{cases}$$

The image of F_2 at 0 is [-1,1], and so there is no sudden appearance of image when deviating from 0. Therefore, F_2 is uhc at 0. Clearly, F_2 is also uhc at all other points in \mathbb{R} , and so F_2 is uhc.

But note that this "no sudden appearance" tenet is just to provide some intuition for sufficient conditions: e.g. uhc allows "smooth changes" in the image when deviating from a point, if

¹In \mathbb{R}^n , we use the Euclidean metric d_2 by default.

the correspondence is closed-valued at this point. For example, consider the correspondence $F_3: \mathbb{R} \Rightarrow \mathbb{R}$ defined as $F_3(x) := [x, x+1]$ for any $x \in \mathbb{R}$. Under F_3 , the image $F_3(x) = [x, x+1]$ changes "smoothly" when x changes, and it can be shown that F_3 is uhc.

Claim 1. The correspondence $F_3 : \mathbb{R} \Rightarrow \mathbb{R}$ defined above is uhc.

Proof. Take any $x_0 \in \mathbb{R}$. We focus on proving that F_3 is uhc at x_0 .

Take any open set $U \supseteq [x_0, x_0 + 1]$. We want to show that $\exists \delta > 0$ such that $U \supseteq F(x)$ for any $x \in (x_0 - \delta, x_0 + \delta)$.

Because x_0 and $x_0 + 1$ are in the open set U, they are interior points of U, and so $\exists \ \delta > 0$ such that $(x_0 - \delta, x_0 + \delta) \subseteq U$ and $(x_0 + 1 - \delta, x_0 + 1 + \delta) \subseteq U$. Therefore, we have $(x_0 - \delta, x_0 + 1 + \delta) \subseteq U$. For any $x \in (x_0 - \delta, x_0 + \delta)$, we have $F(x) = [x, x + 1] \subseteq (x_0 - \delta, x_0 + 1 + \delta) \subseteq U$.

However, when the correspondence is not closed-valued, then even smooth changes in the image may violate uhc. For example, consider a slightly different correspondence $F_4: \mathbb{R} \Rightarrow \mathbb{R}$ defined as $F_4(x) := (x, x+1)$. It can be shown that it is not uhc at any point in \mathbb{R} . To see this, for each $x_0 \in \mathbb{R}$, let $U := F_4(x_0) := (x_0, x_0 + 1)$, and U cannot cover F(x) as long as $x \neq x_0$. In applications, however, we almost always work with closed-valued correspondences, in which case uhc allows smooth changes, but does not allow sudden appearance of image.

For single-valued correspondences, uhc is equivalent to continuity of functions.

Proposition 1. Let (X, d_X) and (Y, d_Y) be metric spaces. Consider a single-valued correspondence $F: X \Rightarrow Y$. Define $f: X \to Y$ as f(x) := y such that $y \in F(x)$. Then F is uhc at $x_0 \in X$ if and only if f is continuous at x_0 .

The proof is straightforward, and is left as an exercise.

For compact-valued correspondences, there is a *sequential characterisation of uhc*, which is formulated in the following proposition:²

Proposition 2. Let (X, d_X) and (Y, d_Y) be metric spaces. Consider a correspondence $F : X \Rightarrow Y$, and let $x_0 \in X$. Then the following two statements are equivalent:

- (1) F is compact-valued at x_0 , and F is uhc at x_0 .
- (2) For any sequence (x_n) in X convergent to x_0 , any sequence (y_n) such that $y_n \in F(x_n)$ for each $n \in \mathbb{N}$, there exists a subsequence (y_{n_k}) convergent to some $y_0 \in F(x_0)$.

Proof. (1) \Longrightarrow (2):

Take any sequence (x_n) in X convergent to x_0 , any sequence (y_n) such that $y_n \in F(x_n)$ for each $n \in \mathbb{N}$. We want to show that there exists a subsequence (y_{n_k}) convergent to some $y_0 \in F(x_0)$.

²This is the definition of uhc in the book by SLP, who only study compact-valued correspondences.

For each $k \in \mathbb{N}$, consider the set $U_k := \bigcup_{y \in F(x_0)} B_{1/k}(y)$. Because the arbitrary union of opens is still open, we know that U_k is an open set. By construction $U_k \supseteq F(x_0)$, and so by uhc of F at x_0 , there exists $\delta_k > 0$ such that $F\left(B_{\delta_k}(x_0)\right) \subseteq U_k$. Since $x_n \to x_0$, there exists N_k such that $x_n \in B_{\delta_k}(x_0)$, and thus $y_n \in U_k$ for any $n > N_k$. Therefore, we can find a subsequence $\left(y_{n_k}\right)$ such that $y_{n_k} \in U_k$ for each $k \in \mathbb{N}$. By construction of U_k , for each k, there exists $z_k \in F(x_0)$ such that $d_Y\left(y_{n_k}, z_k\right) < 1/k$. As F is compact-valued at x_0 , we know that $F(x_0)$ is compact in (Y, d_Y) . So there exists a subsequence $\left(z_{k_l}\right)$ convergent to some $y_0 \in F(x_0)$. Therefore, we have $d_Y\left(z_{k_l}, y_0\right) \to 0$, and

$$0 \le d_Y \left(y_{n_{k_l}}, y_0 \right) \le d_Y \left(y_{n_{k_l}}, z_{k_l} \right) + d_Y \left(z_{k_l}, y_0 \right)$$

$$< \frac{1}{k_l} + d_Y \left(z_{k_l}, y_0 \right) \to 0 + 0 = 0$$

Consequently, we have $d_Y(y_{n_{k_l}}, y_0) \to 0$, which means $y_{n_{k_l}} \to y_0$. Finally, this means we have found a subsequence of (y_n) that converges to some point in $F(x_0)$.

- $(1) \longleftarrow (2)$:
- (a) F is compact-valued at x_0 .

Take any sequence (y_n) in $F(x_0)$. We will show that there exists a subsequence (y_{n_k}) convergent to some $y_0 \in F(x_0)$.

Let $x_n = x_0$ for all $n \in \mathbb{N}$. Then we have $x_n \to x_0$ and $y_n \in F(x_n)$ for each $n \in \mathbb{N}$. By assumption, there exists a subsequence (y_{n_k}) convergent to some $y_0 \in F(x_0)$.

(b) F is uhc at x_0 .

Suppose that F is not uhc at x_0 . Then $\exists U$ open in (X, d_X) such that $U \supseteq F(x_0)$, but $\forall \delta > 0$ we have $U \not\supseteq F(B_{\delta}(x_0))$. Hence, for any $n \in \mathbb{N}$, we have $U \not\supseteq F(B_{1/n}(x_0))$, i.e. there exists $x_n \in B_{1/n}(x_0)$ and $y_n \in F(x_n)$ such that $y_n \notin U$. Because $x_n \to x_0$, by assumption there exists a subsequence (y_{n_k}) convergent to some $y_0 \in F(x_0)$.

Since (y_{n_k}) is in $Y \setminus U$, which is closed in (Y, d_Y) , we have $y_0 \in Y \setminus U$, and so $y_0 \notin F(x_0)$, a contradiction.

Without compact-valuedness, uhc alone does not imply property (2) in the proposition above. For example, consider $F_5: \mathbb{R} \to \mathbb{R}$ defined as $F_5(x) := (0,1)$ for any $x \in \mathbb{R}$. Clearly, F_5 is uhc everywhere, but it does not satisfy property (2) at any $x_0 \in \mathbb{R}$, since compact-valuedness is necessary for property (2).

1.2. Closed Graph Property

There is a concept, called *closed graph property*, that is closely related to uhc.

Definition 4. Let (X, d_X) and (Y, d_Y) be metric spaces. The correspondence $F : X \Rightarrow Y$ is said to have **closed graph property (cgp) at** $x_0 \in X$ if \forall sequence (x_n) in X convergent to

 $x_0, y_n \in F(x_n)$ for each $n \in \mathbb{N}$, and $y_n \to y_0 \in Y$, we have $y_0 \in F(x_0)$.

The correspondence $F: X \Rightarrow Y$ is said to have **closed graph property (cgp)** if it has closed graph property at x_0 for all $x_0 \in X$.

Clearly, cgp implies closed-valuedness.

Claim 2. Let (X, d_X) and (Y, d_Y) be metric spaces. If the correspondence $F : X \Rightarrow Y$ is cgp at $x_0 \in X$, then it is closed-valued at x_0 .

Proof. Take any sequence (y_n) in $F(x_0)$ convergent to $y_0 \in Y$. We want to show that $y_0 \in F(x_0)$. Let $x_n = x_0$ for all $n \in \mathbb{N}$, then we have $x_n \to x_0$, $y_n \in F(x_n)$ for each $n \in \mathbb{N}$, and $y_n \to y_0 \in Y$. By cgp, we have $y_0 \in F(x_0)$.

The **graph**³ of a correspondence $F: X \Rightarrow Y$ is defined as $Gr(F) := \{(x, y) \in X \times Y : y \in F(x)\}$

For a correspondence $F: X \rightrightarrows Y$, where (X, d_X) and (Y, d_Y) are metric spaces, the name of the property "closed graph property" comes from the fact that F has cgp (everywhere in X) if its graph is closed in $(X \times Y, d_{X \times Y})$, where the metric for the product space is defined as

$$d_{X\times Y}((x,y),(x',y')) := \sqrt{[d_X(x,x')]^2 + [d_Y(y,y')]^2}$$

for any $(x, y), (x', y') \in X \times Y$.

It can be shown that $d_{X\times Y}$ as defined above is a valid metric for $X\times Y$. Also, we can show that $(x_n,y_n)\to (x_0,y_0)$ in $(X\times Y,d_{X\times Y})$ if and only if $x_n\to x_0$ in (X,d_X) and $y_n\to y_0$ in (Y,d_Y) , and this is left as an exercise.

Claim 3. Let (X, d_X) and (Y, d_Y) be metric spaces. Then a correspondence $F : X \Rightarrow Y$ has cgp if and only if Gr(F) is closed in $(X \times Y, d_{X \times Y})$.

Proof. \Longrightarrow :

Take any $((x_n, y_n))$ in Gr(F) that is convergent to $(x_0, y_0) \in X \times Y$. We want to prove that $(x_0, y_0) \in Gr(F)$. As $(x_n, y_n) \to (x_0, y_0)$, we have that $x_n \to x_0$ and $y_n \to y_0$. Since $(x_n, y_n) \in Gr(F)$ for all n, we have $y_n \in F(x_n)$ for all n. As F has cgp, we know that F has cgp at x_0 , and so $y_0 \in F(x_0)$, which implies $(x_0, y_0) \in Gr(F)$.

⇐=:

Take any $x_0 \in X$. We will show that F has cgp at x_0 .

Take any (x_n) in X convergent to $x_0, y_n \in F(x_n)$ for each $n \in \mathbb{N}$, and $y_n \to y_0 \in Y$. We claim that $y_0 \in F(x_0)$.

Given that $x_n \to x_0$ and $y_n \to y_0$, we have $(x_n, y_n) \to (x_0, y_0)$ in $(X \times Y, d_{X \times Y})$. Because $y_n \in F(x_n)$ for each n, we have $(x_n, y_n) \in Gr(F)$ for each n. And since Gr(F) is closed in $(X \times Y, d_{X \times Y})$, we have $(x_0, y_0) \in Gr(F)$.

 $[\]overline{{}^{3}\text{This is in fact a redundant definition since }Gr(F) = F$, if we view F as a relation from $X \times Y$.

Closed graph property is closely related to uhc, and their relation is formulated by the following two propositions:

Proposition 3. Let (X, d_X) and (Y, d_Y) be metric spaces. If a correspondence $F : X \Rightarrow Y$ is uhc at $x_0 \in X$, and is closed-valued at x_0 , then F has cgp at x_0 .

Proof. Take any sequence (x_n) in X convergent to $x_0, y_n \in F(x_n)$ for each $n \in \mathbb{N}$, and $y_n \to y_0 \in Y$.

We want to show that $y_0 \in F(x_0)$.

Suppose $y_0 \notin F(x_0)$, i.e. $y_0 \in Y \setminus F(x_0)$. Because F is closed-valued at $x_0, Y \setminus F(x_0)$ is open in (Y, d_Y) , and so $\exists \ \epsilon > 0$ such that $B_{2\epsilon}(y_0) \subseteq Y \setminus F(x_0)$. And the "closed ball" $\bar{B}_{\epsilon}(y_0) := \{y \in Y : d_Y(y, y_0) \le \epsilon\}$ is contained in $B_{2\epsilon}(y_0)$ and therefore in $Y \setminus F(x_0)$, and therefore $F(x_0) \subseteq Y \setminus \bar{B}_{\epsilon}(y_0)$. As a closed ball is a closed set and $F(x_0)$ is covered by the open set $Y \setminus \bar{B}_{\epsilon}(y_0)$. By uhc of F at $x_0, \exists \ \delta > 0$ such that $F(B_{\delta}(x_0)) \subseteq Y \setminus \bar{B}_{\epsilon}(y_0)$.

Given that $x_n \to x_0$ and $y_n \to y_0$, there exists \hat{n} such that $x_{\hat{n}} \in B_{\delta}(x_0)$ and $y_{\hat{n}} \in \bar{B}_{\epsilon}(y_0)$. However, because $F(B_{\delta}(x_0)) \subseteq Y \setminus \bar{B}_{\epsilon}(y_0)$, we have $y_{\hat{n}} \in F(x_{\hat{n}}) \subseteq F(B_{\delta}(x_0)) \subseteq Y \setminus \bar{B}_{\epsilon}(y_0)$, which contradicts $y_{\hat{n}} \in \bar{B}_{\epsilon}(y_0)$.

The result above states that uhc implies cgp if we have closed-valuedness. Without closed-valuedness, this implication does not hold since a uhc correspondence may not have closed-valuedness. For example, consider F_5 as previously defined. Clearly, F_5 is uhc everywhere, but it does not have cgp anywhere, since closed-valuedness is necessary for cgp.

A correspondence $F: X \Rightarrow Y$, where (X, d_X) and (Y, d_Y) are metric spaces, is said to be **locally** bounded at x_0 if $\exists \ \delta > 0$ and a compact set K in (Y, d_Y) such that $F(B_\delta(x_0)) \subseteq K$. The next proposition works in the other direction:

Proposition 4. Let (X, d_X) and (Y, d_Y) be metric spaces. If a correspondence $F : X \Rightarrow Y$ has cgp at $x_0 \in X$, and F is locally bounded at x_0 , then F is uhc at x_0 .

The proof of this proposition is similar to the proof of Proposition 2, part (b) of the direction " $(1) \leftarrow (2)$ ".

Proof. Suppose that F is not uhc at x_0 . Then $\exists U$ open in (Y, d_Y) such that $F(x_0) \subseteq U$, but $\forall \delta > 0$ we have $F(B_{\delta}(x_0)) \not\subseteq U$. Then for any $n \in \mathbb{N}$, we have $F(B_{1/n}(x_0)) \not\subseteq U$, i.e. there exists $x_n \in B_{1/n}(x_0)$ and $y_n \in F(x_n)$ such that $y_n \not\in U$. By assumption there exists $\hat{\delta} > 0$ and compact set K in (Y, d_Y) such that $F(B_{\hat{\delta}}(x_0)) \subseteq K$. By construction, we have $x_n \to x_0$, and so $\exists N$ such that $x_n \in B_{\hat{\delta}}(x_0)$ and so $y_n \in K$ for any n > N.

By sequential compactness of K, there exists a subsequence (y_{n_k}) of $(y_n)_{n>N}$ convergent to some $y_0 \in K$. Because the subsequence $(y_{n_k}) \subseteq Y \setminus U$, which is closed, we have $y_0 \in Y \setminus U$.

However, since F has cgp at x_0 , and $x_{n_k} \to x_0$, $y_{n_k} \in F(x_{n_k})$, $y_{n_k} \to y_0$, we have $y_0 \in F(x_0) \subseteq U$, a contradiction.

The result above states that cgp implies uhc if we have local boundedness. Without local boundedness, cgp does not imply uhc. For example, consider $F_6: \mathbb{R} \Rightarrow [0,1)$ defined as

$$F_6(x) = \begin{cases} \{e^x\}, x < 0 \\ \{0\}, x \ge 0 \end{cases}$$

which is clearly not uhc at 0. However, F_6 has cgp at 0. Note that 1 is not in the codomain, and so when x_n converges to 0 from the negative real line, $y_n \in F(x_n)$ does not converge. This is not a violation of the proposition above, as F_6 is not locally bounded at 0. As 1 is not in the codomain, and so we cannot find a compact set K in ([0,1), d_2) to bound all images of points nearby 0.

Another example is $F_7 : \mathbb{R} \Rightarrow \mathbb{R}$ defined as

$$F_6(x) = \begin{cases} \{1/x\}, & x \neq 0 \\ \{0\}, & x = 0 \end{cases}$$

As a consequence of the two propositions above, under closed-valuedness and local boundedness, uhc and cgp are equivalent.

1.3. Lower Hemi-continuity

Now let's define lower hemicontinuity.

Definition 5. Let (X, d_X) and (Y, d_Y) be metric spaces. The correspondence $F : X \Rightarrow Y$ is said to be **lower hemicontinuous (lhc) at** $x_0 \in X$ if \forall open set U in (Y, d_Y) such that $F(x_0) \cap U \neq \emptyset$, $\exists \ \delta > 0$ such that $F(x) \cap U \neq \emptyset$ for any $x \in B_{\delta}(x_0)$. The correspondence $F : X \Rightarrow Y$ is said to be **lower hemicontinuous (lhc)** if it is lower hemicontinuous at x_0 for all $x_0 \in X$.

The definition requires that whenever the open set U covers a part of the image of the point x_0 , then it must also cover a part of all nearby images. What is not allowed by lhc at x_0 is sudden disappearance of a chunk of image when x deviates from x_0 .

For example, consider the correspondence $F_2: \mathbb{R} \Rightarrow \mathbb{R}$

$$F_2(x) := \begin{cases} \{0\}, & \text{if } x < 0 \\ [-1, 1], & \text{if } x \ge 0 \end{cases}$$

as previously defined. Clearly F_2 fails to be lhc at 0, because if we let U := (1/2, 3/2), whenever x moves away a little from 0 to the left, the image $F_2(x)$ becomes $\{0\}$, which does not share an intersection with U. The problem of this correspondence at 0 is that many points suddenly disappear when x deviate from 0 to the left, and this is a violation lhc. Therefore, lhc can be intuitively interpreted as "no sudden disappearance of a chunk of image when deviating from

a point."

Consider the slightly different correspondence $F_1: \mathbb{R} \Rightarrow \mathbb{R}$

$$F_1(x) := \begin{cases} \{0\}, & \text{if } x \le 0 \\ [-1, 1], & \text{if } x > 0 \end{cases}$$

as previously defined. The image of F_1 at 0 is $\{0\}$, and so there is no sudden disappearance of image when deviating from 0. Therefore, F_1 is lhc at 0. Clearly, F_1 is also lhc at all other points in \mathbb{R} , and so F_1 is lhc.

Lower hemicontinuity does not allow sudden disappearance of image when deviating from a point, but it allows "smooth changes" in the image when deviating from a point. For example, consider the correspondence $F_3: \mathbb{R} \Rightarrow \mathbb{R}$

$$F_3(x) := [x, x+1]$$

for any $x \in \mathbb{R}$ as previously defined. Under F_3 , the image $F_3(x) = [x, x+1]$ changes "smoothly" when x changes, and it can be shown that F_3 is lhc.

Claim 4. The correspondence $F_3 : \mathbb{R} \Rightarrow \mathbb{R}$ defined above is lhc.

Proof. Take any $x_0 \in \mathbb{R}$. We want to show F_3 is lhc at x_0 . Take any open set U for which $[x_0,x_0+1]\cap U\neq\emptyset$. We want to show that $\exists\,\delta>0:[x,x+1]\cap U\neq\emptyset$ for any $x\in(x_0-\delta,x_0+\delta)$. Let $\hat{x}\in[x_0,x_0+1]\cap U$. Because U is open, there exists $\delta>0$ such that $(\hat{x}-\delta,\hat{x}+\delta)\subseteq U$. Take any $x\in(x_0-\delta,x_0+\delta)$. By construction, we have $x-x_0\in(-\delta,\delta)$, and so $\hat{x}+(x-x_0)\in(\hat{x}-\delta,\hat{x}+\delta)\subseteq U$. As $\hat{x}\in[x_0,x_0+1]$, we have $\hat{x}+(x-x_0)\in[x_0+(x-x_0),x_0+(x-x_0)+1]=[x,x+1]$. Therefore, we have $\hat{x}+(x-x_0)\in[x,x+1]\cap U$, and so $[x,x+1]\cap U\neq\emptyset$.

Lower hemicontinuity allows smooth changes in the image, regardless of whether the correspondence is closed-valued. If we consider a slightly different correspondence $F_4: \mathbb{R} \Rightarrow \mathbb{R}$ defined as $F_4(x) := (x, x+1)$ for any $x \in \mathbb{R}$, a slightly modification of the proof above can show that F_4 is also lhc. For single-valued correspondences, lhc is equivalent to continuity of functions.

Proposition 5. Let (X, d_X) and (Y, d_Y) be metric spaces. Consider a single-valued correspondence $F: X \Rightarrow Y$. Define $f: X \to Y$ as f(x) := y such that $y \in F(x)$. Then F is lhc at $x_0 \in X$ if and only if f is continuous at x_0 .

This proof is straightforward, and is left as an exercise.

The following proposition provides the *sequential characterisation of lhc*:

Proposition 6. Let (X, d_X) and (Y, d_Y) be metric spaces. A correspondence $F : X \Rightarrow Y$ is lhc at $x_0 \in X$ if and only if for any $y_0 \in F(x_0)$ and sequence (x_n) in X convergent to x_0 , there exists $N \in \mathbb{N}$ and $y_n \in F(x_n)$ for any n > N such that the sequence $(y_n)_{n > N}$ converges to y_0 .

In the proposition above, we start to construct the sequence (y_n) starting from n = N + 1, because $F(x_n)$ may be empty for small n's.

Proof. \Longrightarrow :

Take any $y_0 \in F(x_0)$ and sequence (x_n) in X convergent to x_0 . We want to prove that $\exists N \in \mathbb{N}$ and $y_n \in F(x_n)$ for any n > N such that the sequence $(y_n)_{n > N}$ converges to y_0 .

For each $k \in \mathbb{N}$, we have $y_0 \in F(x_0) \cap B_{1/k}(y_0)$, and so $F(x_0) \cap B_{1/k}(y_0) \neq \emptyset$. By lhc, $\exists \delta_k > 0$ such that for any $x \in B_{\delta_k}(x_0)$, we have $F(x) \cap B_{1/k}(y_0) \neq \emptyset$.

As $x_n \to x$, $\exists N \in \mathbb{N}$ such that $x_n \in B_{\delta_1}(x_0)$ for any n > N. For each n > N, arbitrarily take

$$y_n \in \bigcap_{k \in \left\{k' \in \mathbb{N}: x_n \in B_{\delta_{k'}}(x_0)\right\}} [F(x_n) \cap B_{1/k}(y_0)]$$

This is possible because $F(x_n) \cap B_{1/k}(y_0) \neq \emptyset$ whenever $x_n \in B_{\delta_k}(x_0)$.

Now we want to show that $(y_n)_{n>N}$ converges to y_0 . Take any $\epsilon > 0$. $\exists K$ such that $1/k < \epsilon$ for any k > K. Since $x_n \to x_0$, $\exists \hat{N} > N$ such that $x_n \in B_{\delta_K}(x_0)$ for any $n > \hat{N}$. Therefore for any $n > \hat{N}$, we have $x_n \in B_{\delta_K}(x_0)$, which implies $y_n \in B_{1/K}(y_0)$, which in turn implies $y_n \in B_{\epsilon}(y_0)$.

⇐=:

Suppose, by contradiction, that \exists open set U in (Y, d_Y) such that $F(x_0) \cap U \neq \emptyset$, but $\forall \delta > 0$, $\exists x \in B_{\delta}(x_0)$ such that $F(x) \cap U = \emptyset$. This implies that for any $n \in \mathbb{N}$, $\exists x_n \in B_{1/n}(x_0)$ such that $F(x_n) \cap U = \emptyset$, i.e. $F(x_n) \subseteq Y \setminus U$.

By construction, we have $x_n \to x_0$. Arbitrarily take $y_0 \in F(x_0) \cap U$, and by assumption there exists $N \in \mathbb{N}$ and $y_n \in F(x_n)$ for any n > N such that the sequence $(y_n)_{n > N}$ converges to y_0 . And given that $y_n \in F(x_n) \subseteq Y \setminus U$ for any n > N, and $Y \setminus U$ is closed in (Y, d_Y) since U is open, we have $y_0 \in Y \setminus U$. This contradicts the construction of y_0 .

As we have discussed, uhc for closed-valued correspondences means no sudden appearance of image when deviating from a point, while lhc means no sudden disappearance of image when deviating from a point. Therefore, we might expect a relation between F being uhc and F^c being lhc. In fact, we have one direction, but not the other.

For a correspondence $F: X \Rightarrow Y$, let's define its complement $F^c: X \Rightarrow Y$ as

$$F^c(x) := Y \setminus F(x)$$

for any $x \in X$. (This is a redundant definition if we realise that F is essentially a subset of $X \times Y$.)

Proposition 7. Let (X,d_X) and (Y,d_Y) be metric spaces, and consider a correspondence $F: X \Rightarrow Y$. If F^c is the at $x_0 \in X$, then F is the at x_0 .

The proof is left as an exercise.

However, F^c being lhc does not imply F being uhc, even if we further assume F to be compact-valued. For example, consider the correspondence $F_7: \mathbb{R} \Rightarrow \mathbb{R}$ defined as:

$$F_8(x) := \begin{cases} \{0\}, & \text{if } x < 0 \\ \{1\}, & \text{if } x \ge 0 \end{cases}$$

Clearly *F* is compact-valued, and F(x) is not uhc at 0. However, F^c is lhc at all $x_0 \in \mathbb{R}$.

Finally, a correspondence is said to be continuous if it is both uhc and lhc.

Definition 6. Let (X, d_X) and (Y, d_Y) be metric spaces. The correspondence $F : X \Rightarrow Y$ is said to be **continuous at** $x_0 \in X$ if F is both uhc and lhc at x_0 . The correspondence F is said to be **continuous** if F is continuous at x_0 for all $x_0 \in X$.

2. Kakutani's Fixed Point Theorem

Definition 7. A correspondence F from X to X itself is called a **self-correspondence**. For a self-correspondence $F: X \Rightarrow X$, a point $x \in X$ is called a **fixed point** of F if $x \in F(x)$.

When the self-correspondence F is single-valued, clearly $x \in X$ is a fixed point of F if $F(x) = \{x\}$, which is consistent with notion of fixed points for functions. Therefore, the definition above can be considered as a generalisation of the notion of fixed points to correspondences.

Theorem 1. (Kakutani's Fixed Point) Let X be a nonempty, compact, and convex set in \mathbb{R}^n . If the self-correspondence $F:X\Rightarrow X$ is nonempty-valued, compact-valued, convex-valued, and uhc, then there exists a fixed point $x\in X$ of F.

In the theorem above, compactness is with respect to the metric space (\mathbb{R}^n, d_2) , and convexity is with respect to the vector space $(\mathbb{R}^n, +, \cdot)$ over \mathbb{R} , where + and \cdot are the usually defined vector addition and scalar multiplication for real vectors.

If F is single-valued, then nonempty-valuedness, compact-valuedness, and convex-valuedness of F holds trivially, and uhc reduces to the continuity of functions. So the theorem above reduces to Brouwer's fixed point theorem. Therefore, Kakutani's fixed point theorem should be viewed as a generalisation of Brouwer's fixed point theorem.

Because the codomain X of F is compact in the theorem, compact-valuedness is equivalent to closed-valuedness, and so we can replace the compact-valuedness assumption by closed-valuedness.

Again because the codomain X is compact, (compact-valuedness + uhc) is equivalent to cgp. To see this, the direction " \Longrightarrow " is given by Proposition 3, and the other direction " \Longleftrightarrow " is given by Proposition 4, since local boundedness holds trivially. Therefore we have the following corollary.

Corollary 1. Let X be a nonempty, compact, and convex set in \mathbb{R}^n . If the self-correspondence $F:X\Rightarrow X$ is nonempty-valued, convex-valued, and has cgp, then there exists a fixed point $x^*\in X$ of F.

Kakutani's fixed point theorem plays the central role in the proof of the existence of Nash equilibria in non-cooperative game theory.

3. Berge's Theorem of Maximum

Theorem 2. (Berge's Maximum Theorem) Let X and Θ be metric spaces, $f: X \times \Theta \to \mathbb{R}$ be a continuous function, and $B: \Theta \Rightarrow X$ be a non-empty and compact-valued correspondence. Let $f^*(\theta) := \sup_{x \in B(\theta)} f(x,\theta)$ and $X^*(\theta) := \arg\max_{x \in B(\theta)} f(x,\theta)$. If B is continuous at $\theta \in \Theta$, then f^* is continuous at θ and X^* is uhc, nonempty, and compact-valued at θ .

In the theorem above, the maximisation problem we are looking at is a parameterised problem

$$\max_{x \in X} f(x, \theta)$$
 such that $x \in B(\theta)$

where both the objective function f and the constraint set B depend on the parameter θ . The theorem states that if the objective function f is continuous, and the constraint set B is nonempty- and compact-valued, and is both uhc and lhc in the parameter θ , then the set of maximisers X^* is compact and uhc in θ , and the maximum value f^* is also continuous in θ .

Proof. Let's prove the theorem in three steps:

Step 1: X^* is nonempty-valued at θ_0

As f is jointly continuous in (x, θ) , then $f(\cdot, \theta)$ is continuous in x. As we also have that B is nonempty- and compact-valued at θ_0 , the claim follows from Weierstrass extremum theorem.

Step 2: X^* is compact-valued and uhc at θ_0

We prove this using Proposition 2. Take any sequence (θ_n) in Θ convergent to θ_0 , any sequence (x_n) such that $x_n \in X^*(\theta_n)$ for each $n \in \mathbb{N}$.

We now prove that \exists subsequence (x_{n_k}) convergent to some $x_0 \in X^*(\theta_0)$. Given that $x_n \in X^*(\theta_n) \subseteq B(\theta_n)$ for each n, and as B is compact-valued and uhc at θ_0 , by Proposition 2, \exists subsequence (x_{n_k}) convergent to some $x_0 \in B(\theta_0)$.

Take the x_0 found this way; it is sufficient to show that $x_0 \in X^*(\theta_0)$, i.e. $f(x_0,\theta_0) \ge f(z,\theta_0)$ for any $z \in B(\theta_0)$. Because B is lhc at θ_0 and $\theta_{n_k} \to \theta_0$, by sequential definition of lhc (Proposition 6), there exists $K \in \mathbb{N}$ and $z_k \in B(\theta_{n_k})$ for each k > K, such that $z_k \to z$. As $x_{n_k} \to x_0$, $z_n \to z$, $\theta_{n_k} \to \theta_0$, by continuity of f, $f(x_{n_k}, \theta_{n_k}) \to f(x_0, \theta_0)$ and $f(z_k, \theta_{n_k}) \to f(z, \theta_0)$. For each k, we have $f(x_{n_k}, \theta_{n_k}) \ge f(z_k, \theta_{n_k})$ because $x_{n_k} \in X^*(\theta_{n_k})$. Therefore we have $f(x_0, \theta_0) \ge f(z, \theta_0)$.

Step 3: f^* is continuous at θ_0

Let us show the continuity of f^* at θ_0 by using the sequential definition of continuous functions.

Take any sequence (θ_k, x_k) such that $\theta_k \to \theta_0$ and $x_k \in X^*(\theta_k)$.⁴ Since X^* is compact-valued and uhc at θ_0 , by Proposition 2, there exists a subsequence (x_l) of (x_k) convergent to some point $x_0 \in X^*(\theta_0)$. Because $x_l \in X^*(\theta_l)$ and $x_0 \in X^*(\theta_0)$, we have $f(x_l, \theta_l) = f^*(\theta_l)$ and $f(x_0, \theta_0) = f^*(\theta_0)$. Then, as $\theta_l \to \theta_0$, $x_l \to x_0$, we have $(x_l, \theta_l) \to (x_0, \theta_0)$, and so $f^*(\theta_l) = f(x_l, \theta_l) \to f(x_0, \theta_0) = f^*(\theta_0)$.

To see that this implies continuity of f^* , take any sequence θ_n convergent to θ_0 and suppose that $f^*(\theta_n) \not\to f^*(\theta_0)$. Then, there is $\epsilon > 0$ and a subsequence (θ_k) , $\{\theta_k\}_k \subseteq \{\theta_n\}_n$, such that $|f^*(\theta_k) - f^*(\theta_0)| \ge \epsilon$ for every k. Using the above result, we get that for a subsequence (θ_l) of (θ_k) , $f^*(\theta_l) \to f^*(\theta_0)$, and we obtain a contradiction.

By Berge's maximum theorem, we can only conclude that the set of maximisers X^* is uhc in the parameter θ . In fact, X^* may easily fail to be lhc, even when the objective function f and the constraint correspondence B are continuous in the parameter θ . For example, consider the following problem:

$$\max_{(x_1,x_2)\in\mathbb{R}^2_+}\theta x_1+x_2 \text{ such that } p_1x_1+p_2x_2\leq w$$

where the parameters $\theta > 0, p_1, p_2, w > 0$. Clearly, the objective function $f : \mathbb{R}^2_+ \times \mathbb{R}_+$ defined as

$$f(x,\theta,p_1,p_2,m) := \theta x_1 + x_2$$

is continuous. The constraint correspondence $B: \mathbb{R}_+ \times \mathbb{R}_{++}^2 \times \mathbb{R}_{++} := S \Rightarrow \mathbb{R}_+^2$ defined as $B((p_1, p_2), w; \theta) := \{x \in \mathbb{R}_+^2 : p_1x_1 + p_2x_2 \le w\}$ is nonempty- and compact-valued, and continuous at all $(\theta, p_1, p_2, w) \in S$. Therefore the assumptions of Berge's maximum theorem are satisfied. However, it is not difficult to see that the set of maximisers $X^*: \mathbb{R}_+ \Rightarrow \mathbb{R}_+^2$ is given by

$$X^* \left((p_1, p_2), w; \theta \right) := \left\{ \begin{array}{l} \left\{ \left(0, \frac{w}{p_2} \right) \right\}, \text{ if } p_1 > \alpha p_2 \\ \left\{ x \in \mathbb{R}_+^2 : p_1 x_1 + p_2 x_2 = w \right\}, \text{ if } p_1 = \theta p_2 \\ \left\{ \left(\frac{w}{p_1}, 0 \right) \right\}, \text{ if } 0 < p_1 < \theta p_2 \end{array} \right.$$

which is clearly uhc but not lhc at the point $(\theta,(p_1,p_2),w)$ where $p_1=\theta p_2$.

If, in addition to the assumptions in the Theorem 2, B is convex-valued and f is (strictly) quasiconcave in x, then X^* is convex (resp. single-valued). In the case when X^* is single-valued, we can think of X^* as a continuous function x^* , such that $X^*(\theta) = \{x^*(\theta)\}$.

⁴Here is where we are using the fact that B is nonempty- and compact-valued and $f(\cdot,\theta)$ is continuous to obtain that $X^*(\theta)$ is nonempty. If we have that for all sequences (θ_n) converging to θ_0 we have $X^*(\theta_n) \neq \emptyset$, or if we restrict the domain of f^* to the θ such that $X^*(\theta) \neq \emptyset$, then we just need B to be compact-valued at θ_0 to show continuity of f^* .