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1. Overview
In the previous lectures we considered how individuals evaluate distributions, e.g. of stock
returns or lottery tickets prizes. We modeled their preferences of distributions and derived
properties of the expected utility representation of a particular agent based on how they ranked
them. In this lecture we take a different approach: we want to know how to rank distributions
in an unambiguous manner among groups of individuals.

First, we look at a ranking on distributions with which every expected utility maximiser would
agree. While this is quite a strong requirement, we obtain a simple characterisation based on
how the (cumulative) distributions compare. We discuss the properties that this ordering has
and a useful refinement.

Then, we look into riskiness. The idea is to have a well-grounded notion of what it means for
a distribution to be riskier than another. Our strategy will be to require that every risk-averse
expected utility maximiser would agree on which distribution is riskier. Again, this turns out
to also have a simple characterisation.

Finally, we briefly discuss a recent result on how background risks can affect the ranking of
distributions.

2. First-Order Stochastic Dominance
Our first ranking on the space of distributions requires every expected utility maximiser to
agree.

Let F denote the set of all distributions on X ⊆R.
Definition 1. A distribution F first-order stochastically dominates (FOSD) a distribution
G, denoted by F ≥FOSD G if, for all nondecreasing functions u : X →R, EF [u]≥ EG[u].
∗Last updated: 23 September 2025.
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This means that every expected utility maximiser with increasing Bernoulli utility would
weakly prefer F to G. This is quite a strong requirement. The following theorem provides
a simple characterisation:

Theorem 1. For any distributions F,G on R, F ≥FOSD G if and only if, ∀x ∈ X , F(x)≤G(x).

The first, more restrictive, version of this theorem first appeared in Hadar and Russell (1969).

Proof. =⇒ : For any a ∈ X , define ua(x) := 1{x≥a}, where 1A is the indicator function, taking
the value 1 if A is true and 0 if otherwise. Note that ua is nondecreasing. Then,

F ≥FOSD G =⇒ EF [ua]≥ EG[ua] ⇐⇒
∫

X
ua(x)dF(x)≥

∫
X

ua(x)dG(x)

⇐⇒
∫

x≥a
1dF(x)≥

∫
x≥a

1dG(x), ∀a ∈ X

⇐⇒ 1−F(a)≥ 1−G(a) ⇐⇒ F(a)≤G(a), ∀a ∈ X .

⇐= : For this part we are going to make use of a result in statistics called the inverse trans-
form method. For a cumulative distribution F of a real-valued random variable, define the
generalised inverse — also called a quantile function — QF (τ) :=min{x ∈R | F(x)≥ τ}, for
every τ ∈ (0,1).1

The next result is also very useful in statistics, to simulate random variables given by difficult
expressions:

Proposition 1. (Inverse Transform Method) Let F be the cumulative distribution of a real-

valued random variable X . Then, X has the same distribution as QF (U), X d= QF (U), where U

is uniformly distributed in (0,1).

The inverse transform method gives then a way to represent the distribution of X through a
transformation of a standard uniformly distributed random variable. This is very convenient
computationally as we know how to efficiently simulate uniformly distributed random vari-
ables. As we will see, this transformation is also helpful from a theoretical standpoint.2 First,
let’s prove Proposition 1:

Proof. We want to show that P(QF (U)≤ x)= F(x). First note that QF is nondecreasing: As F

is nondecreasing, ∀τ′ ≥ τ, {x ∈R | F(x)≥ τ′}⊆ {x ∈R | F(x)≥ τ} =⇒ QF (τ)≤QF (τ′).

Now take any τ ∈ (0,1) and x such that τ< F(x).

τ< F(x) =⇒ QF (τ)≤QF (F(x))≤ x

1Why min and not inf? Because, as F is nondecreasing and right-continuous with left-limits, it is upper semi-
continuous, and for any τ, {x ∈R | F(x)≥ τ} is closed and therefore contains its infimum.

2Another implication of Proposition 1 is that if X ∼ F , with F continuous, then F(X )∼U(0,1).
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where the last inequality is due to τ < F(x) =⇒ x ∈ {y ∈ R | F(y) ≥ τ} and, by definition,
QF (F(x))≤ x.

As we have that QF (τ)≤ x implies τ≤ F(x), we can order the following three events, recalling
that U is uniformly distributed on (0,1);

{U < F(x)}⊆ {QF (U)≤ x}⊆ {U ≤ F(x)}

⇐⇒P(U < F(x))≤P(QF (U)≤ x)≤P(U ≤ F(x))

⇐⇒ F(x)≤P(QF (U)≤ x)≤ F(x).

Let’s finalise our proof of Theorem 1 by showing that F(x) ≤ G(x), ∀x ∈ X =⇒ F ≥FOSD G.
Define QF and QG as the quantile functions of F and G. Then,

F(x)≤G(x), ∀x ∈ X =⇒ (F(x)≥ τ =⇒ G(x)≥ τ)

=⇒ {x ∈ X | F(x)≥ τ}⊆ {x ∈ X | G(x)≥ τ}

=⇒QF (τ)≥QG(τ).

As then we finally get

F(x)≤G(x), ∀x ∈ X =⇒QF (z)≥QG(z), ∀z ∈ (0,1)

=⇒ u(QF (z))≥ u(QG(z)), ∀z ∈ (0,1) as u is nondecreasing

=⇒
∫

[0,1]
u(QF (z))dz ≥

∫
[0,1]

u(QG(z))dz

⇐⇒
∫

X
u(x)dF(x)≥

∫
X

u(x)dG(x) by inverse transform sampling

⇐⇒ EF [u]≥ EG[u].

Exercise 1. Consider ≥FOSD on ∆([0,1]).

1. Prove or disprove: ≥FOSD is (i) reflexive; (ii) transitive; (iii) antisymmetric; (iv) complete.

2. In light of 1, how would you classify (∆([0,1]),≥FOSD)?

3. Is (∆([0,1]),≥FOSD) a lattice? Is it a complete lattice?

Exercise 2.

(i) Let F,G, F̂,Ĝ ∈∆(R). Show that if EF [u]≥ EF̂ [u] and EG[u]≥ EĜ[u] for every nondecreasing

Bernoulli utility function u, then αF + (1−α)G ≥FOSD αF̂ + (1−α)Ĝ.

(ii) For a distribution F on R, let G := (F +w), with w > 0. Show that G ≥FOSD F .

Exercise 3. Suppose an agent is selling two lottery tickets, x and y, with x ≥FOSD y. Which one

should have a higher price?
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3. Monotone Likelihood Ratio Order
One stochastic ordering that you will encounter almost surely is the monotone likelihood ratio
order. For this section, we will restrict attention to distributions that either (i) admit a density
or (ii) have discrete support. If the F is a distribution satisfying (i) f will denote its density,
whereas if it satisfies (ii) we use f to denote its probability mass function.

Here’s the definition of the monotone likelihood ratio order:

Definition 2. Let F,G two distributions on R and suppose that they (i) either both admit
a density, or (ii) both have discrete support. F monotone likelihood ratio dominates G

(F ≥MLR G) if f (x)/g(x) is nondecreasing in x.

One extremely convenient property of ≥MLR is that it is not only a partial order, but also a
coarsening of ≥FOSD within this class of distributions:3

Proposition 2. Let F,G two distributions on R and suppose that they (i) either both admit a

density, or (ii) both have discrete support. If F ≥MLR G, then F ≥FOSD G.

Proof. f (x)g(y)≥ f (y)g(x)∀x ≥ y =⇒ f (x)G(x)−F(x)g(x)≥ 0, (1−F(x))g(x)− f (x)(1−G(x))≥
0∀x. As f (x)G(x)−F(x)g(x) ≥ 0 =⇒ f (x)

g(x) ≥ F(x)
G(x) and (1−F(x))g(x)− f (x)(1−G(x)) ≥ 0 =⇒

1−F(x)
1−G(x) ≥ f (x)

g(x) , we obtain G(x)≥ F(x) for all x.

One of the reasons for why this is such a convenient ordering is that it pairs very well with
Bayesian updating (i.e. Bayes’ rule).

Exercise 4. Suppose a coin toss flips heads (x = 1) with probability θ ∈ [0,1], and tails (x = 0)

with complementary probability. Due to machine impression, θ is distributed according to a

distribution F with density f > 0. You know f and want to estimate θ.

(i) Show that for any sequences x1, ..., xm, x′1, ..., x′n such that n ≥ m and
∑

i xi ≥∑
i x′i, you have

θ|x1, ..., xm ≥MLR θ|x′1, ..., x′n. Conclude that EF [θ|x1, ..., xm]≥ EF [θ|x′1, ..., x′n].

(ii) Now suppose that there is another machine that produces coins, but with a different impres-

sion: θ ∼ G, where g := G′ > 0. Show that if f ≥MLR g, then, for any sequence of coin tosses

x1, ..., xm, f | x1, ..., xm ≥MLR g | x1, ..., xm. Conclude that EF [θ|x1, ..., xm]≥ EG[θ|x1, ..., xm].

4. Second-Order Stochastic Dominance
Since we observe that individuals are typically risk-averse, it may be useful to know the min-
imal requirements under which a lottery is preferred to another for any risk-averse expected
utility maximiser. This provides us also with not only natural but also a sharper definition of
3Some pairs of distributions can be compared according to≥FOSD but not according to≥MLR , i.e. ≥MLR⊆≥FOSD .
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what it means for a lottery to be riskier than another.

Definition 3. A distribution F second-order stochastically dominates (SOSD) a distribu-
tion G, denoted by F ≥SOSD G if EF [u]−EG[u] ≥ 0 for all nondecreasing, concave functions
u :R→R, such that EF [u]−EG[u] is well-defined and

∫ 0
−∞ u(x)dF(x),

∫ 0
−∞ u(x)dG(x)>−∞.

If we restrict F and G to have bounded support,
∫ 0
−∞ u(x)dF(x),

∫ 0
−∞ u(x)dG(x)>−∞ is auto-

matically satistied.

From the definitions, it should be immediate that F ≥FOSD G =⇒ F ≥SOSD G. That is, ≥SOSD

is finer than ≥FOSD as it allows us to compare the same elements and more (≥FOSD⊆≥SOSD).
The next theorem fully characterises second-order stochastic dominance from the properties
of the distributions alone:

Theorem 2. For any distributions F,G on R, F ≥SOSD G if and only if, ∀x ∈ X ,
∫ x
−∞ F(s)ds ≤∫ x

−∞G(s)ds.

This result has had a troubled history; we follow the statement in Tesfatsion (1976).4 Given
that the proof of the statement in such generality is quite daunting, we will prove the theorem
for distributions F,G with bounded support.

Proof. First, let us recall that, from integration by parts,
∫ b

a u(x)dF(x)= F(b)u(b)−F(a)u(a)−∫ b
a F(x)du(x). As we are assuming that F,G have bounded support, let x, x be such that F(x)=

G(x)= 0 and F(x)=G(x)= 1 and we assume u is defined on (x−ϵ, x+ϵ), for some ϵ> 0.

=⇒ : Let ua(x) = 1x≤a(x− a), a nondecreasing and concave function. From integration by
parts, we have

∫ a
x ua(x)dF(x)− ∫ a

x ua(x)dG(x) = (F(a)−G(a))(a− a)− (F(x)−G(x))ua(x)+∫ a
x (G(x)−F(x))dx = ∫ a

x (G(x)−F(x)). Then,

EF [ua]−EG[ua]≥ 0, ∀a ⇐⇒
∫

x≤a
ua(x)dF(x)≥

∫
x≤a

ua(x)dG(x), ∀a

⇐⇒
∫

x≤a
ua(x)dF(x)−

∫
x≤a

ua(x)dG(x)≥ 0, ∀a

⇐⇒
∫

x≤a
(G(x)−F(x))dx ≥ 0, ∀a

⇐⇒
∫ a

x
F(x)dx ≤

∫ a

x
G(x)dx, ∀a.

⇐= : Let us construct a linear interpolation of any concave nondecreasing u on [x, x].

For any n ∈N let xn
i := x+ i

n (x− x) for i = 0, ...,n. The set {xn
i }n

i=0 is an evenly spaced grid on
4In case you find a weaker statement with a correct proof, do let me know; our restrictions are hidden in how
we defined ≥SOSD . Early versions of this theorem appeared in Hadar and Russell (1969) and Hanoch and Levy
(1969). The first one imposed excessively restrictive assumptions: finite support and strictly increasing utility.
The second imposed no restrictions — not even our condition — but is incorrect; a corrected version was given
by Tesfatsion (1976), which we follow in our statement.
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[x, x], where xn
i+1 − xn

i = 1
n (x− x).

Now we want to construct un defined on [x, x] such that un(xn
i )= u(xn

i ), that is, that touches
u at each point in the grid, and is a linear interpolation of u, which means that it will also be
nondecreasing and concave. To do this, for i = 0, ...,n−1 define cn

i := u(xn
i+1)−u(xn

i )
xn

i+1−xn
i

, which gives
the slope of the line that connects u(xn

i ) to u(xn
i+1). Let cn

n := 0. As u is nondecreasing, we
must have that cn

i ≥ 0. Furthermore, as u is concave, we have that cn
i is nonincreasing in i.

Exercise 5. Prove that cn
i is nonnegative and nonincreasing in i.

For any x ∈ [x, x], by construction, ∃i = 0, ...,n−1 such that x ∈ [xn
i , xn

i+1], and then we define
un(x) := u(xn

i )+ cn
i (x− xn

i ).5 Clearly, un(xn
i )= u(xn

i ) for every i = 0, ...,n and u(x)−un(x)≥ 0.

Exercise 6. Prove that

(i) un is concave. (Hint: Try showing that at any point x ∈ [x, x] the supergradient of un is
non-empty.)

(ii) For any x ∈ [xn
i , xn

i+1] and y ∈ [xn
k , xn

k+1], then un(y)+ cn
i (x− y)≤ un(x)≤ un(y)+ cn

k(x− y).

(iii) For any x ∈ [xn
i , xn

i+1], |u(x)−u(xn
i )| ≤ |u(xn

1 )−u(x)|.

Given (iii) from the exercise above, we have that

|u(x)−u(xn
i )| ≤ u(xn

1 )−u(x).

As u is defined on an open interval and real-valued concave functions on an open interval are
continuous, then limn→∞ supx∈[x,x] |un(x)−u(x)| ≤ limn→∞ u(xn

1 )−u(x)= 0, and we have that
un converges uniformly to u.

Exercise 7. Recall our definition ua(x) := 1x≤a(x−a). Let dn
n := cn

n and, for i = 0,1, ...,n−1, let

dn
i := cn

i − cn
i+1. Define ũn(x) := u(x)+∑n

i=1 dn
i−1uxn

i
(x).

(i) Prove that ũn = un. (Hint: Either you show it by brute-force algebra; or you show that (a)
the ũn = un at the points in our grid {xn

i }i=0,1,...,n, (b) show that∀x ∈ [xn
i , xn

i+1], ũn(x)−ũn(xn
i )=

un(x)−un(xn
i ).)

(ii) Use (i) to prove that if EF [ua]≥ EG[ua], for every a ∈ [x, x], then EF [un]≥ EG[un], for every

n.

Then, ∫ a

x
F(x)dx ≤

∫ a

x
G(x)dx, ∀a =⇒ EF [un]≥ EG[un], ∀n.

As un converges uniformly and is integrable, then

0≤ lim
n→∞EF [un]−EG[un]= EF [u]−EG[u].

5This is equivalent to defining un(x) := 1x=xu(x)+∑
i∈{0,...,n−1} 1x∈(xn

i ,xn
i ][u(xn

i )+ cn
i (x− xn

i )].
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A more restrictive notion of a gamble F being “riskier” than another gamble G requires that
both F and G have the same mean but G has higher variance.

Definition 4. Let F,G be distributions on R. G is a mean-preserving spread of F if there
are random variables X , Y , and ϵ, such that Y d= X +ϵ, X ∼ F , Y ∼G, and E[ϵ | X ]= 0.

Exercise 8. 1. Let ≥MPS be such that G ≥MPS F if G is a mean-preserving spread of F . Prove

that G ≥MPS F =⇒ F ≥SOSD G, but that the converse is not true in general.

2. Show that if F ≥SOSD G, then EF [x]≥ EG[x].

3. Show that if G ≥MPS F , then EF [x]= EG[x] and VF [x]≤VG[x].

4. Prove F ≥FOSD G =⇒ F ≥SOSD G, but that the converse is not true in general.

5. Show that ≥SOSD and ≥MPS are partial orders.

4.1. Second-Order Stochastic Dominance in Rn (*)

The discussion above extends to more general spaces;6 we focus on extending our characteri-
sation of SOSD to Rn.

Definition 5. Let F and G be distributions on Rn. We say that F second-order stochasti-
cally dominates G (F ≥SOSD G) iff EF [u]≥ EG[u] for all nondecreasing concave u :Rn →R,
whenever both expectations exist.

The key result in this section, which we state for reference, is the following:

Theorem 3. (Strassen’s (1965) Theorem) Let F and G be distributions on Rn with bounded sup-

port. Then, F ≥SOSD G if and only if there are X ∼ F and Y ∼G such that X ≥ E[Y | X ] a.s.

In short, what this theorem is giving is a way to define a joint distribution H(x, y) such that
the marginals over x and y equal F and G, respectively, and

∫
Rn yH(x, y)d y≤ x.7

We can also adjust the definition of mean-preserving spreads as expected and obtain a useful
corollary:

Corollary 1. Let F and G be distributions on Rn with bounded support. G is a mean-preserving

spread of F if and only if F ≥SOSD G and EF [x]= EG[x].
6For a reference, see Müller and Stoyan (2002).
7Strassen (1965) proves far more general results; see Müller and Stoyan (2002, Theorem 2.6.8) for a recent proof.
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5. Background Risks
When considering investing in stock X or Y , professional traders typically consider only their
expected return, that is, whether E[X ]> E[Y ], and potentially not so much the associated risk,
captured, for instance, by V[X ],V[Y ]. While one may consider that they have risk attitudes
that are very particular — risk aversion is a common finding, both empirical and experimen-
tally — another possible explanation is that they are considering the existence of background
risks. Stock X and Y are not the only stocks that traders invest in, and large traders are
likely to have large amounts of money invested in a number of different stocks that add to
background risk on their portfolio.

A recent paper by Pomatto et al. (2020) explores the connection between background risks
and stochastic orders. In short, the result says that there are (independent!) background risks
large enough that, when considered, can dwarf any riskiness considerations and make even
the most risk-averse person to simply go with the gamble that yields the highest expected
value. An abbreviated statement goes as follows:

Theorem 4. (Pomatto et al., 2020) Let X and Y be random variables with finite variance.

(i) If E[X ]> E[Y ], then there is an independent random variable ϵ such that X +ϵ≥FOSD Y +ϵ.

(ii) If E[X ] = E[Y ] and V[X ] <V[Y ], then there is an independent random variable ϵ such that

X +ϵ≥SOSD Y +ϵ.

6. Further Reading
Standard References: Mas-Colell et al. (1995, Chapter 6D), Rubinstein (2018, Chapter 8),
Kreps (2012, Chapter 6).

Related questions/topics: Stochastic orders establish natural comparisons across distribu-
tions. Kleiner, Moldovanu, and Strack (2021) derive a number of useful properties related to
mean-preserving spreads and use them to study questions related to auctions, delegation, and
decision-making under uncertainty (among others). These show up again and again when
studying questions related to information — e.g. pricing data, information disclosure, design-
ing tests (from financial stress tests to exams), etc.

There have been some recent developments expanding our understanding of these orders.
Beyond the the mentioned paper on background risks, I’ll refer also Lehrer and Wang (2020),
who introduce the notion of strong stochastic dominance and discuss applications to Bayesian
learning and asset pricing, and Meyer and Strulovici (2012), who study orders of interdepen-
dence — useful for finance (valuing portfolios), empirical work (inputing data), and measuring
the degree of alignment of preferences in decision-making in groups (e.g. voting).
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Why do we like orderings and monotonicity? Because we can (try to) use them to obtain
monotone comparative statics results. This is what Jensen (2018) does, but in the space of
distributions (of income, of information, of ability, etc).
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