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These lecture notes first introduces the concepts of correspondences and their continuity, and
then discuss two important results, Kakutani’s fixed point theorem and Berge’s maximum
theorem.

1. Definitions
Definition 1. A correspondence F from X toY is a set-valued function that associates every
element in X a subset of Y , denoted by F : X â Y or F : X → 2Y , with F(x) ⊆ Y . For A ⊆ X ,
we define the image of F as F(A) :=∪x∈AF(x).
The set X is called the domain of the correspondence F , and Y is called the codomain of F .
F(x) is called the image of point x ∈ X .

You may consider the concept of correspondence as a generalisation of functions, in the sense
that F (x) is a set in Y instead of an element in Y . Clearly, a single-valued correspondence
F : X âY can be viewed as a function from X to Y .

Listed below are some terminologies that we use to describe the properties of correspondences.

Definition 2. A correspondence F : X â Y is said to be [property]-valued at x0 ∈ X if F(x0)

is a [property] set. If F is [property]-valued at all x0 ∈ X , we say F is [property]-valued.
This [property] can be

1. non-empty

2. single (singleton)

3. open

4. closed

5. compact

6. convex
∗Last updated: 23 September 2025.
† Department of Economics, University College London; duarte.goncalves@ucl.ac.uk. Please do not share these
notes with people outside of this class. The present lecture notes were largely based on math camp materials
taught by Xingye Wu; naturally, all errors my own.
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Notice that the 3 - 5 above requires Y to be a metric space (Y ,dY ), and 6 requires Y to be a
(real) vector space (Y ,+, ·).

1.1. Upper Hemi-continuity

Similar to functions, it is possible to talk about continuity of a correspondence if its domain
and codomain are bothmetric spaces. However, there are two distinct notions of continuity for
correspondences, known as upper hemicontinuity and lower hemicontinuity, and they capture
different aspects of continuity of a correspondence. Let’s first look at upper hemicontinuity.

Definition 3. Let (X ,dX ) and (Y ,dY ) be metric spaces. The correspondence F : X âY is said
to be upper hemicontinuous (uhc) at x0 ∈ X if ∀ open setU in (Y ,dY ) such that F (x0)⊆U ,
there is δ> 0 such that F (Bδ (x0))⊆U .

The correspondence F : X â Y is said to be upper hemicontinuous (uhc) if it is upper
hemicontinuous at x0 for all x0 ∈ X .

The definition requires that whenever the open set U covers the entire image of the point x0,
then it must also entirely cover all nearby images. What is not allowed by uhc at x0 is sudden
appearance of a chunk of image outside of U when x deviates from x0.

For example, consider the correspondence F1 :RâR defined as1

F1 (x) :=
{

{0} , if x ≤ 0

[−1,1] , if x > 0

Clearly F1 fails to be uhc at 0, because if we let U := (−1/2,1/2), whenever x moves away a
little from 0 to the right, the image F1 (x) becomes [−1,1], which is not covered by U . The
problem of this correspondence at 0 is that many new points suddenly appear when x deviate
from 0 to the right, and this is a violation of uhc. Therefore, uhc can be intuitively interpreted
as “no sudden appearance of a chunk of image when deviating from a point.” (note this is
stronger than uhc requires though)

Consider a slightly different correspondence F2 :RâR defined as

F2 (x) :=
{

{0} , if x < 0

[−1,1] , if x ≥ 0

The image of F2 at 0 is [−1,1], and so there is no sudden appearance of image when deviating
from 0. Therefore, F2 is uhc at 0. Clearly, F2 is also uhc at all other points in R, and so F2 is
uhc.

But note that this “no sudden appearance” tenet is just to provide some intuition for sufficient
conditions: e.g. uhc allows “smooth changes” in the image when deviating from a point, if
1In Rn, we use the Euclidean metric d2 by default.
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the correspondence is closed-valued at this point. For example, consider the correspondence
F3 : Râ R defined as F3 (x) := [x, x+1] for any x ∈ R. Under F3, the image F3 (x) = [x, x+1]

changes “smoothly” when x changes, and it can be shown that F3 is uhc.

Claim 1. The correspondence F3 :RâR defined above is uhc.

Proof. Take any x0 ∈R. We focus on proving that F3 is uhc at x0.
Take any open set U ⊇ [x0, x0 +1]. We want to show that ∃ δ> 0 such that U ⊇ F (x) for any
x ∈ (x0 −δ, x0 +δ).
Because x0 and x0+1 are in the open set U , they are interior points of U , and so ∃ δ> 0 such
that (x0 −δ, x0 +δ)⊆U and (x0 +1−δ, x0 +1+δ)⊆U . Therefore, we have (x0 −δ, x0 +1+δ)⊆
U . For any x ∈ (x0 −δ, x0 +δ), we have F (x)= [x, x+1]⊆ (x0 −δ, x0 +1+δ)⊆U .

However, when the correspondence is not closed-valued, then even smooth changes in the
image may violate uhc. For example, consider a slightly different correspondence F4 : Râ R

defined as F4 (x) := (x, x+1). It can be shown that it is not uhc at any point in R. To see this,
for each x0 ∈ R, let U := F4 (x0) := (x0, x0 +1), and U cannot cover F (x) as long as x ̸= x0. In
applications, however, we almost always work with closed-valued correspondences, in which
case uhc allows smooth changes, but does not allow sudden appearance of image.

For single-valued correspondences, uhc is equivalent to continuity of functions.

Proposition 1. Let (X ,dX ) and (Y ,dY ) be metric spaces. Consider a single-valued correspon-

dence F : X â Y . Define f : X → Y as f (x) := y such that y ∈ F (x). Then F is uhc at x0 ∈ X if

and only if f is continuous at x0.

The proof is straightforward, and is left as an exercise.

For compact-valued correspondences, there is a sequential characterisation of uhc, which is
formulated in the following proposition:2

Proposition 2. Let (X ,dX ) and (Y ,dY ) be metric spaces. Consider a correspondence F : X âY ,

and let x0 ∈ X . Then the following two statements are equivalent:

(1) F is compact-valued at x0, and F is uhc at x0.

(2) For any sequence (xn) in X convergent to x0, any sequence (yn) such that yn ∈ F (xn) for each

n ∈N, there exists a subsequence (
ynk

)
convergent to some y0 ∈ F (x0).

Proof. (1) =⇒ (2):
Take any sequence (xn) in X convergent to x0, any sequence (yn) such that yn ∈ F (xn) for each
n ∈N. We want to show that there exists a subsequence

(
ynk

)
convergent to some y0 ∈ F (x0).

2This is the definition of uhc in the book by SLP, who only study compact-valued correspondences.
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For each k ∈N, consider the set Uk := ⋃
y∈F(x0)

B1/k (y). Because the arbitrary union of opens is

still open, we know that Uk is an open set. By construction Uk ⊇ F (x0), and so by uhc of F

at x0, there exists δk > 0 such that F
(
Bδk (x0)

)⊆Uk. Since xn → x0, there exists Nk such that
xn ∈ Bδk (x0), and thus yn ∈ Uk for any n > Nk. Therefore, we can find a subsequence

(
ynk

)
such that ynk ∈Uk for each k ∈N. By construction of Uk, for each k, there exists zk ∈ F (x0)

such that dY
(
ynk , zk

) < 1/k. As F is compact-valued at x0, we know that F (x0) is compact
in (Y ,dY ). So there exists a subsequence

(
zkl

)
convergent to some y0 ∈ F (x0). Therefore, we

have dY
(
zkl , y0

)→ 0, and

0≤ dY

(
ynkl

, y0

)
≤ dY

(
ynkl

, zkl

)
+dY

(
zkl , y0

)
< 1

kl
+dY

(
zkl , y0

)→ 0+0= 0

Consequently, we have dY

(
ynkl

, y0

)
→ 0, which means ynkl

→ y0. Finally, this means we have
found a subsequence of (yn) that converges to some point in F (x0).

(1) ⇐= (2):
(a) F is compact-valued at x0.
Take any sequence (yn) in F (x0). We will show that there exists a subsequence

(
ynk

)
conver-

gent to some y0 ∈ F (x0).
Let xn = x0 for all n ∈N. Then we have xn → x0 and yn ∈ F (xn) for each n ∈N. By assumption,
there exists a subsequence

(
ynk

)
convergent to some y0 ∈ F (x0).

(b) F is uhc at x0.
Suppose that F is not uhc at x0. Then ∃ U open in (X ,dX ) such that U ⊇ F (x0), but ∀δ > 0

we have U ̸⊇ F (Bδ (x0)). Hence, for any n ∈ N, we have U ̸⊇ F (B1/n (x0)), i.e. there exists
xn ∈ B1/n (x0) and yn ∈ F (xn) such that yn ∉U . Because xn → x0, by assumption there exists a
subsequence

(
ynk

)
convergent to some y0 ∈ F (x0).

Since
(
ynk

)
is in Y \U , which is closed in (Y ,dY ), we have y0 ∈ Y \U , and so y0 ∉ F (x0), a

contradiction.

Without compact-valuedness, uhc alone does not imply property (2) in the proposition above.
For example, consider F5 : Râ R defined as F5 (x) := (0,1) for any x ∈ R. Clearly, F5 is uhc
everywhere, but it does not satisfy property (2) at any x0 ∈ R, since compact-valuedness is
necessary for property (2).

1.2. Closed Graph Property

There is a concept, called closed graph property, that is closely related to uhc.

Definition 4. Let (X ,dX ) and (Y ,dY ) be metric spaces. The correspondence F : X â Y is
said to have closed graph property (cgp) at x0 ∈ X if ∀ sequence (xn) in X convergent to
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x0, yn ∈ F (xn) for each n ∈N, and yn → y0 ∈Y , we have y0 ∈ F (x0).
The correspondence F : X â Y is said to have closed graph property (cgp) if it has closed
graph property at x0 for all x0 ∈ X .

Clearly, cgp implies closed-valuedness.

Claim 2. Let (X ,dX ) and (Y ,dY ) be metric spaces. If the correspondence F : X â Y is cgp at

x0 ∈ X , then it is closed-valued at x0.

Proof. Take any sequence (yn) in F (x0) convergent to y0 ∈Y . Wewant to show that y0 ∈ F (x0).
Let xn = x0 for all n ∈N, then we have xn → x0, yn ∈ F (xn) for each n ∈N, and yn → y0 ∈ Y .
By cgp, we have y0 ∈ F (x0).

The graph3 of a correspondence F : X âY is defined as Gr (F) := {(x, y) ∈ X ×Y : y ∈ F (x)}

For a correspondence F : X â Y , where (X ,dX ) and (Y ,dY ) are metric spaces, the name of
the property “closed graph property” comes from the fact that F has cgp (everywhere in X ) if
its graph is closed in (X ×Y ,dX×Y ), where the metric for the product space is defined as

dX×Y
(
(x, y) ,

(
x′, y′

))
:=

√
[dX (x, x′)]2 + [dY (y, y′)]2

for any (x, y) ,
(
x′, y′

) ∈ X ×Y .

It can be shown that dX×Y as defined above is a valid metric for X×Y . Also, we can show that
(xn, yn) → (x0, y0) in (X ×Y ,dX×Y ) if and only if xn → x0 in (X ,dX ) and yn → y0 in (Y ,dY ),
and this is left as an exercise.

Claim 3. Let (X ,dX ) and (Y ,dY ) be metric spaces. Then a correspondence F : X â Y has cgp

if and only if Gr (F) is closed in (X ×Y ,dX×Y ).

Proof. =⇒ :

Take any ((xn, yn)) in Gr (F) that is convergent to (x0, y0) ∈ X ×Y . We want to prove that
(x0, y0) ∈ Gr (F). As (xn, yn) → (x0, y0), we have that xn → x0 and yn → y0. Since (xn, yn) ∈
Gr (F) for all n, we have yn ∈ F (xn) for all n. As F has cgp, we know that F has cgp at x0,
and so y0 ∈ F (x0), which implies (x0, y0) ∈Gr (F).
⇐= :

Take any x0 ∈ X . We will show that F has cgp at x0.
Take any (xn) in X convergent to x0, yn ∈ F (xn) for each n ∈N, and yn → y0 ∈ Y . We claim
that y0 ∈ F (x0).
Given that xn → x0 and yn → y0, we have (xn, yn) → (x0, y0) in (X ×Y ,dX×Y ). Because
yn ∈ F (xn) for each n, we have (xn, yn) ∈ Gr (F) for each n. And since Gr (F) is closed in
(X ×Y ,dX×Y ), we have (x0, y0) ∈Gr (F).
3This is in fact a redundant definition since Gr (F)= F , if we view F as a relation from X ×Y .
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Closed graph property is closely related to uhc, and their relation is formulated by the follow-
ing two propositions:

Proposition 3. Let (X ,dX ) and (Y ,dY ) be metric spaces. If a correspondence F : X âY is uhc

at x0 ∈ X , and is closed-valued at x0, then F has cgp at x0.

Proof. Take any sequence (xn) in X convergent to x0, yn ∈ F (xn) for each n ∈ N, and yn →
y0 ∈Y .
We want to show that y0 ∈ F (x0).
Suppose y0 ∉ F (x0), i.e. y0 ∈ Y \ F (x0). Because F is closed-valued at x0, Y \ F (x0) is open
in (Y ,dY ), and so ∃ ϵ > 0 such that B2ϵ(y0) ⊆ Y \ F (x0). And the “closed ball” B̄ϵ (y0) :=
{y ∈Y : dY (y, y0)≤ ϵ} is contained in B2ϵ(y0) and therefore in Y \F (x0), and therefore F (x0)⊆
Y \ B̄ϵ (y0). As a closed ball is a closed set and F (x0) is covered by the open set Y \ B̄ϵ (y0). By
uhc of F at x0, ∃ δ> 0 such that F (Bδ (x0))⊆Y \ B̄ϵ (y0).

Given that xn → x0 and yn → y0, there exists n̂ such that xn̂ ∈ Bδ (x0) and yn̂ ∈ B̄ϵ (y0). How-
ever, because F (Bδ (x0)) ⊆ Y \ B̄ϵ (y0), we have yn̂ ∈ F (xn̂) ⊆ F (Bδ (x0)) ⊆ Y \ B̄ϵ (y0), which
contradicts yn̂ ∈ B̄ϵ (y0).

The result above states that uhc implies cgp if we have closed-valuedness. Without closed-
valuedness, this implication does not hold since a uhc correspondence may not have closed-
valuedness. For example, consider F5 as previously defined. Clearly, F5 is uhc everywhere,
but it does not have cgp anywhere, since closed-valuedness is necessary for cgp.

A correspondence F : X âY , where (X ,dX ) and (Y ,dY ) aremetric spaces, is said to be locally
bounded at x0 if ∃ δ> 0 and a compact set K in (Y ,dY ) such that F (Bδ (x0)) ⊆ K . The next
proposition works in the other direction:

Proposition 4. Let (X ,dX ) and (Y ,dY ) be metric spaces. If a correspondence F : X â Y has

cgp at x0 ∈ X , and F is locally bounded at x0, then F is uhc at x0.

The proof of this proposition is similar to the proof of Proposition 2, part (b) of the direction
“(1) ⇐= (2)”.

Proof. Suppose that F is not uhc at x0. Then ∃U open in (Y ,dY ) such that F(x0) ⊆ U , but
∀δ> 0 we have F(Bδ(x0)) ̸⊆U . Then for any n ∈N, we have F(B1/n(x0)) ̸⊆U , i.e. there exists
xn ∈ B1/n(x0) and yn ∈ F(xn) such that yn ̸∈U . By assumption there exists δ̂> 0 and compact
set K in (Y ,dY ) such that F(Bδ̂(x0))⊆ K . By construction, we have xn → x0, and so ∃N such
that xn ∈ Bδ̂(x0) and so yn ∈ K for any n > N .
By sequential compactness of K , there exists a subsequence (ynk ) of (yn)n>N convergent to
some y0 ∈ K . Because the subsequence (ynk ) ⊆ Y \U , which is closed, we have y0 ∈ Y \U .
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However, since F has cgp at x0, and xnk → x0, ynk ∈ F(xnk ), ynk → y0, we have y0 ∈ F(x0)⊆U ,
a contradiction.

The result above states that cgp implies uhc if we have local boundedness. Without local
boundedness, cgp does not imply uhc. For example, consider F6 :Râ [0,1) defined as

F6 (x)=
{

{ex} , x < 0

{0} , x ≥ 0

which is clearly not uhc at 0. However, F6 has cgp at 0. Note that 1 is not in the codomain,
and so when xn converges to 0 from the negative real line, yn ∈ F (xn) does not converge. This
is not a violation of the proposition above, as F6 is not locally bounded at 0. As 1 is not in the
codomain, and so we cannot find a compact set K in ([0,1) ,d2) to bound all images of points
nearby 0.

Another example is F7 :RâR defined as

F6 (x)=
{

{1/x} , x ̸= 0

{0} , x = 0

As a consequence of the two propositions above, under closed-valuedness and local bounded-
ness, uhc and cgp are equivalent.

1.3. Lower Hemi-continuity

Now let’s define lower hemicontinuity.

Definition 5. Let (X ,dX ) and (Y ,dY ) be metric spaces. The correspondence F : X âY is said
to be lower hemicontinuous (lhc) at x0 ∈ X if ∀ open setU in (Y ,dY ) such that F (x0)∩U ̸=
;, ∃ δ> 0 such that F (x)∩U ̸= ; for any x ∈ Bδ (x0). The correspondence F : X â Y is said
to be lower hemicontinuous (lhc) if it is lower hemicontinuous at x0 for all x0 ∈ X .

The definition requires that whenever the open set U covers a part of the image of the point
x0, then it must also cover a part of all nearby images. What is not allowed by lhc at x0 is
sudden disappearance of a chunk of image when x deviates from x0.

For example, consider the correspondence F2 :RâR

F2 (x) :=
{

{0} , if x < 0

[−1,1] , if x ≥ 0

as previously defined. Clearly F2 fails to be lhc at 0, because if we letU := (1/2,3/2), whenever
x moves away a little from 0 to the left, the image F2 (x) becomes {0}, which does not share an
intersection with U . The problem of this correspondence at 0 is that many points suddenly
disappear when x deviate from 0 to the left, and this is a violation lhc. Therefore, lhc can be
intuitively interpreted as “no sudden disappearance of a chunk of image when deviating from
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a point.”

Consider the slightly different correspondence F1 :RâR

F1 (x) :=
{

{0} , if x ≤ 0

[−1,1] , if x > 0

as previously defined. The image of F1 at 0 is {0}, and so there is no sudden disappearance
of image when deviating from 0. Therefore, F1 is lhc at 0. Clearly, F1 is also lhc at all other
points in R, and so F1 is lhc.

Lower hemicontinuity does not allow sudden disappearance of image when deviating from a
point, but it allows “smooth changes” in the image when deviating from a point. For example,
consider the correspondence F3 :RâR

F3 (x) := [x, x+1]

for any x ∈R as previously defined. Under F3, the image F3 (x)= [x, x+1] changes “smoothly”
when x changes, and it can be shown that F3 is lhc.

Claim 4. The correspondence F3 :RâR defined above is lhc.

Proof. Take any x0 ∈ R. We want to show F3 is lhc at x0. Take any open set U for which
[x0, x0 +1]∩U ̸= ;. We want to show that ∃ δ> 0 : [x, x+1]∩U ̸= ; for any x ∈ (x0 −δ, x0 +δ).
Let x̂ ∈ [x0, x0 +1]∩U . Because U is open, there exists δ > 0 such that (x̂−δ, x̂+δ) ⊆ U .
Take any x ∈ (x0 −δ, x0 +δ). By construction, we have x− x0 ∈ (−δ,δ), and so x̂+ (x− x0) ∈
(x̂−δ, x̂+δ) ⊆ U . As x̂ ∈ [x0, x0 +1], we have x̂+ (x− x0) ∈ [x0 + (x− x0) , x0 + (x− x0)+1] =
[x, x+1]. Therefore, we have x̂+ (x− x0) ∈ [x, x+1]∩U , and so [x, x+1]∩U ̸= ;.

Lower hemicontinuity allows smooth changes in the image, regardless of whether the cor-
respondence is closed-valued. If we consider a slightly different correspondence F4 : Râ R

defined as F4 (x) := (x, x+1) for any x ∈R, a slightly modification of the proof above can show
that F4 is also lhc. For single-valued correspondences, lhc is equivalent to continuity of func-
tions.

Proposition 5. Let (X ,dX ) and (Y ,dY ) be metric spaces. Consider a single-valued correspon-

dence F : X â Y . Define f : X → Y as f (x) := y such that y ∈ F (x). Then F is lhc at x0 ∈ X if

and only if f is continuous at x0.

This proof is straightforward, and is left as an exercise.

The following proposition provides the sequential characterisation of lhc:

Proposition 6. Let (X ,dX ) and (Y ,dY ) be metric spaces. A correspondence F : X â Y is lhc

at x0 ∈ X if and only if for any y0 ∈ F (x0) and sequence (xn) in X convergent to x0, there exists

N ∈N and yn ∈ F (xn) for any n > N such that the sequence (yn)n>N converges to y0.
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In the proposition above, we start to construct the sequence (yn) starting from n = N + 1,
because F (xn) may be empty for small n’s.

Proof. =⇒ :

Take any y0 ∈ F (x0) and sequence (xn) in X convergent to x0. We want to prove that ∃ N ∈N
and yn ∈ F (xn) for any n > N such that the sequence (yn)n>N converges to y0.
For each k ∈N, we have y0 ∈ F (x0)∩B1/k (y0), and so F (x0)∩B1/k (y0) ̸= ;. By lhc, ∃ δk > 0

such that for any x ∈ Bδk (x0), we have F (x)∩B1/k (y0) ̸= ;.
As xn → x, ∃ N ∈N such that xn ∈ Bδ1 (x0) for any n > N . For each n > N , arbitrarily take

yn ∈ ⋂
k∈

{
k′∈N:xn∈Bδk′ (x0)

} [F (xn)∩B1/k (y0)]

This is possible because F (xn)∩B1/k (y0) ̸= ; whenever xn ∈ Bδk (x0).
Now we want to show that (yn)n>N converges to y0. Take any ϵ> 0. ∃ K such that 1/k < ϵ for
any k > K . Since xn → x0, ∃ N̂ > N such that xn ∈ BδK (x0) for any n > N̂ . Therefore for any
n > N̂ , we have xn ∈ BδK (x0), which implies yn ∈ B1/K (y0), which in turn implies yn ∈ Bϵ (y0).

⇐= :

Suppose, by contradiction, that ∃ open set U in (Y ,dY ) such that F (x0)∩U ̸= ;, but ∀ δ> 0,
∃ x ∈ Bδ (x0) such that F (x)∩U =;. This implies that for any n ∈N, ∃ xn ∈ B1/n (x0) such that
F (xn)∩U =;, i.e. F (xn)⊆Y \U .
By construction, we have xn → x0. Arbitrarily take y0 ∈ F (x0)∩U , and by assumption there
exists N ∈N and yn ∈ F (xn) for any n > N such that the sequence (yn)n>N converges to y0.
And given that yn ∈ F (xn) ⊆ Y \U for any n > N , and Y \U is closed in (Y ,dY ) since U is
open, we have y0 ∈Y \U . This contradicts the construction of y0.

As we have discussed, uhc for closed-valued correspondences means no sudden appearance of
image when deviating from a point, while lhc means no sudden disappearance of image when
deviating from a point. Therefore, we might expect a relation between F being uhc and F c

being lhc. In fact, we have one direction, but not the other.

For a correspondence F : X âY , let’s define its complement F c : X âY as

F c (x) :=Y \ F (x)

for any x ∈ X . (This is a redundant definition if we realise that F is essentially a subset of
X ×Y .)

Proposition 7. Let (X ,dX ) and (Y ,dY ) be metric spaces, and consider a correspondence F :

X âY . If F c is uhc at x0 ∈ X , then F is lhc at x0.

The proof is left as an exercise.
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However, F c being lhc does not imply F being uhc, even if we further assume F to be compact-
valued. For example, consider the correspondence F7 :RâR defined as:

F8 (x) :=
{

{0} , if x < 0

{1} , if x ≥ 0

Clearly F is compact-valued, and F(x) is not uhc at 0. However, F c is lhc at all x0 ∈R.
Finally, a correspondence is said to be continuous if it is both uhc and lhc.

Definition 6. Let (X ,dX ) and (Y ,dY ) be metric spaces. The correspondence F : X â Y is
said to be continuous at x0 ∈ X if F is both uhc and lhc at x0. The correspondence F is said
to be continuous if F is continuous at x0 for all x0 ∈ X .

2. Kakutani’s Fixed Point Theorem
Definition 7. A correspondence F from X to X itself is called a self-correspondence. For
a self-correspondence F : X â X , a point x ∈ X is called a fixed point of F if x ∈ F (x).

When the self-correspondence F is single-valued, clearly x ∈ X is a fixed point of F if F (x)=
{x}, which is consistent with notion of fixed points for functions. Therefore, the definition
above can be considered as a generalisation of the notion of fixed points to correspondences.

Theorem 1. (Kakutani’s Fixed Point) Let X be a nonempty, compact, and convex set in Rn.

If the self-correspondence F : X â X is nonempty-valued, compact-valued, convex-valued, and

uhc, then there exists a fixed point x ∈ X of F .

In the theorem above, compactness is with respect to the metric space (Rn,d2), and convexity
is with respect to the vector space (Rn,+, ·) over R, where+ and · are the usually defined vector
addition and scalar multiplication for real vectors.

If F is single-valued, then nonempty-valuedness, compact-valuedness, and convex-valuedness
of F holds trivially, and uhc reduces to the continuity of functions. So the theorem above
reduces to Brouwer’s fixed point theorem. Therefore, Kakutani’s fixed point theorem should
be viewed as a generalisation of Brouwer’s fixed point theorem.

Because the codomain X of F is compact in the theorem, compact-valuedness is equivalent
to closed-valuedness, and so we can replace the compact-valuedness assumption by closed-
valuedness.

Again because the codomain X is compact, (compact-valuedness + uhc) is equivalent to cgp. To
see this, the direction “=⇒ ” is given by Proposition 3, and the other direction “⇐= ” is given
by Proposition 4, since local boundedness holds trivially. Therefore we have the following
corollary.
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Corollary 1. Let X be a nonempty, compact, and convex set in Rn. If the self-correspondence

F : X â X is nonempty-valued, convex-valued, and has cgp, then there exists a fixed point x∗ ∈ X

of F .

Kakutani’s fixed point theorem plays the central role in the proof of the existence of Nash
equilibria in non-cooperative game theory.

3. Berge’s Theorem of Maximum
Theorem 2. (Berge’s Maximum Theorem) Let X and Θ be metric spaces, f : X ×Θ→ R be

a continuous function, and B :Θâ X be a non-empty and compact-valued correspondence. Let

f ∗(θ) := supx∈B(θ) f (x,θ) and X∗(θ) := argmaxx∈B(θ) f (x,θ). If B is continuous at θ ∈ Θ, then
f ∗ is continuous at θ and X∗ is uhc, nonempty, and compact-valued at θ.

In the theorem above, the maximisation problem we are looking at is a parameterised problem

max
x∈X

f (x,θ) such that x ∈ B (θ)

where both the objective function f and the constraint set B depend on the parameter θ.
The theorem states that if the objective function f is continuous, and the constraint set B is
nonempty- and compact-valued, and is both uhc and lhc in the parameter θ, then the set of
maximisers X∗ is compact and uhc in θ, and the maximum value f ∗ is also continuous in θ.

Proof. Let’s prove the theorem in three steps:

Step 1: X∗ is nonempty-valued at θ0

As f is jointly continuous in (x,θ), then f (·,θ) is continuous in x. As we also have that B is
nonempty- and compact-valued at θ0, the claim follows fromWeierstrass extremum theorem.

Step 2: X∗ is compact-valued and uhc at θ0

Weprove this using Proposition 2. Take any sequence (θn) inΘ convergent to θ0, any sequence
(xn) such that xn ∈ X∗ (θn) for each n ∈N.
We now prove that ∃ subsequence

(
xnk

)
convergent to some x0 ∈ X∗ (θ0). Given that xn ∈

X∗ (θn) ⊆ B(θn) for each n, and as B is compact-valued and uhc at θ0, by Proposition 2, ∃
subsequence

(
xnk

)
convergent to some x0 ∈ B(θ0).

Take the x0 found this way; it is sufficient to show that x0 ∈ X∗ (θ0), i.e. f (x0,θ0)≥ f (z,θ0) for
any z ∈ B (θ0). Because B is lhc at θ0 and θnk → θ0, by sequential definition of lhc (Proposition
6), there exists K ∈N and zk ∈ B

(
θnk

)
for each k > K , such that zk → z. As xnk → x0, zn → z,

θnk → θ0, by continuity of f , f
(
xnk ,θnk

)→ f (x0,θ0) and f
(
zk,θnk

)→ f (z,θ0). For each k, we
have f (xnk ,θnk )≥ f (zk,θnk ) because xnk ∈ X∗ (

θnk

)
. Therefore we have f (x0,θ0)≥ f (z,θ0).

Step 3: f ∗ is continuous at θ0

11



Let us show the continuity of f ∗ at θ0 by using the sequential definition of continuous func-
tions.

Take any sequence (θk, xk) such that θk → θ0 and xk ∈ X∗ (θk).4 Since X∗ is compact-valued
and uhc at θ0, by Proposition 2, there exists a subsequence (xl) of (xk) convergent to some point
x0 ∈ X∗ (θ0). Because xl ∈ X∗ (θl) and x0 ∈ X∗ (θ0), we have f (xl ,θl) = f ∗ (θl) and f (x0,θ0) =
f ∗ (θ0). Then, as θl → θ0, xl → x0, we have (xl ,θl) → (x0,θ0), and so f ∗(θl) = f (xl ,θl) →
f (x0,θ0)= f ∗(θ0).

To see that this implies continuity of f ∗, take any sequence θn convergent to θ0 and suppose
that f ∗(θn) ̸→ f ∗(θ0). Then, there is ϵ > 0 and a subsequence (θk), {θk}k ⊆ {θn}n, such that
| f ∗(θk)− f ∗(θ0)| ≥ ϵ for every k. Using the above result, we get that for a subsequence (θl) of
(θk), f ∗(θl)→ f ∗(θ0), and we obtain a contradiction.

By Berge’s maximum theorem, we can only conclude that the set of maximisers X∗ is uhc in
the parameter θ. In fact, X∗ may easily fail to be lhc, even when the objective function f and
the constraint correspondence B are continuous in the parameter θ. For example, consider the
following problem:

max
(x1,x2)∈R2+

θx1 + x2 such that p1x1 + p2x2 ≤ w

where the parameters θ > 0, p1, p2,w > 0. Clearly, the objective function f : R2+×R+ defined
as

f (x,θ, p1, p2,m) := θx1 + x2

is continuous. The constraint correspondenceB :R+×R2++×R++ := S âR2+ defined asB ((p1, p2),w;θ) :={
x ∈R2+ : p1x1 + p2x2 ≤ w

}
is nonempty- and compact-valued, and continuous at all (θ, p1, p2,w) ∈

S. Therefore the assumptions of Berge’s maximum theorem are satisfied. However, it is not
difficult to see that the set of maximisers X∗ :R+ âR2+ is given by

X∗ ((p1, p2),w;θ) :=


{(

0, w
p2

)}
, if p1 >αp2{

x ∈R2+ : p1x1 + p2x2 = w
}
, if p1 = θp2{(

w
p1

,0
)}
, if 0< p1 < θp2

which is clearly uhc but not lhc at the point (θ, (p1, p2),w) where p1 = θp2.

If, in addition to the assumptions in the Theorem 2, B is convex-valued and f is (strictly) quasi-
concave in x, then X∗ is convex (resp. single-valued). In the case when X∗ is single-valued,
we can think of X∗ as a continuous function x∗, such that X∗(θ)= {x∗(θ)}.

4Here is where we are using the fact that B is nonempty- and compact-valued and f (·,θ) is continuous to obtain
that X∗(θ) is nonempty. If we have that for all sequences (θn) converging to θ0 we have X∗(θn) ̸= ;, or if we
restrict the domain of f ∗ to the θ such that X∗(θ) ̸= ;, then we just need B to be compact-valued at θ0 to show
continuity of f ∗.
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