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1. Overview

As the previous lectures have shown, a typical problem in economics regards constrained op-
timisation, where an agent choose and action x from S < X to maximise an objective function

f:X — R It is then of interest to understand how the agent’s behaviour, as given by
X(S;f):=argmax f(x),
xeS

changes when their objective f or their feasible set S change. This is what is typically termed

comparative statics.

Comparative statics are monotone when one makes claims that X(S;f) “increases” in some
sense when S or f also “increase” A canonical example is that — fixing output level — firm
demand for an input decreases weakly in the price to that input. A related question is whether
— fixing input prices — firm demand for inputs increases in the target output. Further, when
there multiple cost-minimising manners to organise production, how should we compare the

two sets of optimal inputs?

A classical approach to this problem is to consider the use of calculus, relying on the La-
grangian and a calculus-based version of the envelope theorem. In this lecture we will learn

how to be able to derive comparative statics results without using calculus.

2. General Definitions

We will start by defining a way to order elements. Let (X, =) be a partially ordered set, that

is, = is a binary relation on X that is reflexive, transitive, and anti-symmetric.

Two important notational definitions that are easy to mistake are those of a join (V) and a meet
(A). The join of two elements x,x’ taken with respect to X, written x v x x’ corresponds to the
>-smallest element in X that is simultaneously larger than both x and x’: x vx 2" := inf{y €

X :y=xand y = x'}, where the infimum is taken with respect to =. The meet — denoted by
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xAxx' — is symmetrically defined: the >-largest element in X that are simultaneously smaller

than both x and x: x Ax x’ :=sup{ye X :x >y and x' = y}.

We then call (X, =) different names depending on the properties it satisfies regarding joins and

meets:

Definition 1. (i) A partially ordered set (X,=) for which joins and meets exist for any pair

of elements —i.e. Vx,x' € X, x vxx' € X and x Ax x' € X — is called a lattice.

(ii) A complete lattice is one where any subset attains its supremum and infimum in the set:
VS c X, supy S € X and infx S € X!

(iii) A sublattice of X is a subset S € X where that includes the joins and the meets of any two
of its elements, where the joins and meets are taken in X, i.e. S is a sublattice if Vx,x' € S,

xVxx'€eSandxAxx'€S.

(iv) A complete sublattice S is a sublattice of X for which the supremum and infimum of
any of its subsets S’ € S is contained in S. That is, a sublattice is complete if any of its subsets

attains its supremum and infimum in it — again the supremum and infimum are taken in X.

Below are some examples that can help gaining intuition:
Example 1. 1. ((0,1),>) is a lattice but not a complete lattice.
2. (R*,>), where > is the natural product order? is a lattice.

For any sublattice S € R*, S is a complete sublattice if and only if it is compact; further (S, >)

is then also a complete lattice (Topkis, 1998, Theorem 2.3.1.).
3. (0,1) =R is a sublattice of (R, =) but not a complete sublattice, where = is the natural order.

4. Under the natural product order, {(0,0),(1,0),(0,1),(2,2)} is a complete lattice, but not a
sublattice of N2.

5. Under the natural product order, {(0,0),(1,0),(0,1),(2,1),(1,2),(2,2)} is not a lattice.

3. Ordering Sets

As mentioned earlier, one of the main complications is how to order sets based on the given
partial order =. The existing literature provides some different alternatives. The most con-
ventional one is the strong set order >, (Topkis, 1979, 1998; Milgrom and Shannon, 1994),

where >, is a binary relation on the powerset of some set X, 2X. It is defined as follows:

Definition 2. We say that S’ strong set dominates S (writing S’ =5, S) if Vx' € S',x € S,

xvx' eSS andxnx’€S.

ISometimes you will also see the notation VxS and Ax S instead of supy S and infx S.
2x >y if x; = y; for every i € [E].



That is, a set S strong set dominates another set S’ if, taking any one element from each set,

their join belongs to the dominating set and their meet to the dominated set.

Exercise 1. For instance, recall our definition of budget sets B(p,w) :={x € [R?’f’; | p-x <w}, with

peRE, andw € R,. Suppose that -~ are strongly monotone and assume k = 2.
(i) Prove that 7(B(p,w) =ss B(p,w)) Yw > 0.

ii) Fix p and provide necessary and sufficient conditions on w',w so that B(p,w') =¢s B(p,w).
p y

The strong set order can be too demanding and therefore inapplicable to many situations; this

is one possible motivation for the weak set order (Che et al., 2021) that we will study later on.

4. Ordering Functions

We now want good notions to compare functions. And the supply more than met demand.

Definition 3. Let f be a real-valued function on X x T', where X, T are partially ordered sets,

and joins and meets of elements in X x T are with respect to the product order. We say that

(i) f satisfies the single-crossing property (SCP) in (x;¢) if Vx,x’' € X, t,¢' € T, such that
x'>xand ¢’ >¢t, f(x';t) - flx;t) = (>)0 = f(x;t)— fx;t') = (>)0. It satisfies the strict

single-crossing property if the last inequality is always strict.

(ii) f hasincreasing differences (ID) in (x;¢) if Vx,x’ € X, ¢,¢' € T, such that x' > x and ¢’ > ¢,
f&5t) = fx;t") = f(&;8) — fx;t). Tt has strict increasing differences if the last inequality

is always strict.

(iii) f is quasisupermodular (QSM) in (x,¢) if Vy,y' e X xT, f(y)—f(yAy) = (>)0 =
flyvyh=FfH=()o.
(iv) f is supermodular (SM) in (x,8) if Vy,y e X x T, f(y vy = F) = F(y) = F(y AY). [ is

submodular if —f is supermodular.

Note that SM = {QSM, ID} = SCP, i.e. satisfying the single-crossing property in (x;¢)
is weaker than satisfying quasisupermodularity or increasing differences and each of these is

weaker than satisfying supermodularity.

Single-crossing and quasisupermodularity provide ordinal conditions on f that can be readily
translated into restrictions on preference relations. In contrast, increasing differences and
supermodularity are their respective cardinal counterparts. It is then very much surprising
that Chambers and Echenique (2009) found that preference relations on a lattice have a weakly
monotone and quasisupermodular utility representation if and only if they have a weakly

monotone and supermodular utility representation.



Some useful properties of supermodular functions:

Exercise 2. Prove the following statements:

(i) If f and g are supermodular real-valued functions on X, then af + Bg are supermodular
Va,p=0.

(ii) If3 strictly increasing g : R — R such that gof is supermodular, then f is quasisupermodular.

(iii) IfFf€ €% inyeY =X x T, then f is supermodular in y if and only if%;yf =0, Vi#].
i0Yj

(iv) If X andY are partially ordered sets, X xY is a lattice with respect to the product order, and

f: X xY — R is supermodular, then g(x) := sup,.cy f(x,y) is supermodular.

The above are properties of a function. But note that given we have f(x,t), we can interpret
it as a parametrised family of functions f(x) := f(x,%). So, we adjust the above definitions to

handle comparison of functions. We will focus on one of them, single-crossing.

Definition 4. Let v,u be two real-valued functions on X; v single-crossing dominates u

(v =5c u) if Vx,x’ € X such that x' = x, u(x') —u(x) = (>)0 = v(x') —v(x) = (>)0.

5. Monotone Comparative Statics of Individual Choices

5.1. Strong Monotone Comparative Statics

Theorem 1. (Monotonicity; (Milgrom and Shannon, 1994, Theorem 4)) Let X be a lattice and
v,u be two real-valued functions on X. v and u are quasisupermodular and v single-crossing
dominates u if and only if, for 8" =55 S, X (S';v) =55 X(S; u).

Proof. = : Take any x € X(S;u),x’ € X(S';v). As S' =,; S, we have x Ax' € Sand xvx' e S’
Then

xeX(S;u)
= ulx)—ulxAx)=0 optimality of x
= uxvx)-ux)=0 quasisupermodularity of u
= vxva)-vi)=0 V=g U
= xvx €eX(S;v) optimality of x';



and

x' € X(S";v)
= vxva)-v)=<0 optimality of x’
= v(x)-vxAx)<0 quasisupermodularity of v
= ulx)—ulxrx)<0 V=g U
= xAx € X(S;u) optimality of x.

Hence X(S’;v) =4s X(S;u).

—:

To show necessity of quasisupermodularity, let S = {x,x Ax'}, §' = {x',x v &'}, 7(x’ = x), and
u =v. Clearly, S’ =;s S. Note that if we have u(x) = Glu(x Ax') < x € (=)X(S;u). As
X(S;u) =4 X(S;u), thenx € (=)X(S;u) = xvx' € (=)X(S;u) = ulxvx)=G)ul).

To show necessity of single-crossing, let S = {x,x} with x’' > x. As X(S;v) =4 X(S;u), ' € (=
)X(S;u) = x' €(=)X(S;v). And then, u(x’) — u(x) = (>)0 = v(x') —v(x) = (>)0. OJ

Some other results that are easy to obtain by adjusting the proof above:

Corollary 1. (Milgrom and Shannon, 1994, Corollary 1) Let X be a lattice and [ a real-valued
function on X. f is quasisupermodular if and only if, for S' =, S, X(S; f) =ss X(S; f).

Corollary 2. (Milgrom and Shannon, 1994, Corollary 2) Let X be a lattice, S a sublattice, and f
a real-valued function on X. If f is quasisupermodular, then X(S; ) is a sublattice of S.

Corollary 3. (Monotone Selection; Milgrom and Shannon 1994, Theorem 4°) Let X be a lattice,
v,u be two real-valued functions on X, and S’ =4, S, with S,S' € X. Ifv and u are quasisuper-

modular and v strictly single-crossing dominates u, then Vx' € X(S";v),x € X(S;u), x' = x.

This last result is stronger than it might look like at first glance: it is saying that any maximiser

in X(S’;v) is greater than any maximiser in X (S;u).
This next two exercises will guide you through how to apply these results:

Exercise 3. Suppose a firm hires labor ] € R, for a wage rate w > 0 and capital k € R, forr >0,
in order to produce a quantity y € R,. The firm sells its product at a price p > 0. Prices p,r,w are
taken as given. Their production function, mapping combinations of inputs to output quantities,

is given by F : R2 — Ry, and we write y = F(k,1). Their profit maximisation problem is then

k,L; =pF(k,])-rk—-wl.
(ir,lz?fon( JUp,r,w)=pFk,l)-rk-w

Throughout we fix (and omit dependence on) (p,w), and denote the optimal levels of inputs by
k*(r) and 1*(r)

(i) Show that n(k,l;r) has strict increasing differences in (—k,r) and strict single-crossing prop-



erty in (=k,r).
(ii) Show that [(k,r):= argmax;sqn(k,l;r) may depend on k but does not depend (directly) on

r; we can then write [(k) instead ofl_(k,r).

(iii) Assume [ is a function (or fix a selection) and prove that n(k,I(k);r) has strict increasing
differences in (—k,r) and strict single-crossing property in (—k,r). Use this to show that k*(r) =
argmaxyso 7(k,[(k);r) is nonincreasing in r. Conclude that the own-price effect for capital is

negative on the firm’s capital demand.

(iv) Now let’s consider the effect of a change inr onl. Assume k*(r) is a function (or fix a selec-
tion) and define 1*(r) := argmax;>o m(k*(r),l;r). Show that if F(k,l) has increasing differences
in (k,1) (resp. (—k,1)), then (i) n(k*(r),l;r) has increasing differences in (I,—r) (resp. (I,r)) and
(ii) conclude 1 * (r) is nonincreasing (resp. nondecreasing) inr, i.e. that increasing the price of cap-
ital weakly decreases the optimal level of capital and consequently weakly decreases (increases)

the amount of labor hired.

(v) Comment on the relation between increasing differences in (k,l) vs. (—k,l) and factor com-

plementarity/substitutability.

Exercise 4. Suppose Robinson Crusoe is stranded on a desert island with a supply e > 0 of seed-
corn. He will be rescued two years from now (and he knows this), so his problem is how to allocate
the e units of seedcorn between current consumption and planting for next year’s consumption.
He can plant x € [0,e] units of corn, consume e —x this year, and get a crop of f(x) next year,
where f is nondecreasing and satisfies f(0) = 0. His total utility is given by U(e —x, f (x)) and his
problem is then given by maxye[o 1 U(e — x, f(x)).

Let x*(e) be the set of maximisers for a given e.

(i) Show that x*(e) is a convex set if U is quasi-concave, f concave, and U is increasing in its

second argument.

(ii)) Show that x*(e) is a singleton if U is quasi-concave, f strictly concave, and U strictly in-

creasing in its second argument.

(iii) Assume that U and f are twice continuously differentiable, strictly concave, and strictly

increasing. Use monotone comparative statics to show that x* is nondecreasing in e.



6. Further Reading

Standard References: While these are not new ideas, I don’t know any economics textbook
that provides a good treatment (if you do, please let me know!). A useful guideline — aside
from the references used — might be Federico Echenique’s comprehensive notes on the topic

(https://eml.berkeley.edu/~fechenique/lecture_notes/echenique_ MCS.pdf).

Related questions/topics: Whatever your model may be, you want to be able to say some-
thing general like if A changes in this way, then B changes in that way. This makes compar-

ative statics are bread-and-butter (or jam, if you prefer) of results in economic theory.

The ideas here have been extended to choice under uncertainty (see Athey, 2002), and they
have been used in many applications, including IO and macroeconomics. Later on, we’ll see
some general monotone comparative statics results for equilibria. I think that comparative
statics results can also be particularly relevant for empirical work, as not only do they corre-
spond, in essence, to counterfactuals, but also because they can be leveraged for identification

strategies.
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