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1. Overview
Suppose you have amodel inwhich people are Bayesian and they learn from data. For instance,
traders observing a signal about fundamentals, principals who can observe output but not
effort, consumers who get some information on product quality. Would people learn the truth
if they could get many signals? Alternatively, suppose that you are doing text-analysis, which
makes extensive and intensive use of latent Dirichlet classification and Bayesian updating in
topic modelling. How do you perform inference without a Bayesian law of large numbers
(LLN) and something similar to a Bayesian central limit theorem (CLT)? In about every field
of economics, we implicitly or explicitly have to deal with Bayesian learning and its properties
and implications. These lecture notes take a closer look at these issues.

2. Bayesian Learning
We’ll start by discussing Bayesian learning, which will be a central part of our career concerns
model. Bayesian learning is nothing but the application of Bayes’s rule to learning: we have
a prior belief about the world, we observe some data, and we update our beliefs about the
world. The decision-maker entertains a number of hypotheses about the world, summarised
by a parameter θ taking values in Θ, and has some prior belief about which hypothesis is true,
given by a probability measure µ on Θ.

The decision-maker observes data, a sequence of randomvariables Xn. Wewrite X n = (X1, ..., Xn)

for the sequence of the first n observations. X n is then distributed according to a probability
Pn
θ
, which depends on the parameter θ; such probability is called a likelihood, since it deter-

mines the likelihood of X n given a parameter θ. Often, X i are iid observations, but generally
they need not be. Note that the set of all priors on Θ is denoted by ∆(Θ), and each of such
priors gives rise to a joint distribution of (θ, X n) (think about what this statement means).

Upon observing the data, the decision-maker updates their beliefs about the world using
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Bayes’s rule, forming a posterior belief µn ≡ µ | X n, consisting of the conditional distribu-
tion of θ given X n. Throughout, we’ll consider the case where µn is well-defined for all n, in
which case we have that ‘posterior belief ∝ likelihood × prior belief’.

3. Consistency of Bayesian Learning
One important question about learning is whether the decision-maker will eventually learn
the true model. This idea is captured by the notion of consistency of Bayesian learning: a
prior µ is said to be consistent with the true model, θ0, if it collapses to a mass point on θ0

almost surely. In a way, consistency is the Bayesian counterpart to the law of large numbers.
Formally,

Definition 1. The posterior belief µn is said to be consistent with the true model θ0 if for
every neighbourhood U of θ0, µn(U)→ 1 almost surely under the law determined by θ0.

We say that a prior µ ismisspecified if the true model θ0 is not in the support of µ. Through-
out, we’ll assume that the true model is in the support of the prior, so that the posterior belief
is well-defined for all n.1 Furthermore, we’ll also restrict to the case in which X i are iid. Nat-
urally, consistency requires that the parameter is identifiable from the data, that is, Pθ0 ̸= Pθ

for any θ ̸= θ0. Since it would be bizarre to assume the above only for the true (unknown)
parameter θ0, we require Pθ ̸= Pθ′ for any θ ̸= θ′.

We’ll now discuss some results on consistency of Bayesian learning. The first result is due to
Doob (1948), who showed that consistency is obtained for almost all true models, where the
almost all is with respect to the prior.

Theorem 1. (Doob (1948)) For any prior µ, the posterior µn is consistent at every θ except

possibly on a set of µ-measure zero.

While this result is nice, it is not very useful in practice, since we cannot be sure that the true
model θ0 the posterior is indeed consistent (θ0 may be one of those µ-measure zero parameters
for which consistency may fail). We can do better than that, however, if we impose some
further conditions on the sample space of Xn.

Theorem 2. If Xn are iid and can only take finitely many values, then for any prior µ, the

posterior µn is consistent at every θ in the support of µ.

Moreover, there are results that provide explicit convergence rates for the posterior belief and
– what is also useful — bounds for how concentrated the posterior is around the empirical
1What if the prior is misspecified? We can still say something about convergence! See Berk (1966) for a classical
reference and Esponda and Pouzo (2016) for an application to a game theory.
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mean; see Diaconis and Freedman (1990).2

One may think that at least by obtaining humongous amount of iid data, Bayesian learning,
fundamental as it is, is always consistent as long the prior belief is not misspecified. It turns
out that, without further assumptions, when observations Xn can take infinitely many values
(even if countably many), consistency may fail.

Example 1. (Inconsistent Bayesian Learning) Suppose that θ describes a probability mass
function on the set of positive integers and θ0, the true model, corresponds to a geometric dis-
tribution with parameter 1/4. Freedman (1963) shows that there is a prior µ that gives positive
mass to every neighbourhood of θ0 but the posterior belief concentrates on the neighbourhood
of a geometric distribution with parameter 3/4.

In fact, the above example is not pathological: Freedman (1965) showed that inconsistency
is the rule rather than the exception when no further conditions are imposed on Θ or the
likelihood. This serves as a cautionary tale: Bayesian learning is not always consistent.

To obtain consistency, we need restrictions. A famous condition was obtained by Schwartz
(1965):

Theorem 3. (Schwartz (1965)) Let Θ be a class of densities and let Xn be iid with density θ0,

where θ0 ∈Θ. Let µ be a prior on Θ such that for every ϵ > 0, µ
(
{θ ∈Θ | ∫ θ0 ln(θ0/θ)< ϵ}

) > 0.

Then, the posterior belief µn is consistent at θ0.

Here’s a practical condition that is sufficient for consistency: if { fθ,θ ∈ Θ} is a family of
densities smoothly parametrised by a real or vector valued parameter θ, and Xn

iid∼ fθ0 , then
consistency is obtained if and only if θ0 lies in the support of the prior.

Now, if consistency is akin to a LLN, do we have a Bayesian CLT? The answer is yes, but we
need to impose some further conditions – see Ghosal (1997) and references therein for details.

4. Conjugate Priors
A particularly useful concept is that of conjugate priors. Given a random variable X with
likelihood Pθ, θ ∈ Θ and taking values in X , a prior µ ∈ M is said to be conjugate if the
posterior µ | X is in the same family M as the prior µ for any value of X . Note that there is
no such thing as the conjugate prior. For instance, if Θ is finite, then the set of all probability
measures on Θ is a conjugate prior no matter the likelihood – a true statement, but not a very
useful one.

Some nice examples of conjugate priors are the following:
2Fun fact: Persi Diaconis was a professional magician before becoming a statistician.
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• If the likelihood is Bernoulli, X ∼ Bernoulli(θ), then the Beta distribution family is a
conjugate prior: θ ∼Beta(α0,α1)=⇒ θ|X = x ∼Beta(α0 + (1− x),α1 + x).

• If the likelihood is categorical (a generalisation of Bernoulli), X ∈ {1, ...,k}, X ∼Categorical(θ)

where θ = (θ1, ...,θk) ∈ ∆k−1, then the Dirichlet distribution family (a generalisation
of Beta) is a conjugate prior: θ ∼ Dirichlet(α) =⇒ θ|X = x ∼ Dirichlet(α+ ex), where
α= (αi)i=1,...,k and ex = (1x=1, ...,1x=k).

• If the likelihood is Gaussian, X ∼ N (µ,Σ), then the Normal distribution family is a
conjugate prior: µ∼N (µ0,Σ0) =⇒ µ|X = x ∼N (µ1,Σ1), where µ1 =Σ1(Σ−1

0 µ0 +Σ−1x)

and Σ1 = (Σ−1
0 +Σ−1)−1.

Another way to think about this, is to reparametrise the Normal distribution in terms
of its precision matrix τ = Σ−1, so that µ ∼ N (µ0,τ0) and µ|x ∼ N (µ1,τ1), where µ1 =
τ−1

1 (τ0µ0 +τx) and τ1 = τ0 +τ.
There are also tractable results for unknown precision τ∼Gamma(α,β).

• Other famous pairs include (Poisson, Gamma), (Exponential, Gamma), (Uniform, Pareto).

5. Related Topics

5.1. Merging of Opinions

If (at least under some conditions) individuals learn the truth, then at some point they will
agree on the true model. This is the idea behind a classical result by Blackwell and Dubins
(1962) and extended by Kalai and Lehrer (1994): two individuals with two different beliefs
(mutually absolutely continuous) will tend to have similar posterior beliefs as they observe
more and more data. This has important implications, namely for showing that Bayesian
players eventually learn to play Nash equilibrium in a repeated game (Kalai and Lehrer, 1993).
Acemoglu et al. (2016) discuss the limits of this merging of opinions.

5.2. Common Learning

Suppose a group of speculators observe signals about fundamentals and they want to strike
if they learn the currency is weak with sufficiently high degree of certainty. However, they
need to coordinate their efforts to strike, and while, as they wait, they may learn perfectly
whether or not the currency is weak, they do need to also know that others have learned (to a
prespecified sufficient degree of confidence) that the currency is weak. This is the idea behind
common learning: not only do individuals learn the truth, but they also learn that they have
learned the truth, and that they have learned that they have learned the truth, and so on. When
does common learning actually occur? This is the question addressed by Cripps et al. (2008),
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who show that common learning is obtained, e.g., if the prior is common knowledge and the
likelihood is common knowledge and has full support. But, as most we’ve seen, common
learning may also fail (see examples in Cripps et al. (2008)).

5.3. Other Related Topics

Learning is also a central part of the literature on social learning – referenced below – which
studies how individuals learn from the actions of others (e.g. online reviews, fads and fashions,
neighbours’ crops’ success, etc), as well as in game theory, being it a fundamental idea under-
lying the very concept of equilibrium behaviour – as emerging from learning and experience
of players (references also below).

6. Study and Further Reading

6.1. Further Reading

• Learning in games: Fudenberg and Levine (1998), Fudenberg and Levine (2009), Fudenberg
and Levine (2016)

• Misspecified Learning: Berk (1966), Fudenberg et al. (2023); in games: Esponda and Pouzo
(2016), Fudenberg et al. (2021).

• Social learning: Bikhchandani et al. (1992), Smith and Sørensen (2000), a survey (including
empirical references) Mobius and Rosenblat (2014), a textbook Chamley (2010)

• Bayesian Learning in Macro: Baley and Veldkamp (2021)

• Merging of opinions: Acemoglu et al. (2016)

• Experiments: belief updating Charness and Levin (2005), learning about political facts Hill
(2017), learning in games Camerer (2003, ch. 6)
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