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1. Overview
A classic problem studied in economic theory is that of consumer demand. One standard
approach is that consumers as choosing bundles of goods, x ∈Rk+, and are faced with a budget
constraint B(p,w) determined by their income w ≥ 0 and the vector of prices they face, p ∈
Rk++. Specifically, B(p,w) := {x ∈ Rk+ | p · x ≤ w}. We assume that they have preferences over
the goods, ≿, and we study the properties of their demand x(p,w) := argmax≿B(p,w). This
is perhaps the model of economics that is most used outside academia.

2. Utility Maximisation Problem
Aswe have seen in previous lectures, whenwe impose some consistency properties on choices
(here, demand), we can actually represent preferences ≿ by way of a utility function u, and
characterise preference-maximising choices as utility-maximising ones. This motivates the
term utility maximisation problem to denote the consumer’s problem:

x(p,w) := argmax
x∈B(p,w)

u(x) (UMP)

v(p,w) := sup
x∈B(p,w)

u(x)

This section shows how we can use structural properties of preference relations to derive
properties on consumer demand.

2.1. General Implications

We recall that regardless of which utility representation we choose, insofar as it represents the
same preference relation, we have the same set of maximisers.

Proposition 1. Let≿ be a preference relation on Rk+ and let u and v be two utility representations

of ≿. Then, x(p,w)= argmax≿B(p,w)= argmaxx∈B(p,w) u(x)= argmaxx∈B(p,w) v(x).
∗Last updated: 23 September 2025.
† Department of Economics, University College London; duarte.goncalves@ucl.ac.uk. Please do not share these
notes with people outside of this class.
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Proof. Follows by definition: for any utility representation u of ≿, x ∈ argmax≿B(p,w) ⇐⇒
x≿ y∀y ∈ B(p,w) ⇐⇒ u(x)≥ u(y)∀y ∈ B(p,w) ⇐⇒ x ∈ argmaxx∈B(p,w) u(x).

In the sequel, to avoid repetition,≿will denote a preference relation on Rk+, u :Rk+ →R a utility
representation of ≿, v : (p,w) 7→ v(p,w) ∈ R the indirect utility,1 and x : (p,w) 7→ x(p,w) ⊆
B(p,w) the set of maximisers.

As one would expect, indirect utility is increasing in income and decreasing in prices. The
next proposition shows that it is also quasiconvex in prices and income:

Proposition 2. v(p,w) is quasiconvex2 in (p,w), weakly decreasing in p, and weakly increasing

in w.

Proof. To show quasiconvexity, take any (p,w), (p′,w′) ∈ {(p,w) | v(p,w) ≤ v}. We want to
show that v(λ(p,w)+ (1−λ)(p′,w′))≤max{v(p,w),v(p′,w′)}, for any λ ∈ [0,1]. ∀x′′ ∈ X such
that (λp+(1−λ)p′)·x′′ ≤λw+(1−λ)w′, we have that (i) x′′ ∈ B(p,w) or (ii) x′′ ∈ B(p′,w′). (Sup-
posing otherwise means that p ·x′′−w > 0 and p′ ·x′′−w′ > 0 and, doing a convex combination
of these, we get a contradiction.) The result follows.

As for the monotonicity properties, note that p ≥ p′,w ≤ w′ =⇒ B(p,w) ⊆ B(p′,w′) =⇒
v(p,w)≤ v(p′,w′) (where is this last implication coming from?).

If you scale up prices and income, then the consumer is able to afford exactly the same bundles.
This implies that both the indirect utility and the set of maximisers remain the same.

Proposition 3. v(p,w) and x(p,w) are homogeneous of degree zero in (p,w): ∀λ> 0, v(λp,λw)=
v(p,w) and x(λp,λw)= x(p,w).

Proof. As B(λp,λw)= B(p,w), then argmax≿B(p,w)= argmax≿B(λp,λw).

2.2. Implications of Continuity

We will apply a result we derived earlier to show that consumer demand is nonempty when
preferences are continuous.

Proposition 4. If ≿ is continuous, then x(p,w) is nonempty.

Correspondences. Wewill need to take a small detour to introduce correspondences in order
to make use of a very powerful result in optimisation: Berge’s Maximum Theorem.
1This is a slight abuse of terminology given we defined v as the supremum instead of the maximum, as the latter
need not be well defined, i.e., x(p,w) can be empty. Given B(p,w) is compact, these will be the same if ≿ is
continuous, as shown later on.

2A function f : X → R is quasiconvex if − f is quasiconcave. This is equivalent to having that {x ∈ X | f (x) ≤α}
is convex for any α ∈R.
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Definition 1. A correspondence F from X to Y is a mapping that associates with each
element x ∈ X a subset A ⊆ Y . This is typically denoted by F : X â Y or F : X → 2Y , with
F(x)⊆Y . For A ⊆ X , we define the image of F as F(A) :=∪x∈AF(x).

We will introduce two notions of continuity of correspondences in metric spaces:

Definition 2. Let (X ,dX ) and (Y ,dY ) be metric spaces and F : X âY .

(i) F is upper hemicontinuous (uhc) at x0 ∈ X if for any open set U ⊆Y , such that F(x0)⊆
U , ∃ϵ> 0 such that F(Bϵ(x0))⊆U ;

(ii) F is upper hemicontinuous (uhc) if it is upper hemicontinuous at any x0 ∈ X ;

(iii) F is lower hemicontinuous (lhc) at x0 ∈ X if for any open set U ⊆Y , such that F(x0)∩
U ̸= ;, ∃ϵ> 0 such that F(x)∩U ̸= ;, for any x ∈ Bϵ(x0);

(iv) F is lower hemicontinuous (lhc) if it is lower hemicontinuous at any x0 ∈ X ;

(v) F is continuous at x0 ∈ X if it is both uhc and lhc at x0;

(vi) F is continuous if it is both uhc and lhc.

The next proposition provides sequential characterisations of correspondences that may be
easier to interpret:

Proposition 5. Let (X ,dX ) and (Y ,dY ) be metric spaces and F : X âY .

(i) F is lhc at x0 if and only if for any sequence {xn}n ⊆ X converging to x0 and any y0 ∈ F(x0),

there is an N and a sequence {yn}n>N with yn ∈ F(xn), such that yn → y0.

(ii) F is uhc (and compact-valued) at x0 if (and only if) for any sequence {xn}n ⊆ X converging

to x0 and any sequence {yn}n such that yn ∈ F(xn), there is some subsequence {ym}m ⊆ {yn}n such

that ym converges to some y0 ∈ F(x0).

Put loosely, part (i) of Proposition 5 shows that lhc is equivalent to stating that every point
y0 ∈ F(x0) can be reached by some sequence yn ∈ F(xn). And part (ii) that uhc and compact-
valuedness are equivalent to having that the limit y0 of converging sequences yn ∈ F(xn) is
also a point in the limit set F(x0).

These concepts are difficult to diggest; it is very strongly recommended that you develop your
understanding with the following:

Exercise 1. (i) Read the lecture notes on correspondences.

(ii) Watch a brief (10min) lecture by Rajiv Sethi on upper and lower hemicontinuity:

https://youtu.be/OJfzJhsC3Rc.

One of the main results that you will reencounter later on to prove other fundamental results
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is Berge’s maximum theorem:

Theorem 1. (Berge’s Maximum Theorem) Let X and Θ be metric spaces, f : X ×Θ→ R be

a continuous function, and B :Θâ X be a non-empty and compact-valued correspondence. Let

f ∗(θ) := supx∈B(θ) f (x,θ) and X∗(θ) := argsupx∈B(θ) f (x,θ). If B is continuous at θ ∈Θ, then f ∗

is continuous at θ and X∗ is uhc, nonempty, and compact-valued at θ.

This is very useful theorem that we can then apply off-the-shelf in many circumstances. One
of such applications is the following:

Proposition 6. If≿ is continuous, then x(p,w) is upper hemicontinuous, nonempty- and compact-

valued in (p,w).

Further, if u is a continuous utility representation of ≿, v(p,w) is continuous.

Exercise 2. Prove Proposition 6 by showing the following steps:

(i) B is nonempty-valued;

(ii) B is closed-valued and bounded for any (p,w) ∈Rk++×R+. Appeal to Heine–Borel theorem to

show it is compact-valued;

(iii) B is uhc at any (p0,w0) (The sequential characterisation from Proposition 5 is probably
easiest);

(iv) B is lhc at any (p0,w0) (Take any open U ⊆Rk+ : B(p0,w0)∩U ̸= ; and construct an ϵ> 0

such that B(p,w)∩U ̸= ;, ∀(p,w) ∈ Bϵ((p0,w0)));

(v) Argue that there is a continuous utility representation of ≿;

(vi) Show that you can apply Berge’s maximum theorem.

2.3. Implications of Convexity

The next properties are obtained by applying results we have seen in the previous set of lecture
notes:

Proposition 7. If≿ is convex, then x(p,w) is convex. If≿ is strictly convex, then x(p,w) contains

at most one element.

And, now, we combine both Berge’s maximum theorem and the preceeding result to obtain:

Corollary 1. If ≿ is continuous and strictly convex, then x(p,w) is continuous in (p,w).

Exercise 3. Let (X ,dX ) and (Y ,dY ) be metric spaces and F : X âY . Prove that if F is singleton-

valued and uhc, then F is continuous.
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2.4. Implications of Local Non-Satiation

Local nonsatiation, which we defined in the previous lecture, is exactly the condition that we
need to show that the consumer always exhausts their budget. This is known as the Walras’s
law:

Proposition 8. (Walras’s Law) If ≿ is locally non-satiated, then for any x ∈ x(p,w), and any

(p,w) ∈Rk++×R+, p · x = w.

Proof. Let x ∈ x(p,w) and suppose that p · x < w. Then, ∃ϵ> 0 such that ∀x′ ∈ Bϵ(x), p · x′ < w.
By local nonsatiation, ∃x′′ ∈ Bϵ(x) such that x′′ ≻ x. As x′′ ∈ B(p,w), then x ∉ argmax≿B(p,w).

Proposition 9. If u is continuous and locally nonsatiated, then v(p,w) is strictly increasing in

w.

Proof. w < w′ =⇒ B(p,w) ⊊ B(p,w′). Take any x ∈ x(p,w) and x′ ∈ x(p,w′), which exist, by
continuity. As x ∈ x(p,w)⊆ B(p,w), then p ·x ≤ w < w′, and therefore it violates Walras’s Law.
Hence, x ∉ argmax≿B(p,w′) ∋ x′ =⇒ x′ ≻ x ⇐⇒ v(p,w′)= u(x′)> u(x)= v(p,w).

2.5. Implications of Homotheticity

As mentioned in the last lecture, homothetic preferences ensure that a representative con-
sumer exists. That is, if all consumers face the same prices and share the same preferences
(but not necessarily the same incomes), then we can treat aggregate demand — the sum of all
individual demands — as the choices of an agent that shares the same preferences and whose
income is the sum of individual incomes. While this is not true in general, it holds when
preferences are homothetic:

Proposition 10. Let every consumer i ∈ I have income wi ≥ 0 and identical preferences ≿. If ≿

is continuous, homothetic and strictly convex, then
∑

i∈I x(p,wi)= x(p,
∑

i∈I wi).

Proof. As≿ is homothetic, x ∈ x(p,1) ⇐⇒ w ·x ∈ x(p,w). As≿ is strictly convex, x(p,w) is at
most a singleton. Continuity of ≿ implies x(p,w) is nonempty. Combining these results, we
get that ∑

i∈I x(p,wi)=∑
i∈I wix(p,1)= x(p,

∑
i∈I wi).

3. Expenditure Minimisation Problem
The consumer’s utility maximisation problem has a “dual problem”: given a utility level u, the
consumer chooses a bundle to minimise the expenditure incurred, subject to the requirement
of attaining at least the prespecified utility threshold. More formally, let ≿ be a preference
relation on X :=Rk+ and suppose that it admits a utility representation u. DefineU := co(u(X )),
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where co(A) denotes the convex hull of set A, i.e., the smallest convex set that contains A.
For any u ∈U , the consumer’s expenditure minimisation problem is given by

h(p,u) := argmin
x∈X |u(x)≥u

p · x (EMP)

e(p,u) := inf
x∈X |u(x)≥u

p · x

The set of minimisers h(p,u) is called the Hicksian demand.

3.1. General Implications

A few properties follow without needing any further assumption. We start with a simple
observation that mimicks Proposition 3:

Proposition 11. h is homogeneous of degree zero in p and e is homogeneous of degree one in p.

Proof. It follows by definition that ∀λ> 0, h(λp,u)= h(p,u) and e(λp,u)=λe(p,u).

While v was shown to be quasiconvex in (p,w), we find that e is concave in p, which will
allow us to derive further properties:

Proposition 12. e is concave in p.

Proof. This follows from the fact that if f i : X → R is concave for every i ∈ I , then infi∈I f i is
also concave in X .3 But let us prove this directly in our case: Take any p, p′ ∈Rk++, u ∈U , and
λ ∈ [0,1]. Let A := {x ∈ X | u(x)≥ u}. For any x ∈ A, by definition, p · x ≥ infx∈A p · x =: e(p,u)

and, similarly, p′·x ≥ e(p′,u). Hence, for any x ∈ A, (λp+(1−λ)p′)·x ≥λe(p,u)+(1−λ)e(p′,u).
Then, e(λp+ (1−λ)p′,u) := infx∈A(λp+ (1−λ)p′) · x ≥λe(p,u)+ (1−λ)e(p′,u).

Now we leverage concavity of e in p. For that, we need to introduce the concept of a super-
gradient.

Definition 3. A supergradient of f : X →R at x0 ∈ X is an element c ∈Rk such that f (y) ≤
f (x0)+ c · (y− x0), for all y ∈ X . We denote the set of supergradients of f at x0 by ∂ f (x0) and
we call ∂ f (x0) the superdifferential of f at x0.

Theorem 2. Let X ⊆ Rk be a convex set and f be a real-valued function on X . f is concave on

int(X ) if and only if ∀x ∈ int(X ), ∂ f (x) ̸= ;.

The intuition is as follows: pick x, y, z ∈ X . For c ∈ ∂ f (x), f (y) ≤ f (x)+ c · (y− x) and f (z) ≤
f (x)+ c · (z− x). By a convex combination of the two, with λ ∈ (0,1), λ f (y)+ (1−λ) f (z) ≤
f (x)+ c(λy+ (1−λ)z− x). Choosing x =λy+ (1−λ)z delivers concavity of f .

A supergradient — also called superderivative — is generalising the notion of derivative to
3Equivalently, the supremum over a family of convex functions f i : X →R is convex in X .
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functions that are not necessarily differentiable everywhere. For instance, take the function
f : R→ R such that f (x) = x if x ≤ 0 and f (x) =−x if x > 0. This is a concave function and its
derivative exists everywhere — f ′(x)= 1 if x < 0 and f ′(x)=−1 for x > 0 — but at zero, where
it has a kink. Its supergradient, however, is well-defined everywhere: ∂ f (x) = {1} for x < 0,
∂ f (x)= {−1} for x > 0 and ∂ f (0)= [−1,1].

Given a convex X ⊆Rk and a concave function f : X →R, we can say a lot about it:4

(i) For any x ∈ relintX ,5 ∂ f (x) is nonempty, convex, and compact.

(ii) For any c ∈ ∂ f (x) and c′ ∈ ∂ f (x′), (c′− c) · (x′− x)≤ 0.

(iii) If f is continuous at x, then the superdifferential ∂ f (x) is a singleton if and only if f is
differentiable at x. In this case, f ′(x)= c ∈ ∂ f (x)= {c}.

(iv) f ′′ exists almost everywhere in int(X ).6

(v) If k = 1, at any x ∈ int(X ), ∂ f (x) = [ f ′+(x), f ′−(x)], where f ′−, f ′+ denote the left- and right-
derivatives of f .

Back to consumer demand. The next theorem is called the compensated law of demand and
it says that the Hicksian demand is weakly decreasing in prices. We shall prove this result by
showing that Hicksian demand is a supergradient of expenditure and then using the properties
of supergradients.

Lemma 1. If x0 ∈ h(p0,u), then x0 is a supergradient of e(·,u) at p0.

Proof. As p0 ·x0 = e(p0,u) and p·x0 ≥ e(p,u) for any p ∈Rk++, we have that e(p,u)≤ e(p0,u)+
x0 · (p− p0).

Theorem 3. (Compensated Law of Demand) If p′ ≥ p, x ∈ h(p,u), and x′ ∈ h(p′,u), then

(p′− p) · (x′− x)≤ 0.

Proof. This is obtained immediately by combining property (ii) of concave functions as listed
above and Lemma 1.

Note that, if p′ equals p in every dimension except one, say dimension i for which p′
i > pi,

then the theorem is telling us that x′i ≤ xi.

Finally, the last result that we can show without adding any assumption on preferences is a
counterpart of the monotonicity properties in Proposition 2:
4We can also have counterparts of all of these results for convex functions, as if f is concave, − f is convex. Two
references for the future: Boyd and Vandenberghe (2004) and the less well-known Niculescu and Persson (2018).

5The relative interior of a convex set A, relint(A), is defined as relint(A) := {x ∈ A | ∀y ∈ A \ {x},∃z ∈ A,λ ∈
(0,1) s.t. x =λy+ (1−λ)z}.

6This is called Alexandrov theorem.
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Proposition 13. e is weakly increasing in p and u.

Proof. Take any u′ ≥ u and p′ ≥ p. For any p′′ ∈ Rk++, we have that (by transitivity) {x ∈ X |
u(x) ≥ u} ⊇ {x ∈ X | u(x) ≥ u′} =⇒ e(p′′,u) ≤ e(p′′,u′). And, for any u′′ ∈ U , p · x ≤ p′ · x

∀x : u(x)≥ u′′, which implies e(p,u′′)≤ e(p′,u′′).

3.2. Implications of Continuity

Wewere sneaky in defining e(p,u) as an infimum rather than a minimum, as the infimumwill
always be well defined (why?), but the minimum may not as h(p,u) may be empty. As you
may have anticipated, continuity of the utility function will solve this problem and provide
some additional properties on Hicksian demand (courtesy of Berge’s maximum theorem).

Proposition 14. If u is a continuous utility representation of ≿, then e(p,u) is continuous and

h(p,u) is nonempty, compact-valued, and uhc in (p,u).

Proof. Take an arbitrary point x0 ∈ X such that u(x0) ≥ u. As u ∈ U , x0 must exist. Let
A := {x ∈Rk+ | p · x ≤ p · x0}

Claim: A is compact.
Note that A is closed. Let x ∈ X be such that all its coordinates are equal to the largest coor-
dinate of x0, denoted by x0. As [0, x0]k is a compact subset of Rk+ (why?) and A ⊆ [0, x0]k — as
p · x ≤ p · x0 ≤ p · x0 — we have that A is compact.
Claim: B := A∩ {x ∈ X | u(x)≥ u} is compact.
To see this, note that by continuity of u,7 {x ∈ X | u(x) ≥ u} is closed. Hence, B is a closed
subset of [0, x0]k and therefore compact.
Claim: minx∈B p · x = infx∈B p · x = infx∈X |u(x)≥u p · x.
The first equality is due to Weierstrass extremum theorem; the second equality is due to the
fact that ∀x ∈ B, y ∈ {x ∈ X | u(x)≥ u}\B, y induces a higher expenditure than x p · y> p ·x0 ≥
p · x, and both attain utility weakly higher than u.
Last step: The remainder of the proof follows by constructing a continuous, nonempty- and
compact-valued correspondence that does not entail greater expenditure and then applying
Berge’s maximum theorem.

Exercise 4. Complete the proof of Proposition 14.

In fact, with continuity we get that the lower bound on the utility is actually attained:

Lemma 2. If u is a continuous utility representation of ≿, then ∀x ∈ h(p,u), u(x)= u.

Proof. Suppose instead that u(x) > u. Then, continuity implies that ∃λ ∈ [0,1) such that
u(λx)> u, and as p · x > p ·λx, x ∉ h(p,u), a contradiction.
7This is why we need to assume that u is a continuous utility representation and not just that ≿ is continuous.
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This gives sense to the expression “compensated law of demand”: by varying the prices p,
h(p,u) describes how the consumer substitutes across the different goods while attaining the
same utility level. The “compensated” term comes from imagining that the consumer is given
additional income to compensate the price changes. The next section — dealing with local
non-satiation — makes this clearer.

3.3. Implications of Local Non-Satiation

Theorem 4. Let≿ be locally nonsatiated and u be a continuous utility representation of≿. Then

(i) h(p,v(p,w))= x(p,w) and e(p,v(p,w))= w;

(ii) h(p,u)= x(p, e(p,u)) and u = v(p, e(p,u)).

Exercise 5. Prove Theorem 4.

This equivalence betweenMarshallian (x(p,w)) and Hicksian demand (h(p,u)) casts light onto
why the compensated demand h(p,u) is called compensated. If by increasing prices v(p,w)

decreases, in order to keep v(p,w) = u we need to compensate the consumer by increasing
income w.

3.4. Implications of Convexity

Finally, to conclude the overview of the properties of the expenditure minimisation program,
we note some implications of convexity of preferences.

Proposition 15. (i) If ≿ is convex, then h(p,u) is convex.

(ii) If≿ is strictly convex and u is a continuous utility representation, then h(p,u) is a singleton,

continuous in (p,u), and h(p,u)= e′p(p,u).

Proof. For (i) take any x, x′ ∈ h(p,u) and any λ ∈ [0,1]. Note that p · (λx+ (1−λ)x′) = e(p,u)

and that u(λx+ (1−λ)x′)≥min{u(x),u(x′)}≥ u. Hence, λx+ (1−λ)x′ ∈ h(p,u).
For (ii), we note that by Theorem 4, we have that x(p, e(p,u))= h(p,u), and by Proposition 7,
x(p, e(p,u)) is a singleton. Continuity follows from Proposition 14. The last bit of (ii) follows
from the fact that h(p,u) is the unique supergradient of e(p,u).

4. Solving Optimisation Problems using Calculus
It is expected and assumed that you wil be able to handle constrained optimisation problems
using Lagrangian methods and Karush-Kuhn-Tucker conditions — although it is unlikely you
will need it in this course. If you are unfamiliar with optimisation using calculus, a concise
reference is the Mathematical Appendix in Mas-Colell et al. (1995); in this case, the directly
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relevant appendices are M.J: Unconstrained Optimisation (pp. 954–56), M.K: Constrained Opti-

misation (pp. 956–64), and M.L: The Envelope Theorem (pp. 964–66).

5. Afriat’s Theorem (*)
Suppose we observe data in the form {(xt, pt)}t∈[T]. We want to know when it is the case
that our data can be rationalised by positing that the consumer is maximising utility. That
is, ∀t ∈ [T], xt ∈ x(pt,wt) for some income wt. One issue that is quickly resolved is that we
don’t observe income. Notice that, if we assume that the consumer’s preferences are locally
nonsatiated, we should have that pt · xt = wt.

Let’s recall some definitions on revealed preference, adjusted to the case at hand. We say that xt

is directly revealed preferred to xs if xt was chosen and xs was affordable, i.e., pt ·xs ≤ pt ·xt.
Bundle xt is revealed preferred to xs if there is a sequence of bundles {xm}m∈[M] such that
xt is directly revealed preferred to x1, x1 to x2, and so on, with xM being directly revealed
preferred to xs.

To adjust the definition of revealed strict preference, we rely on local nonsatiation (how?):
we say that xt is revealed strictly preferred to xs if it was strictly less expensive than xt

under pt, that is, pt · xs < pt · xt. Finally, our data satisfies Generalised Axiom of Revealed
Preference (GARP) if there is no pair of bundles x, y such that x is revealed preferred to y

and y is revealed strictly preferred to x.

Our main result for this section is:

Theorem 5. (Afriat’s (1967) Theorem) Let be {(xt, pt)}t=1,...,T be a dataset comprising a col-

lection of chosen bundles xt at prices pt. The following statements are equivalent:

(i) The dataset can be rationalised by a locally nonsatiated preference relation ≿ that admits a

utility representation.

(ii) There is a continuous, concave, piecewise linear, strictly monotone utility function u that

rationalises the dataset.

(iii) The dataset satisfies GARP.

(iv) There exist positive {ut,λt}t∈[T] such that us ≤ ut +λt pt · (xs − xt), for all t, s ∈ [T].

A proof, while certainly not beyond the scope of this course, is surely beyond its time con-
traints. However, some comments are in order. First, comparing (i) and (ii) we see that if we
can rationalise the data with local nonsatiation, we might as well throw in continuity, concav-
ity, piecewise linearity, and strict monotonicity, as these pose no additional constraint on the
(finite) data. Second, less surprisingly, GARP (appropriately redefined) is still exactly what we
need to rationalise the data as being originated by preference-maximising behaviour.
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Third, while GARP is already saving computing time/cost — and certainly data requirements
— when compared to HARP, condition (iv) above is far easier to check as it reduces to a simple
linear programming problem. Where does this condition come from? Recall the concept of a
supergradient: ∀qt ∈ ∂u(xt) and ∀xs, u(xs)≤ u(xt)+qt ·(xs−xt). If u is concave, then supergra-
dients always exist, and, as u is differentiable almost everywhere (by concavity), ∂u(x)= {u′(x)}

almost everywhere. So, almost everywhere we get ∀xs, u(xs) ≤ u(xt)+u′(xt) · (xs − xt). Now,
to get intuition as to why we have λt pt in the stead of u′(xt), just consider that u is in fact
differentiable. The Langragian for utility maximisation problem maxx∈B(p,w) u(x) is then given
by u(x)+λ · (w− p · x), with first-order conditions for an interior optimum u′(x)=λp.

6. Further Reading
Standard References: Mas-Colell et al. (1995, Chapters 2, 3), Rubinstein (2018, Chapter 5),
Kreps (2012, Chapters 3, 4), Kreps (1988, Chapter 3).

Related questions/topics: This is probably the most canonical topic taught in a microeco-
nomics class. Here, we obtained a number of useful properties on consumer choices without
taking a single derivative. This is to illustrate how much we can say even when we make a
small number of assumptions. A treatment of the topic with differentiability can be found in
any of the above references.

Consumer choice is a natural backdrop for applications for choice models. Nowadays we have
a large array of very interesting models (going much beyond the standard theory we covered)
that are meant to capture more realistic features of how people choose. For instance, some
models (of limited or random attention) represent cases in which agents don’t consider all the
choices available — say as we often do when faced with the huge number of possibilities when
doing groceries. Others models (search, information acquisition) have agents searching and
acquiring information prior to choosing, which is possibly particularly relevant for expensive
purchases. It is interesting to think about how to model agents switching between habitual
consideration and searching new alternatives, or about how properties of (aggregate) demand
change when the economy is populated with such behavioural agents.
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