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1. Introduction

Game theory is a formal methodology and a set of techniques to study the interaction of rational agents

in strategic settings.1 ‘Rational’ here means the standard thing in economics: maximizing over well-defined

objectives; ‘strategic’ means that what decisions one agent wants to take depends on what she thinks other

agents will be doing, which in turn may depend on what those other agents think this agent will be doing.

Note that decision theory—which you should have elements of earlier in the Micro core—is the study of how

an individual makes decisions in non-strategic settings; hence game theory is sometimes also referred to as

multi-person or interactive decision theory. The common terminology for the field comes from its putative

applications to games such as poker, chess, etc.2 However, the applications we are usually interested in have

little directly to do with such games. In particular, these are what we call “zero-sum” games in the sense

that one player’s loss is another player’s gain; they are games of pure conflict. In most interesting economic

applications, there is typically a mixture of conflict and cooperation motives.

1.1. A (Very!) Brief History

Modern game theory as a field owes much to the work of John von Neumann. In 1928, he wrote an important

paper on two-person zero-sum games that contained the famous Minimax Theorem, which we’ll see later

on. In 1944, von Neumann and Oscar Morgenstern published their classic book, Theory of Games and

Strategic Behavior, that extended the work on zero-sum games and also started cooperative game theory. In

the early 1950s, John Nash made his seminal contributions to non-zero-sum games and started bargaining

theory. In 1957, Robert Luce and Howard Raiffa published their book, Games and Decisions: Introduction

and Critical Survey, popularizing game theory. In 1967–1968, John Harsanyi formalized methods to study

games of incomplete information, which was crucial for widening the scope of applications. In the 1970s,

there was an explosion of theoretical and applied work in game theory, and the methodology was well along

its way to its current status as a preeminent tool in not only economics but other social sciences too.

1.2. Non-cooperative Game Theory

Throughout this course, we will focus on noncooperative game theory, as opposed to cooperative game theory.

All of game theory describes strategic settings by starting with the set of players, i.e. the decision-makers.

The difference between noncooperative and cooperative game theory is that the former takes each player’s

individual actions as primitives, whereas the latter takes joint actions as primitives. That is, cooperative

game theory assumes that binding agreements can be made by players within various groups and players can

communicate freely in order to do so. We will take the noncooperative viewpoint that each player acts as an

individual, and the possibilities for agreements and communication must be explicitly modeled. Except for

brief discussions in Appendix A of Chapter 18 and parts of Chapter 22, Mas-Colell, Whinston, and Green

1Naturally, any attempt like this to provide a succinct definition of a rich subject is bound to be incomplete;
nevertheless, this working definition is suitable for the focus in this course.

2 Ironically, game theory actually has limited prescriptive advice to offer on how to play either chess or poker. For
example, we know that chess is “solvable” in a sense to be made precise later, but nobody actually knows what the
solution is! This stems from the fact that chess is simply too complicated to “solve” (at present); this is of course
why the best players are said to rely significantly on their intuition or feel in addition to logical computation.
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(1995)—herafter, MWG—does not deal with cooperative game theory either. For an excellent introduction,

see Chapters 13–15 in Osborne and Rubinstein (1994).

2. Strategic Settings

A game is a description of a strategic environment. Informally, the description must specify who is playing,

what the rules are, what the outcomes are depending on any set of actions, and how players value the various

outcomes.

Example 1. (Matching Pennies version A) Two players, Anne and Bob. Simultaneously, each picks

Heads or Tails. If they pick the same, Bob pays Anne $2; if they pick different, Anne pays Bob $2.

Example 2. (Matching Pennies version B) Two players, Anne and Bob. First, Anne picks either

Heads or Tails. Upon observing her choice, Bob then picks either Heads or Tails. If they pick the same,

Bob pays Anne $2; if they pick different, Anne pays Bob $2.

Example 3. (Matching Pennies version N) Two players, Anne and Bob. Simultaneously, they pick

either Heads or Tails. If they pick different, then they each receive $0. If they pick the same, they wait for

15 minutes to see if it rains outside in that time. If it does, they each receive $2 (from God); if it does not

rain, they each receive $0. Assume it rains with 50% chance.

In all the above examples, implicitly, players value money in the canonical way and are risk-neutral.

Notice that Example 1 and Example 2 are zero-sum games — whatever Anne wins, Bob loses, and vice-

versa. Example 3 is not zero-sum, since they could both win $2. In fact, it is a particular kind of

coordination game. Moreover, it is also a game that involves an action taken by “nature” (who decides

whether it rains or not).

2.1. Extensive Form Representation

• Work through extensive form representation of the examples first.

Let us now be more precise about the description of a game.

Definition 1. An extensive form game is defined by a tuple ΓE “ tX ,A, I, p, α,H, H, ι, ρ, uu as follows:

1. A finite set of I players. Denote the set of players as I “ t0, 1, . . . , Iu. Players 1, . . . , I are the “real”

players; player 0 is used as an “auxiliary” player, nature.

2. A set of nodes, X .3

3. A function p : X Ñ X Y tHu specifying a unique immediate predecessor of each node x such that ppxq

is the empty-set for exactly one node, called the root node, x0.
4

(a) The immediate successors of node x are defined as spxq “ ty P X : ppyq “ xu.

3Nodes are typically drawn as small solid circles, but note fn. 4.
4The root node is typically drawn as a small hollow circle.
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(b) By iterating the functions p and s, we can find all predecessors and successors of any node, x,

which we denote P pxq and Spxq respectively. We require that that P pxq X Spxq “ H, i.e. no

node is both a predecessor and a successor to any other node.

(c) The set of terminal nodes is T “ tx P X : spxq “ Hu. Any non-terminal node x P X zT is a

decision node.

4. A set of actions, A, and a function α : X ztx0u Ñ A that specifies for each node x ‰ x0, the action

which leads to x from ppxq. We require that α be such that if distinct x1, x2 P spxq, then αpx1q ‰ αpx2q.

That is, from any node, each action leads to a unique successor. The set of available actions at any

node, x, is denoted cpxq “ tαpx1qux1Pspxq.

5. A collection of information sets, H, that forms a partition of X zT ,5 and a function H : X zT Ñ H

that assigns each decision node into an information set. We require that cpxq “ cpx1q if Hpxq “ Hpx1q;

that is, two nodes in the same information set have the same set of available actions. It is therefore

meaningful to write CpHq “ ta P A : a P cpxq @x P Hu for any information set H P H as the set of

choices available at H .

6. A function ι : H Ñ I assigning the player (possibly nature) to move at all the decision nodes in any

information set. This defines a collection of information sets that any player i moves at, Hi ” tH P

H : i “ ιpHqu.

7. For each H P H0, a probability distribution ρpHq on the set CpHq.6 This dictates nature’s moves at

each of its information sets.

8. u “ pu1, . . . , uIq is a vector of utility functions such that for each i “ 1, . . . , I, ui : T Ñ R is a

von-Neumann Morgenstern payoff function that represents (expected utility) preferences for i over

terminal nodes.

Keep in mind that when drawing game trees, we use dotted lines between nodes (Kreps) or ellipses

around nodes (MWG) to indicate nodes that fall into the same information set.

• Work through examples of what the definition of an extensive form game rules out.

To avoid technical complications, we restrict attention in the formal definition above to finite games:

Assumption 1. The set of nodes, X , is finite.

Remark 1. If X is finite, then even if the set of actions, A, is infinite, there are only a finite number of

relevant actions; hence without loss of generality, we can take A as finite if X is finite.

At various points, we will study infinite games (where the number of nodes is infinite); the extension of

the formal concept of a game to such cases will be intuitive and covered as needed.

It will often be convenient to talk about games without specifying payoffs for the players. Strictly

speaking, this is called a game form rather than a game.

5Recall that a partition is a set of mutually exclusive and exhaustive subsets.
6One has to be a little careful in the definition if CpHq is a continuum, which MWG ignore, and I will be casual

about; cf. Assumption 1 below.
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Definition 2. A game form is an otherwise complete description of a game, only lacking payoff specification.

A property Y is said to be mutual knowledge if all players know Y (but don’t necessarily know that

others know it). A property Y is common knowledge if everyone knows Y , everyone knows that everyone

knows Y , everyone knows that everyone knows that everyone knows Y , . . ., ad infinitum. Clearly, common

knowledge implies mutual knowledge but not vice-versa.7

Definition 3. A complete information game is one where all players’ payoff functions (and all other aspects

of the game) are common knowledge.

You might worry that restricting attention to complete information games is pretty limited: what about

a version of Matching Pennies where Anne does not know whether Bob wants to match or not match? We’ll

see there is a beautiful trick to analyze such situations within the framework of complete information.

Remark 2. We will always assume in this course that the game form is common knowledge. So the only

source of informational asymmetry across players at the outset of a game can be about payoffs. More

generally, however, the term “incomplete information” can refer to any game where at the outset, one player

knows something about the game that another does not.

Remark 3. We will restrict our attention to games with perfect recall, as is typical. Loosely, this means that

a player never forgets (i) a decision she took in the past, and (ii) any information that she possessed when

making a past decision. More precisely: (i) if y P P pxq then Hpxq ‰ Hpyq — no node and any predecessor

can be in the same information set; and (ii) if Hpx2q “ Hpx1q, x P P px1q, and ιpHpxqq “ ιpHpx1qq, then

Dx̂ P Hpxq s.t. x̂ P P px2q and α pspxq X P px1qq “ α pspx̂q X P px2qq. In words, (ii) says that if x2 and x1 are

in the same information set, x is a predecessor of x1, and the same player moves at both x and x1 (and hence

also x2), then there must be an action at x’s information set that can lead to both x1 and x2.

Another piece of terminology to be aware of, but we don’t want to impose in general, is perfect infor-

mation.

Definition 4. A game has perfect information if all information sets are singletons. Otherwise, it has

imperfect information.

Example 2 has perfect information, but Example 1 and Example 3 are of imperfect information. In

terms of parlor games, chess has perfect information, whereas Mastermind has imperfect information.8

2.2. Strategies and Strategic Form of a Game

2.2.1. Strategies

A key concept in game theory is that of a player’s strategy. A strategy, or a decision rule, is a complete

contingent plan that specifies how a player will act at every information set that she is the decision-maker

at, should it be reached during play of the game.

Definition 5. A [pure] strategy for player i is a function si : Hi Ñ A such that sipHq P CpHq for all

H P Hi.

7Chapter 5 of Osborne and Rubinstein (1994) contains an accessible formal treatment of knowledge.
8 In case you don’t know it, Mastermind is the game where player 1 chooses an ordered sequence of four colored

pegs (unobservable to player 2) and player 2 has to arrive at it through a sequence of guesses.
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It is very important to be clear about what a strategy is. Here is point of clarification. Consider a

“game” where you are walking North on Amsterdam Ave and trying to get to the department’s entrance

on 118th St.9 Every cross street on Amsterdam is a decision node. The set of actions at each node is

tTurn right, Continue on Amsterdamu. Consider a strategy that specifies Continue at all streets South of

118th, and Turn right at the 118th Street node. For a full specification, the strategy has to specify what

to do if you get to the 119th St node, the 120th St, and so on — even though you won’t actually get there

if you follow the strategy! Remember: complete contingent plan. Moreover, do not confuse actions and

strategies. An action is just a choice at a particular decision node. A strategy is a plan of action for every

decision node that a player is the actor at. It may seem a little strange to define strategies in this way: why

should a player have to plan for contingencies that his own actions ensure will never arise?! It turns out

that what would happen at such “never-reached” nodes plays a crucial role in studying dynamic games, a

topic we’ll spend a lot of time on later.

The set of available strategies for a player i is denoted Si. In finite games, this is a |Hi|-dimensional

space, where |Hi| is the number of information sets at which i acts. That is, si P Si “ ˆHPHi
CpHq. Let

S “
ś

i“1,...,I Si be the product space of all players’ strategy spaces, and s “ ps1, . . . , sIq P S be a strategy

profile where si is the ith player’s strategy. We will sometimes write s´i to refer to the pI ´ 1q vector of

strategies of all players excluding i, and therefore s “ psi, s´iq.

In Example 1, if we let Anne be player 1 and Bob be player 2, we can write S1 “ S2 “ tH,T u.

Here, both players have 2 actions and also 2 strategies. In Example 2, we have S1 “ tH,T u whereas

S2 “ tpH,Hq, pH,T q, pT,Hq, pT, T qu where any s2 “ px, yq means that player 2 plays x if player 1 plays H

and y if player 1 plays T . Thus, even though both players continue to have 2 actions each, observe that

player 1 has 2 strategies (as before), but now player 2 has 4 strategies. (Question: how many strategies does

each player have in Example 3?)

2.2.2. Strategic (Normal) Form

Every [pure] strategy profile induces a sequence of moves that are actually played, and a probability dis-

tribution over terminal nodes. (Probability distribution because nature may be involved; if there is no

randomness due to nature, then there will be a unique final node induced.) Since all a player cares about

is his opponents’ actual play, we could instead just specify the game directly in terms of strategies and

associated payoffs. This way of representing a game is known as the Strategic or Normal form of the game.

To do this, first note that given a payoff function ui : T Ñ R, we can define an extended payoff function

as the expected payoff for player i from a strategy profile s, where the expectation is taken with respect to

the probability distribution induced on T by s. With some abuse of notation, I will denote this extended

payoff function as ui : S Ñ R again. Notice that the domain of ui (S or T ) makes it clear whether it is the

primitive or extended payoff function we are talking about.

Definition 6. The normal form representation of a game, ΓN “ tI, S, uu, consists of the set of players, I,

the strategy space, S, and the vector of extended payoff functions u “ pu1, . . . , uIq.

Often, the set of players will be clear from the strategy space, so we won’t be explicit about the set I.

For instance, the Normal Form for Example 2 can be written as

9This is really a decision-theory problem rather than a game, but it serves well to illustrate the point.
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Bob

Anne

pH,Hq pH,T q pT,Hq pT, T q

H 2,´2 2,´2 ´2, 2 ´2, 2

T ´2, 2 2,´2 ´2, 2 2,´2

where we follow the convention of writing payoffs as ordered pairs px, yq, with x being the payoff for

the Row player (Anne) and y that of the Column player (Bob). This is a game where there is no role for

Nature, so any strategy profile induces a unique terminal node. Consider on the other hand, Example 3,

where this is not the case. The Normal Form is

Bob

Anne

H T

H 1, 1 0, 0

T 0, 0 1, 1

where the payoff of 1 if they match comes from the expected utility calculation with a 0.5 chance of rain

(the expected payoff given the probability distribution induced over the terminal node).

*Normal Form Equivalence There are various senses in which two strategic settings may be equiva-

lent, even though they have different representations (in Normal or Extensive form). Indeed, as we already

remarked, the same game can have different extensive form representations (think about MP-A and whether

the game tree shows Bob moving first or Anne moving first). This is actually a deep question in Game

Theory, but here is at least one simple case in which the equivalence should be obvious.

Definition 7 (Full Equivalence). Two normal form games, ΓN “ tI, S, uu and Γ̃N “ tI, S, ũu, are fully

equivalent if for each i “ 1, . . . , I, there exists Ai ą 0 and Bi such that ũipsq “ Aiuipsq `Bi.

This definition is a consequence of the fact that the utility functions represent vNM expected-utility

preferences, hence are only meaningful up to a linear transformation. For instance, this means that MP-A

in Example 1 is fully equivalent to another version of Matching Pennies where we just multiply players’

payoffs by the constant 2. Makes sense, right?

2.2.3. Randomized Choices

Mixed Strategies Thus far, we have taken it that when a player acts at any information set, he

deterministically picks an action from the set of available actions. But there is no fundamental reason why

this has to be case. For instance, in MP-A, perhaps Bob wants to flip a coin and make his choice based on

the outcome of the coin flip. This is a way of making a randomized choice. Indeed, as we’ll see, allowing

for randomization in choices plays a very important role in game theory.

Definition 8 (Mixed Strategy). A mixed strategy for player i is a function σi : Si Ñ r0, 1s which assigns a

probability σipsiq ě 0 to each pure strategy si P Si, satisfying
ř

siPSi

σi psiq “ 1.

One way to think of this is that at the outset, i flips an |Si|-sided die (with the right probabilities for

each side), and based on its outcome, decides which pure strategy to play. Clearly, a pure strategy is a

8



degenerate kind of mixed strategy, where σi psiq “ 1 for some si P Si; in other words, mixed strategies

subsume pure strategies. Sometimes, a mixed strategy that places positive probability on all pure strategies

is called a fully or totally mixed strategy.10

Definition 9 (Fully Mixed Strategy). A strategy, σi, for player i is fully (or completely, or totally) mixed

if σi psiq ą 0 for all si P Si.

As a piece of notation, we denote the set of probability distribution on Si as ∆ pSiq, which is the simplex

on Si. The space of mixed strategies then is ∆ pSiq, which I will often denote as Σi.

Notice now that even if there is no role for nature in a game, when players use (non-degenerate) mixed

strategies, this induces a probability distribution over terminal nodes of the game. But we can easily extend

payoffs again to define payoffs over a profile of mixed strategies as follows:

ui pσ1, . . . , σIq “
ÿ

sPS

rσ1 ps1qσ2 ps2q ¨ ¨ ¨σI psIqsui psq .

Remark 4. For the above formula to make sense, it is critical that each player is randomizing independently.

That is, each player is independently tossing her own die to decide on which pure strategy to play. This rules

out scenarios such as two players jointly observing the roll of a “public” die, and then correlating their choice

of individual pure strategies based on the die’s outcome. This independence assumption can be weakened

in a more advanced treatment, but we maintain it throughout much of this course, except for brief remarks

and the discussion in Subsection 3.5.

Return to Example 2. A mixed strategy for Anne can be specified by a single number p1 P r0, 1s so that

p1 is the probability of playing the pure strategy H . This implicitly defines the probability of playing pure

strategy T as 1´ p1. On the other hand, for Bob, a mixed strategy is a triple, pq1, q2, q3q P r0, 1s
3
, where q1

is the probability of playing pH,Hq, q2 is the probability of playing pH,T q, q3 is the probability of pT,Hq,

and 1 ´ q1 ´ q2 ´ q3 is the probability of playing pT, T q.

Behavioral Strategies In the context of extensive form representations, there is an alternative way one

can think about making randomized choices. Rather than randomizing over pure strategies, why not define

a plan of action that specifies separately randomizing over the set of available actions at each information

node? That is, in Example 2, why can’t Bob simply specify how to randomize over Heads and Tails in each

of two different scenarios: if Anne plays H , and if Anne plays T . Such a formulation is in fact feasible, and

is called a behavioral strategy.

Definition 10 (Behavioral Strategy). A behavioral strategy for player i is a function λi : A ˆ Hi Ñ r0, 1s

which assigns a probability λipa,Hq ě 0 to each action a P A at information set H P Hi, satisfying @H P Hi,

λipa,Hq “ 0 if a R CpHq and
ř

aPCpHq

λipa,Hq “ 1.

To be clear, a behavioral strategy for Bob in Example 2 would be a pair pq1, q2q P r0, 1s
2
such that q1 is

the probability of playing H if Anne has played H and q2 is the probability of playing H if Anne has played

T. Implicitly then, 1´ q1 is the probability of playing T if Anne has played H and 1 ´ q2 is the probability

of playing T if Anne has played T . Compare this to a mixed strategy for Bob described earlier.

10There is no well established terminology for a strategy in ΣizSi; let’s use non-pure strategy.
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As you probably guessed, in games of perfect recall, behavioral strategies and mixed strategies are

equivalent. That is, for any player, for any behavioral strategy there exists a mixed strategy that yields

exactly the same distribution over terminal nodes given the strategies (behavioral or mixed) of other players,

and vice-versa.11 The formal theorem is this, where an outcome means a probability distribution over

terminal nodes:

Theorem 1 (Kuhn’s Theorem). For finite games with perfect recall, every mixed strategy of a player has an

outcome-equivalent behavioral strategy, and conversely, every behavioral strategy has an outcome-equivalent

mixed strategy.

I won’t prove this Theorem though the intuition is straightforward (you will work through a detailed

example in a homework problem). Given the result, in this course, we will be a little casual and blur

the distinction between mixed and behavioral strategies. Often, it is more convenient to use behavioral

strategies in extensive form representations, and mixed strategies when a game is in strategic form. See

Osborne and Rubinstein (1994, Section 11.4) for an excellent discussion.

2.3. An Economic Example

To illustrate a strategic setting with direct application to the study of markets, here is a classic model of

imperfect competition. Conveniently, it also serves to introduce infinite action spaces. There are two firms,

call them 1 and 2, producing an identical product. Market demand is given by QpP q with inverse demand

P pQq, both of which are decreasing functions mapping R` to R`. Firm i produces a non-negative quantity

qi at cost cipqiq, with cip0q “ 0. Notice that since quantities and price are in a continuum here, none of

the following games is finite. Nonetheless, we will just adapt our definitions from earlier in straightforward

ways.

Simultaneous quantity-setting (Cournot) Suppose that each firm must simultaneously pick a

quantity, and the market price gets determined as P pq1 ` q2q. In Normal form, this game has Si “ R`,

si “ qi, and uipsi, s´iq “ siP ps1 ` s2q ´ cipsiq. We can draw it in extensive form too, using various game

tree notations to represent the infinite number of available actions.

Simultaneous price-setting (Bertrand) Suppose that each firm must simultaneously pick a non-

negative price, and the market quantity gets determined by Qpmintp1, p2uq, with all sales going to the firm

with lower price and a 50-50 split in case of equal prices. In Normal form, this game has Si “ R`, si “ pi,

and

uipsi, s´iq “

$

’

&

’

%

Q psiq si ´ ci pQ psiqq if si ă s´i

1
2
Q psiq si ´ ci

`

1
2
Q psiq

˘

if si “ s´i

0 if si ą s´i

11The equivalence also breaks down when the set of actions available to a player — and hence nodes in the game
— is infinite, and in particular a continuum; see Aumann (1964). A third way of defining randomization that
works for a very general class of games (including many infinite games) is the distributional strategy approach of
Milgrom and Weber (1985), but it comes at the cost of being unnecessarily cumbersome for finite games, so we don’t
use it typically.
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Sequential quantity-setting (Stackelberg) Suppose now that firms sequentially pick quantities,

where firm 2 observes firm 1’s choice before acting. (Before reading further, see if you can represent the

game in Normal form; it is an excellent check on whether you have fully grasped the difference between

strategies and actions.) In Normal form, this game has s1 “ q1 and S1 “ R`, s2 : R` Ñ R` (i.e. s2 is

function) and S2 is a function space defined by S2 “ tfunctions from R` to R`u, and

u1ps1, s2q “ s1P ps1 ` s2 ps1qq ´ c1 ps1q

u2ps1, s2q “ s2 ps1qP ps1 ` s2 ps1qq ´ c2 ps2ps1qq

Note that even though both firms’ strategy spaces are infinite, firm 1’s strategy space lies in a finite-

dimensional space (it is 1-dimensional); whereas the dimensionality of firm 2’s strategy space is (uncountably)

infinite.12

3. Simultaneous-Move Games

In this Section, we are going to study behavior in Normal form games. One can either view this as taking a

possibly-complicated extensive form game and collapsing it into its Normal form (in which case we may be

losing relevant “dynamic” considerations that we will come back to later), or as simply considering “static”

games where players only move once and move simultaneously. In any case, the primitive in this section will

be a game in its Normal form, ΓN “ tI, S, uu.

3.1. Dominance

3.1.1. Strictly Dominant Strategies

You’ve probably heard of the Prisoner’s Dilemma game (MWG Figure 8.B.1). I’m going to reinterpret it

as a game of trust.

Example 4. (Trust Game) The Trust Game has the following Normal form.

Player 2

Player 1

Trust Cheat

T rust 5, 5 0, 10

Cheat 10, 0 2, 2

Observe that regardless of what her opponent does, player i is strictly better off playing Cheat rather

than Trust. This is precisely what is meant by a strictly dominant strategy.

Definition 11 (Strictly Dominant strategy). A strategy si P Si is a strictly dominant strategy for player i

if for all s̃i ‰ si and all s´i P S´i, uipsi, s´iq ą uips̃i, s´iq.

12Dealing with infinite dimensional spaces typically adds additional technical complications, but may be unavoid-
able as in this example.
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That is, a strictly dominant strategy for i uniquely maximizes her payoff for any strategy profile of all

other players. If such a strategy exists, it is highly reasonable to expect a player to play it. In a sense, this

is a consequence of a player’s “rationality”.13

In the Trust Game, if both players play their strictly dominant strategies, the outcome of the game is

(Cheat, Cheat). But notice that this is a Pareto-dominated outcome. Another way to say this is that if the

players could somehow write a binding contract that requires them to both play Trust, they would be better

off doing that rather than playing this Trust Game. Lesson: self-interested behavior in games may not lead

to socially optimal outcomes. This stems from the possibility that a player’s actions can have a negative

externality on another player’s payoff. (Aside: think about the connection to the First Welfare Theorem.)

Exercise 1. Prove that a player can have at most one strictly dominant strategy.

Notice that we defined strictly dominant strategies by only considering alternative pure strategies for

both player i and his opponents. Would it matter if we instead allowed mixed strategies for either i or his

opponents? The answer is no.

Theorem 2. If si is a strictly dominant strategy for player i, then for all σi P Σiz tsiu and σ´i P Σ´i,

uipsi, σ´iq ą uipσi, σ´iq.

Proof. For any σ´i , σi, and si, we can write uipsi, σ´iq ą uipσi, σ´iq as

ÿ

s´iPS´i

˜

ź

j‰i

σj psjq

¸ «

ui psi, s´iq ´
ÿ

s̃iPSi

σi ps̃iqui ps̃i, s´iq

ff

ą 0. (1)

Since si is strictly dominant, ui psi, s´iq ´ ui ps̃i, s´iq ą 0 for all s̃i ‰ si and all s´i. Hence, ui psi, s´iq ´
ř

s̃iPSi
σi ps̃iqui ps̃i, s´iq ą 0 for any σi P Σiz tsiu. This implies inequality (1). �

Exercise 2. Prove that there there can be no strategy σi P Σi such that for all si P Si and s´i P S´i,

uipσi, s´iq ą uipsi, s´iq.

The preceding Theorem and Exercise show that there is absolutely no loss in restricting attention to

pure strategies for all players when looking for strictly dominant strategies.

3.1.2. Strictly Dominated Strategies

What about if a strictly dominant strategy doesn’t exist, such as in the following game?

Example 5. A game defined by the Normal form

Player 2

Player 1

a b c

A 5, 5 0, 10 3, 4

B 3, 0 2, 2 4, 5

13There is a better way to say this, but it is too much work at this point to be formal about it. Roughly though, if
there is a strict dominant strategy, then no other strategy is optimal (in the sense of maximizing payoffs) regardless
of what a player believes his opponents are playing. “Rationality” means that the player is playing optimally for
some belief he holds about his opponents’ play. Thus, he must play his strictly dominant strategy.
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You can easily convince yourself that there are no strictly dominant strategies here for either player.

However, notice that regardless of whether Player 1 plays A or B, Player 2 does strictly better by playing b

rather than a. That is, a is “strictly dominated” by b. The motivates the next definition, where we allow

for mixed strategies explicitly.

Definition 12 (Strict Dominance). A (mixed) strategy σi P Σi is strictly dominated for player i if there

exists a (mixed) strategy σ̃i P Σi such that for all s´i P S´i, uipσ̃i, s´iq ą uipσi, s´iq. In this case, we say

that σ̃i strictly dominates σi.

In words, σ̃i strictly dominates σi if it yields a strictly higher payoff regardless of what (pure) strategy

rivals use. Note that the definition allows for both σ̃i and σi be pure or non-pure. Using this terminology,

we can restate Definition 11: a strategy is strictly dominant for a player if it strictly dominates all other

strategies for that player. Just as it is reasonable to expect a player to play a strictly dominant strategy if

one exists; it is likewise reasonable that a player will not play a strictly dominated strategy — a consequence

of rationality, again.

Why were we explicit about allowing for a strategy to be dominated by a mixed strategy in the definition?

Here is a game where it does matter.

Example 6.

Player 2

Player 1

a b c

A 1, 5 0, 6 2, 9

B 1, 9 2, 6 0, 5

There is no pure strategy that strictly dominates any other pure strategy in this game. However, the

mixed strategy σ2 where σ2 paq “ σ2 pcq “ 0.5 strictly dominates the strategy b for Player 2.

Remark 5. By the same argument as in Theorem 2, there is no loss in only comparing against all the pure

strategies for all other players when evaluating whether there is a strictly dominated strategy for a particular

player.

Remark 6. Convince yourself that a mixed strategy will be strictly dominated if it puts positive probability

on any pure strategy that is strictly dominated. (This implies what we already noted: a strictly dominant

strategy must be a pure strategy.) However, a mixed strategy may be strictly dominated even if none of the

pure strategies it puts positive probability on are strictly dominated. Check this in a variant of Example 6

where b gives player 2 a payoff of 8 regardless of what player 1 does.

3.1.3. Iterated Deletion of Strictly Dominated Strategies

Return now to Example 5. We argued that a is strictly dominated (by b) for Player 2; hence rationality of

Player 2 dictates she won’t play it. But now, we can push the logic further: if Player 1 knows that Player 2

is rational, he should realize that Player 2 will not play strategy a. Notice that we are now moving from the

rationality of each player to the mutual knowledge of each player’s rationality. That is, not only are Player

1 and Player 2 rational, but moreover, Player 1 knows that Player 2 is rational (and vice-versa). Assuming

this is the case, once Player 1 realizes that 2 will not play a and “deletes” this strategy from the strategy

space, then strategy A becomes strictly dominated by strategy B for Player 1. So now, if we iterate the

knowledge of rationality once again (that is: there is mutual knowledge of rationality, and moreover, Player 2
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knows that Player 1 knows that Player 2 is rational), then Player 2 realizes that 1 will not play A, and hence

“deletes” A, whereafter b is strictly dominated by c for Player 2. Thus, Player 2 should play c. We have

arrived at a “solution” to the game through the iterated deletion of strictly dominated strategies (IDSDS):

pB, cq.

Here is a formal definition of IDSDS:

Definition 13. Given a game pI, S, uq, the set S8 Ď S survives IDSDS if S8 “
Ś

i S
8
i and there is a

collection pSk
i qkě0 for each player i satisfying:

1. S0
i “ Si and S

8
i “

Ş

kě0 S
k
i .

2. For all k ě 1, Sk
i Ď Sk´1

i .

3. For all k ě 1, each si P Sk´1
i zSk

i is strictly dominated in the game pI,
Ś

j S
k´1
j , uq.

4. No si P S8
i is strictly dominated in the game pI, S8, uq.

Definition 14 (Strict-dominance solvable). A game is strict-dominance solvable if iterated deletion of strictly

dominated strategies results in a unique strategy profile, i.e. there is a S8 surviving IDSDS with |S8| “ 1.

Since in principle we might have to iterate numerous times in order to solve a strict-dominance solvable

game, the process can effectively can only be justified by common knowledge of rationality.14 As with

strictly dominant strategies, it is also true that most games are not strict-dominance solvable. Consider for

example MP-A (Example 1): no strategy is strictly dominated.

You might worry whether the order in which we delete strategies iteratively matters. In other words,

can different deletion processes produce different S8 in Definition 13? Insofar as we are working with strictly

dominated strategies so far (and finite games), this is not the case.

Remark 7. In finite games, the order of deletion does not affect the set of strategies that survive the process

of iterated deletion of strictly dominated strategies. In particular, if a game is strict-dominance solvable, the

outcome is independent of the order in which strategies are iteratively deleted according to strict dominance.

You will be asked to prove the above claim as a homework exercise. The following example demonstrates

the potential power of iteratively deleting strictly dominated strategies.

Example 7 (Linear Cournot). This is a specialized version of the Cournot competition game we introduced

earlier. Suppose that inverse market demand is given by a linear function ppQq “ a´ bQ, the cost functions

for both firms are also linear, cpqiq “ cqi, and the linear payoff functions are

uipqi, q´iq “ qipa´ bpqi ` q´iqq ´ cqi,

which simplify to

uipqi, q´iq “ pa ´ cqqi ´ bq2i ´ bqiq´i.

Assume that a, b, c ą 0 and moreover a ą c. To solve this game by iterated deletion of strictly dominated

strategies, first define the “reaction” or “best response” functions ri : r0,8q Ñ r0,8q which specify firm i’s

14This isn’t quite right: in finite games, we would only need to iterate a finite number of times; hence in any given
game, common knowledge of rationality isn’t quite necessary. But an arbitrarily large order of iteration of knowledge
may be needed.

14



optimal output for any given level of its opponent’s output. These are computed through the first order

conditions for profit maximization (assuming an interior solution),15

a´ c ´ 2brpq´iq ´ bq´i “ 0.

Hence,

rpq´iq “
a´ c

2b
´
q´i

2
,

where I am dropping the subscript on r since firms are symmetric.

Clearly, r is a decreasing function; that is, the more the opponent produces, the less a firm wants to

produce. The strategy space we start with for each firm is S0
i “ r0,8q. For each firm, playing anything

above rp0q is strictly dominated, since the opponent plays at least 0. Hence, deleting strictly dominated

strategies once yields S1
i “ r0, rp0qs. Now, since the opponent plays no more than rp0q, it is (iteratively)

strictly dominated for firm i to play less than rprp0qq, which I’ll denote r2p0q. Thus, the second round

of iterated deletion yields the strategy space S2
i “ rr2p0q, rp0qs. In the third round, since the opponent is

playing at least r2p0q, it is (iteratively) dominated for a firm to play more than rpr2p0qq, which of course I

denote r3p0q. So eliminating iteratively dominated strategies yields the space S3
i “ rr2p0q, r3p0qs, ... and so

on, ad infinitum. The lower bounds of these intervals form a sequence r2np0q, and the upper bounds form

a sequence r2n`1p0q. Define α ” a´c
b
. You can check by expanding out some of the rnp0q formulae that

for all n “ 1, 2, . . .,

rnp0q “ ´α
n

ÿ

k“1

ˆ

´
1

2

˙k

.

This is a convergent series (by absolute convergence), and hence the intervals Sn
i converge to a single point.

Thus the game is strict-dominance solvable. The solution can be found by evaluating the infinite series

´α
ř8

k“1

`

´ 1
2

˘k
, which turns out to be a´c

3b
.16 �

3.1.4. Weakly Dominated Strategies

Consider the following game, which has no strictly dominated strategies (hence is not strict-dominance

solvable).

Example 8. The normal form for a game is

Player 2

Player 1

a b

A 3, 4 4, 3

B 5, 3 3, 5

C 5, 3 4, 3

15Check that the second order condition is satisfied.
16To see this, observe that we can write

´
8
ÿ

k“1

ˆ

´
1

2

˙k

“ ´
8
ÿ

k“1

«

ˆ

´
1

2

˙

2k´1

`

ˆ

´
1

2

˙

2k
ff

“
8
ÿ

k“1

„ˆ

1

22k´1

˙

´

ˆ

1

22k

˙

“
8
ÿ

k“1

1

4k
“

8
ÿ

k“0

1

4k
´ 1 “

4

3
´ 1 “

1

3
.

15



Exercise 3. Prove that there are no strictly dominated pure strategies in this game.

Nonetheless, notice that unless Player 1 is absolutely sure that Player 2 is going to play a, he is strictly

better off playing C rather than B. That is to say, for any (possibly mixed) strategy σ2 ‰ a, u1 pC, σ2q ą

u1 pB, σ2q. Moreover, u1 pC, aq “ u2 pB, aq. Hence, C will do at least as well as B, and could do better.

We say that B is weakly dominated by C. Generalizing,

Definition 15 (Weak dominance). A strategy σi P Σi is weakly dominated for player i if there exists

a mixed strategy σ̃i P Σi such that for all s´i P S´i, uipσ̃i, s´iq ě uipσi, s´iq and for some s´i P S´i,

uipσ̃i, s´iq ą uipσi, s´iq. In this case, we say that σ̃i weakly dominates σi.

We say that a strategy si is weakly dominant if it weakly dominates all other strategies, s̃i ‰ si. As

with the case of strict dominance, it is important to allow for mixed strategies for player i in the definition of

weak dominance, but not for the other players. Notice that we cannot appeal to “rationality” to justify the

deletion of weakly dominated strategies, since a player might optimally play a weakly dominated strategy

if he were certain that his opponents were going to play a particular strategy profile. That said, it has a

lot of plausibility and can be useful in simplifying a complicated game. Just as with strict dominance, we

can iteratively delete weakly dominated strategies. However, there is a subtlety here, because the order of

deletion matters. To see this, continue the Example above. Having deleted B through weak dominance

(by C), we can then delete for Player 2 strategy b since it is weakly dominated by strategy a, and finally

iterate once more and delete strategy A for player 1. The iterative process has yielded the outcome pC, aq.

On the other hand, starting from the outset all over, observe that A is also weakly dominated by C. If we

delete A in the first round (rather than B as before), we can then delete a for Player 2 since it is weakly

dominated by b; and in third round, now delete B as it is weakly dominated by C. This process has led to

the outcome pC, bq. This motivates two remarks.

Remark 8. The order of deletion can matter when iteratively deleting weakly dominated strategies. Ar-

guably, this makes it less appealing as a solution concept. Oftentimes, in any round of deletion, we will

delete all strategies that are weakly dominated for a player; this is referred to as (iterated) admissibility.17

Remark 9. There is no completely standard definition of what it means for a game to be weak-dominance

solvable. Sometimes, it means that there is some order of iteratively deleting weakly dominated strategies

that leads to a single strategy profile. Other times, it means that no matter what order in which we

iteratively delete weakly dominated strategies, we end up at a unique (at least in terms of payoffs) strategy

profile.18

One other terminological point: saying that a strategy dominates (or is dominated by) another is poten-

tially ambiguous with regards to strict or weak dominance. Typically, dominance without a caveat means

strict dominance, but the literature is not uniformly careful about this (I will try to remember to be!).

Similarly, saying that a game is dominance solvable can mean either iterated deletion of strictly or weakly

dominated strategies — typically, it means strict-dominance solvable.

17 If you are interested in an advanced “epistemics” approach to solution concepts, see
Brandenburger, Friedenberg, and Keisler (2008) on foundations for iterated admissibility.

18Osborne and Rubinstein (1994, p. 63) has a third (and substantively different) definition based on the idea of
deleting all weakly dominated strategies in each round of deletion, i.e. iterated admissibility. Note that if we used
this procedure on Example 8, iterative deletion would not get to a unique strategy profile (or unique payoff profile):
after deleting both A and B in the first round, we can proceed no further.
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Exercise 4. In MP-B (Example 2), which strategies are strictly dominated for Player 2? Which are

weakly dominated? Does the game have a unique prediction through iterated deletion of strictly-dominated

strategies? What about through iterated deletion of weakly-dominated strategies?

Note that lots of games have no weakly dominated strategies, such as MP-A. On the other hand, there

are some interesting and useful examples of games that do.

Example 9 (Second-Price Auction). A seller has one indivisible object. There are I bidders with respective

valuations 0 ď v1 ď ¨ ¨ ¨ ď vI for the object; these valuations are common knowledge. The bidders

simultaneously submit bids si P r0,8q. The highest bidder wins the object and pays the second highest bid.

Given a profile of bids, s, let W psq ” tk : @j, sk ě sju be the set of highest bidders. Bidder i gets utility

ui psi, s´iq “

$

’

&

’

%

vi ´ maxj‰i sj if si ą maxj‰i sj
1

|W psq| pvi ´ siq if si “ maxj‰i sj

0 if si ă maxj‰i sj .

In this game, it is weakly dominant for each player to bid his true valuation, that is to play si “ vi. To see

this, define mps´iq ” maxj‰i sj .

Suppose first si ą vi. Then for any strategy profile, s´i, if mps´iq ą si, uipsi, s´iq “ uipvi, s´iq “ 0. If

mps´iq ď vi, then uipsi, s´iq “ uipvi, s´iq ě 0. Finally, ifmps´iq P pvi, sis, then uipsi, s´iq ă 0 “ uipvi, s´iq.

Hence, si “ vi weakly dominates all si ą vi.

Consider next si ă vi. If mps´iq ě vi, then uipsi, s´iq “ uipvi, s´iq “ 0. If mps´iq ă si, then

uipsi, s´iq “ uipvi, s´iq ą 0. Finally, if mps´iq P rsi, viq, then 0 “ uipsi, s´iq ă uipvi, s´iq. Hence, si “ vi

weakly dominates all si ă vi.

Therefore, in a second price auction, it seems reasonable that rational bidders should bid their true

valuation. The bidder with the highest valuation wins, and pays the second highest valuation, vI´1. Note

that since bidding one’s valuation is a weakly dominant strategy, it does not matter even if player i does

not know the other players’ valuations — even if valuations are only known to each player privately (rather

than being common knowledge), it still remains a weakly dominant strategy to bid truthfully. We’ll come

back to this last point later in the course. �

3.2. Rationalizability

Let’s start by generalizing the notion of a best response we used in Example 7.

Definition 16 (Best Response). A strategy σi P Σi is a best response to the strategy profile σ´i P Σ´i if

uipσi, σ´iq ě uipσ̃i, σ´iq for all σ̃i P Σi. A strategy σi P Σi is never a best response if there is no σ´i P Σ´i

for which σi is a best response.

The idea is that a strategy, σi, is a best response if there is some strategy profile of the opponents for

which σi does at least as well as any other strategy. Conversely, σi is never a best response if for every

strategy profile of the opponents, there is some strategy that does strictly better than σi. Let me note here

that we can also think of a best response in terms of optimal play against a conjecture about opponents’

strategies. In particular, even if one knows (believes) that an opponent is using a pure strategy, one may be

unsure which pure strategy, which is tantamount to the opponent mixing.
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Clearly, in any game, a strategy that is strictly dominated is never a best response. In 2-player games, a

strategy that is never a best response is strictly dominated. While this equivalence is true for all strategies

in 2-player games, the exercise below asks you to prove it for pure strategies only (needless to say, because

proving it for mixed strategies requires advanced tools).

Exercise 5. Prove that in 2-player games, a pure strategy is never a best response if and only if it is strictly

dominated.19

In games with more than 2 players, there may be strategies that are not strictly dominated that are

nonetheless never best responses.20 As before, it is a consequence of “rationality” that a player should not

play a strategy that is never a best response. That is, we can delete strategies that are never best responses.

You can guess what comes next: by iterating on the knowledge of rationality, we iteratively delete strategies

that are never best responses. The set of strategies for a player that survives this iterated deletion of never

best responses is called her set of rationalizable strategies (Bernheim, 1984; Pearce, 1984).21 A constructive

way to define this is as follows.

Definition 17 (Rationalizability).

1. σi P Σi is a 1-rationalizable strategy for player i if it is a best response to some strategy profile

σ´i P Σ´i.

2. σi P Σi is a k-rationalizable strategy pk ě 2q for player i if it is a best response to some strategy

profile σ´i P Σ´i such that each σj is in the convex hull of the set of pk ´ 1q-rationalizable strategies

for player j ‰ i.

3. σi P Σi is rationalizable for player i if it is k-rationalizable for all k ě 1.

Note a subtlety: at any round k ą 1, we consider the convex hull of each opponent’s pk´1q-rationalizable

strategies.22 The reason is that at any round, the set of “surviving strategies” for a player may not be convex

(e.g., two pure strategies may each be best responses to some opponent strategy, but a mixture of them may

not; recall Remark 6). Yet a player may be unsure which of her opponents’ surviving strategies will be used.

Remark 10. You should convince yourself that any strategy that does not survive iterated deletion of strictly

dominated strategies (Subsection 3.1.3) is not rationalizable. (This follows from the earlier comment that a

strictly dominated strategy is never a best response.) Thus, the set of rationalizable strategies is no larger

than the set of strategies that survives iterated deletion of strictly dominated strategies. In this sense,

19The “only if” part is a non-trivial problem, and I will give you a homework question that breaks down the steps.
But as a hint now, you can use Kakutani’s fixed point theorem (see Lemma 1 on page 20).

20This stems from the fact that we are assuming that each of player i’s opponents is choosing his strategy indepen-
dently. If we were to allow for correlated strategies, then the notions of being strictly dominated and never a best
response coincide regardless of the number of players. This points to why the notions coincide in 2-player games
even in our way of doing things — each player only has one opponent, hence trivially, the opponents are choosing
strategies independently.

21Note that the order of deleting strategies that are never best responses doesn’t matter, since we are deleting
strategies that are not even weakly optimal for some strategy profile of the opponents. This is analogous to the case
with deleting strictly dominated strategies.

22The convex hull of a set is the smallest convex set that contains that set. We interpret each element of the convex
hull of a set of strategies as itself a mixed strategy.
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rationalizability is (weakly) more restrictive than iterated deletion of strictly dominated strategies. It turns

out that in 2-player games, the two concepts coincide. In n-player games pn ą 2q, they don’t have to.23

One way to think of rationalizable strategies is through an infinite or circular chain of justification.

This is best illustrated through examples. Let us return to Example 6. Is A rationalizable? Yes, by the

following chain of justification: A is a best response to c, which is a best response to A. Here is another

chain of justification that works: A is a best response to a, which is a best response to B, which is a best

response to a. Is B rationalizable? Yes: B is a best response to a, which is a best response to B. Similarly,

a and c are rationalizable, but b is not (and you know it is not rationalizable because we already saw that

it is strictly dominated).

To see that how a chain of justification works when it involves a mixed strategy, consider a modification

of Example 6 so that the payoff cell for pB, cq is p0,´5q, everything else staying the same. Then, b is

rationalizable by the following chain: b is a best response to the mixed strategy p0.75qA ` p0.25qB,24 this

mixed strategy for Row is a best response to a, which is a best response to B, which is a best response to a.

Rationalizability is still a weak solution concept in the sense that the set of rationalizable strategies is

typically large in any complicated game. For example, even in something as simple as MP-A (Example 1),

every strategy is rationalizable. This is also true in the richer example of the 2nd price auction (Example 9).

Exercise 6. Prove that every strategy is rationalizable in the 2nd price auction.25

I conclude this section by emphasizing that rationalizability is as far as we can go (in terms of refining

our predictions for the outcome of a game) by using only common knowledge of rationality and the structure

of the game. A little more precisely: common knowledge of rationality and the structure of the game imply

that players will play rationalizable strategies; conversely, any profile of rationalizable strategies is consistent

with common knowledge of rationality and the structure of the game.

3.3. Nash Equilibrium

Now we turn to the most well-known solution concept in game theory. We’ll first discuss pure strategy Nash

equilibrium (PSNE), and then later extend to mixed strategies.

3.3.1. Pure Strategy Nash Equilibrium

Definition 18 (PSNE). A strategy profile s “ ps1, . . . , sIq P S is a pure strategy Nash equilibrium if for all

i and s̃i P Si, uipsi, s´iq ě uips̃i, s´iq.

In a Nash equilibrium, each player’s strategy must be a best response to those strategies of his opponents

that are components of the equilibrium. Note that if s is a pure strategy Nash equilibrium, then it holds that

for all i and σi P Σi, uipsi, s´iq ě uipσi, s´iq. In other words, si is a best response to s´i if no pure strategy

for i is strictly better against s´i.

23Again, this is because we are not allowing for correlation in strategies across players. If we did, the concepts
would coincide in general. See fn. 20, and Osborne and Rubinstein (1994, Sections 4.1 and 4.2) for more details.

24Given that Row is playing p0.75qA ` p0.25qB, Column gets expected payoff of 6 by playing either a or b, and 5.5
from playing c.

25The result does not directly follow from the fact that no strategy is strictly dominated, since the equivalence
between iterated deletion of strictly dominated strategies and rationalizability is only for 2-player games.
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Remark 11 (Nash equilibrium). There are various conceptual points to make about Nash equilibrium:

• Unlike with our earlier solution concepts (dominance and rationalizability), Nash equilibrium applies

to a profile of strategies rather than any individual’s strategy. When people say “Nash equilibrium

strategy”, what they mean is “a strategy that is part of a Nash equilibrium profile.”

• The term equilibrium is used because it connotes that if a player knew that his opponents were playing

the prescribed strategies, then she is playing optimally by following her prescribed strategy. In a sense,

this is like a “rational expectations” equilibrium, in that in a Nash equilibrium, a player’s beliefs about

what his opponents will do get confirmed (where the beliefs are precisely the opponents’ prescribed

strategies).

• Rationalizability only requires a player play optimally with respect to some “reasonable” conjecture

about the opponents’ play, where “reasonable” means that the conjectured play of the rivals can also

be justified in this way. On the other hand, Nash requires that a player play optimally with respect to

what his opponents are actually playing. That is to say, the conjecture she holds about her opponents’

play is correct.

• The above point makes clear that Nash equilibrium is not simply a consequence of (common knowledge

of) rationality and the structure of the game. Clearly, each player’s strategy in a Nash equilibrium

profile is rationalizable, but lots of rationalizable profiles are not Nash equilibria.

Let’s look at some examples of how this works. In MP-B, the two PSNE are pH,THq and pT, THq.

MP-A has no PSNE (Why?). In Example 8, there are also two PSNE: pC, aq and pC, bq. Similarly, in

MP-N (Example 3), there are two Nash equilibria: pH,Hq and pT, T q. This last example really emphasizes

the assumption of correctly conjecturing what your opponent is doing — even though it seems impossible to

say which of these two Nash equilibria is “more reasonable”, any one is an equilibrium only if each player

can correctly forecast that his opponent is playing in the prescribed way.

Exercise 7. Verify that in the Linear Cournot game (Example 7) and the 2nd price auction (Example 9),

the solutions found via iterated dominance are pure strategy Nash equilibria. Prove that in the Linear

Cournot game, there is a unique PSNE, whereas there are multiple PSNE in the 2nd price auction. (Why

the difference?)

Remark 12. Every finite game of perfect information has a pure strategy Nash equilibrium.26 This holds

true for “dynamic” games as well, so we’ll prove it generally when we get there.

We next want to give some sufficient (but certainly not necessary) conditions for the existence of a

PSNE, and prove it. To do so, we need the powerful fixed point theorem of Kakutani.

Lemma 1 (Kakutani’s FPT). Suppose that X Ă R
N is a non-empty, compact, convex set, and that f :

X Ñ X is a non-empty and convex-valued correspondence with a closed graph.27 Then there exists x˚ P X

such that x˚ P fpx˚q.

26Recall that perfect information means all information sets are singletons.
27The correspondence f is convex-valued if fpxq is a convex set for all x P X; it has a closed graph if for all

sequences xn Ñ x and yn Ñ y such that yn P fpxnq for all n, y P fpxq. (Technical remark: in this context where
X is a compact subset of RN , f having a closed graph is equivalent to it being upper hemi-continuous (uhc); but in
more general settings, the closed graph property is necessary but not sufficient for uhc.)
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(Question: why do we need the convex-valued assumption?)

It is also useful to define the idea of a best response correspondence (first recall the idea of a strategy

being a best response, see Definition 16).

Definition 19 (BR Correspondence). The best response correspondence for player i, bi : S´i Ñ Si, is

defined by bips´iq “ tsi P Si|uipsi, s´iq ě uips̃i, s´iq @s̃i P Siu.

By this definition, it follows that s P S is a pure strategy Nash equilibrium if and only if si P bips´iq for

all i. We apply this observation in proving the following existence theorem.

Theorem 3 (Existence of PSNE). Suppose each Si Ă R
N is compact and convex (and non-empty); and

each ui : S Ñ R is continuous in s and quasi-concave in si.
28 Then there exists a PSNE.

Proof. Define the correspondence b : S Ñ S by bpsq “ b1ps´1q ˆ ¨ ¨ ¨ ˆ bIps´Iq. A Nash equilibrium is a

profile s˚ such that s˚ P bps˚q. Clearly, b is a correspondence from the non-empty, convex, and compact set

S to itself.

Step 1: For all s, bpsq is non-empty. This follows from the fact that each bi is the set of maximizers

of a continuous function ui over a compact set Si, which is non-empty by the Weierstrass Theorem of the

Maximum.

Step 2: Each bi (and hence b) is convex-valued. Pick any s´i, and suppose that si, s̃i P bips´iq. By

definition of bi, there is some ū such that ū “ uipsi, s´iq “ uips̃i, s´iq. Applying quasi-concavity of ui,

uipλsi ` p1 ´ λqs̃i, s´iq ě ū for all λ P r0, 1s. But this implies that λsi ` p1 ´ λqs̃i P bips´iq, proving the

convexity of bips´iq.

Step 3: Each bi (and hence b) has a closed graph. Suppose sni Ñ si and s
n
´i Ñ sn´i with s

n
i P bips

n
´iq for

all n. Then for all n, uips
n
i , s

n
´iq ě uips̃i, s

n
´iq for all s̃i P Si. Continuity of ui implies that for all s̃i P Si,

uipsi, s´iq ě uips̃i, s´iq; hence si P bips´iq.

Thus, all the requirements for Kakutani’s FPT are satisfied. There exists a fixed point, s˚ P bps˚q,

which is a PSNE. �

Remark 13. Note carefully that in Step 2 above, quasi-concavity a player’s utility function plays a key role.

It would be wrong (though tempting!) to say that uipλsi ` p1 ´ λqs̃i, s´iq “ ū by vNM. This is wrong

because λsi ` p1 ´ λqs̃i is merely a point in the space Si (by convexity of Si), and should not be interpreted

as a mixed strategy that places λ probability of si and p1 ´ λq on s̃i. Right now you should think of

λsi ` p1´λqs̃i as just another pure strategy, which happens to be a convex combination of si of s̃i. Indeed,

this is the only point in the proof where quasi-concavity of ui is used; come back and think about this point

again after you see Theorem 4.

Remark 14. A finite strategy profile space, S, cannot be convex (why?), so this existence Theorem is only

useful for infinite games.

3.3.2. Mixed Strategy Nash Equilibrium

The previous remark motivates the introduction of mixed strategies. It is straightforward to extend our

definition of Nash equilibrium to this case, and this subsumes the earlier definition of PSNE.

28Recall that a function g : RN Ñ R is quasi-concave if, for all c P R and x, y P R
N such that gpxq ě c and gpyq ě c,

gpλx ` p1 ´ λqyq ě c @λ P r0, 1s.
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Definition 20 (Nash Equilibrium). A strategy profile σ “ pσ1, . . . , σIq P Σ is a Nash equilibrium if for all i

and σ̃i P Σi, uipσi, σ´iq ě uipσ̃i, σ´iq.

To see why considering mixed strategies are important, observe that Matching Pennies version A

(Example 1) has no PSNE, but does have a mixed strategy Nash equilibrium (MSNE): each player ran-

domizes over H and T with equal probability. In fact, when player i behaves in this way, player j ‰ i is

exactly indifferent between playing H or T ! That is, in the MSNE, each player who is playing a mixed

strategy is indifferent amongst the set of pure strategies he is mixing over. This remarkable property is very

general and is essential in helping us solve for MSNE in many situations. Before tackling that, let’s first

give an existence Theorem for Nash equilibria in finite games using mixed strategies.

Theorem 4 (Existence of NE). Every finite game has a Nash equilibrium (possibly in mixed strategies).

Proof. For each i, given the finite space of pure strategies, Si, the space of mixed strategies, Σi, is a (non-

empty) compact and convex subset of R|Si|. The utility functions ui : Σ Ñ R defined by

ui pσ1, . . . , σIq “
ÿ

sPS

rσ1 ps1q σ2 ps2q ¨ ¨ ¨σI psIqs ui psq

are continuous in σ and quasi-concave in σi (by linearity). Thus, Theorem 3 implies that there is a pure

strategy Nash equilibrium of the infinite normal-form game xI, tΣiu, tuiuy; this profile is a (possibly degen-

erate) mixed strategy Nash equilibrium of the original finite game. �

Remark 15. The critical need to allow for mixed strategies is that in finite games, the pure strategy space

is not convex, but allowing players to mix over their pure strategies “convexifies” the space.

This does not mean that mixed strategies are not important in infinite games when the pure strategy

space is convex. I illustrate through the following examples showing that a convex infinite game which does

not have a pure strategy Nash equilibrium can nonetheless have a mixed strategy equilibrium. The setting

is the price-competition analogue to the Linear Cournot we considered earlier (in Example 7).

Example 10 (Symmetric Linear Bertrand). Two firms compete in Bertrand price competition, each with

identical linear costs given by cpqiq “ cqi pc ě 0q; market demand is given by a smooth decreasing function,

Qppq ą 0. We will show that the unique PSNE is s1 “ s2 “ c. It is straightforward to verify that this is a

PSNE, so let’s argue that there cannot be any other PSNE. Wlog, suppose there is a PSNE with s1 ě s2,

with at least one si ‰ c. There are three exhaustive cases to consider.

1. s2 ą c. Then firm 1 can do better by playing s̃1 “ s2 ´ ε (for some ε ą 0), by the continuity of Qppq.

2. s2 “ c. It must be that s1 ą c, but now firm 2 can do better by playing s̃2 “ s1 (it makes positive

rather than 0 profit).

3. s2 ă c. Then firm 2 is making losses, and can do better by playing s̃2 “ c. �

Example 11 (Asymmetric Linear Bertrand). Continue with the setup of Example 10, but now suppose that

costs are asymmetric, wlog 0 ď c1 ă c2. Assume that there exists δ ą 0 such that Qppqrp ´ c1s is strictly

increasing on p P rc1, c2 ` δs.29 You are asked to prove as an exercise that there is no PSNE in this game.

29The economics of this assumption is that it guarantees that the price firm 1 would charge if it were a monopolist
in the market is strictly larger than c2.

22



However, we can construct a MSNE as follows: firm 1 plays s1 “ c2, and firm 2 plays a mixed strategy, σ2

which randomizes uniformly over all pure strategies in rc2, c2 ` εs, for some ε ą 0. Denote the cdf of firm

2’s price choice by F pp; εq, with density fpp; εq “ 1{ε. Clearly, firm 2 is playing a best response to s1, since

it earns 0 profits in equilibrium and cannot do any better. To show that firm 1 is playing optimally, we only

need to show that it does not prefer to deviate to any s̃1 P pc2, c2 `εs, since clearly any s̃1 ă c2 or s̃1 ą c2 `ε

does strictly worse than s1 “ c2. Consider firm 1’s profit function by picking any price in rc2, c2 ` εs, given

firm 2’s strategy:

πppq “ p1 ´ F pp; εqqpp´ c1qQppq.

Differentiating gives

π1ppq “ p1 ´ F pp; εqqrpp ´ c1qQ1ppq `Qppqs ´ fpp; εqpp´ c1qQppq.

By picking ε ą 0 small enough we can make minpPrc2,c2`εs fpp; εq arbitrarily large; it follows that for small

enough ε ą 0, π1ppq ă 0 for all p P rc2, c2 ` εs, which implies s1 “ c2 is optimal for firm 1. �

Exercise 8. Prove that there is no PSNE in Example 11. Why does Theorem 3 not apply to this infinite

game?

This construction of a mixed strategy equilibrium to the asymmetric Bertrand game is due to Blume

(2003). It obviates having to resort to “tricks” such as discretizing the price space, resolving price ties in

favor of the lower cost firm, etc. — such assumptions would be needed to get existence in pure strategies.

*Infinite Pure Strategy Spaces Let us record a mixed-strategy existence theorem for infinite games.

Theorem 5. Suppose each Si is a compact subset of a metric space and each ui : S Ñ R is continuous.

Then the game has a (possibly mixed) Nash equilibrium.

The theorem relies on the following generalization of the Kakutani FPT to infinite-dimensional spaces;

consult Aliprantis and Border (2006) for more on these definitions and results.

Lemma 2 (Fan-Glicksberg FPT). Suppose that X is a non-empty, compact, convex subset of a locally convex

Hausdorff (topological vector) space, and that f : X Ñ X is a non-empty and convex-valued correspondence

with a closed graph.30 Then there exists x˚ P X such that x˚ P fpx˚q.

A proof of Theorem 5 proceeds similarly to that of Theorem 4 (and hence uses arguments similar to

the proof of Theorem 3), but invoking the Fan-Glicksberg FPT instead of Kakutani. One invokes two

facts about a non-empty compact metric space X : (i) the space of (Borel) probability measures on X is a

non-empty, compact, and convex subset of a locally convex Hausdorff space;31 and (ii) if g : X Ñ R is a

continuous function then
ş

gdµ is continuous in the probability measure µ. Point (i) implies that the set

of mixed strategies (which, it bears emphasis, is infinite dimensional here) satisfies the domain hypotheses

30A topological vector space X is Hausdorff if for any x P X and y P Xztxu, there are neighborhoods Nx of x
and Ny of y such that Nx X Ny “ H. The space is locally convex if every neighborhood of zero includes a convex
neighborhood of zero. In particular, every normed vector space is a locally convex Hausdorff space.

31Actually, the set of these probability measures can be normed so that it is a (non-empty, compact, and convex)
normed vector space.
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of Fan-Glicksberg, while point (ii) gives continuity of payoffs in mixed strategies, which, along with the

linearity of expected utility, implies that the best response correspondences satisfy the self-map’s hypotheses

in Fan-Glicksberg.

To sum up, if we allow for mixed strategies, we can always find Nash equilibria in finite games. In infinite

games, Nash equilibria need not exist (construct an example!), but Theorem 3 and Theorem 5 gives sufficient

conditions to assure existence. Example 11 shows that these conditions are certainly not necessary.32

3.3.3. Finding Mixed Strategy Equilibria

As noted earlier, the MSNE we computed for MP-A had the property that each player is indifferent, in

equilibrium, between the pure strategies that he is randomizing over. The next result show that this is a

general property.

Proposition 1 (MSNE Indifference Condition). Fix a strategy profile, σ˚. Define S˚
i ” tsi P Si|σ

˚
i psiq ą 0u

as the set of pure strategies that player i plays with positive probability according to σ˚. Then, σ˚ is a Nash

equilibrium if and only if

1. uipsi, σ
˚
´iq “ uips

1
i, σ

˚
´iq for all si, s

1
i P S˚

i ;

2. uipsi, σ
˚
´iq ě uips

1
i, σ

˚
´iq for all si P S˚

i and s1
i P Si.

Proof. (Necessity.) If either condition fails, there are strategies s1
i P Si and si P S˚

i such that uips
1
i, σ

˚
´iq ą

uipsi, σ
˚
´iq. Construct the mixed strategy σi by setting σips̃iq “ σ˚

i ps̃iq for all s̃i R ts1
i, siu and σips

1
iq “

σ˚
i psiq`σ˚

i ps1
iq. Clearly, uipσi, σ

˚
´iq ą uipσ

˚
i , σ

˚
´iq; hence σ

˚
i is not a best response to σ˚

´i, and consequently,

σ˚ is not a Nash equilibrium.

(Sufficiency.) If both conditions hold, there is no strategy for player i that does strictly better against

σ˚
´i than σ

˚
i ; hence σ

˚ is Nash. �

Corollary 1. No strictly dominated strategy can be played with positive probability in a Nash equilibrium.

Proof. Let σ˚ be a Nash equilibrium in which σ˚
i psiq ą 0 for some si that is strictly dominated. By

strict domination of si, there exists a s1
i such that uipsi, σ

˚
´iq ă uips

1
i, σ

˚
´iq. (Why, even though the strict

domination need not be by a pure strategy?) This contradicts condition (2) of Proposition 1. �

The necessity part of Proposition 1 says that in any Nash equilibrium, a player must be indifferent

over the pure strategies she is randomizing over.33 This places a restriction on the mixed strategy of her

opponents. That is, in general, player i will not be indifferent between playing si and s
1
ip‰ siq, unless σ´i

is carefully chosen. Let’s see how this operates.

Example 12 (Mixed Strategies in MP-A). Consider MP-A from Example 1. We can solve for all mixed

strategy equilibria as follows. At least one player must be non-degenerately randomizing over H and T .

32 See, for example, Athey (2001), Jackson, Simon, Swinkels, and Zame (2002), and Reny (1999) for even more on
existence theorems.

33 In fact, the logic establishes something stronger: if σi is a best response to some σ´i (not necessarily part of a
Nash equilibrium), then each si P supportrσis is a best response to σ´i.
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Wlog, suppose it is player 1 (Anne). For her to be indifferent between the two actions means that σ2 (Bob’s

mixed strategy) must be such that u1pH,σ2q “ u1pT, σ2q. Observe that

u1pH,σ2q “ 2σ2pHq,

u1pT, σ2q “ 2σ2pT q.

Indifference thus requires that σ2pHq “ σ2pT q “ 1
2
. That is, Bob must randomize uniformly over his

pure strategies for Anne to be willing to mix in equilibrium. By a symmetric argument, Anne must also be

mixing uniformly (for Bob to be willing to mix at all, and in particular uniformly). Hence, the unique Nash

equilibrium in MP-A is both players randomizing equally over H and T . �

The next example applies the same idea to an important economic application, also showing that it

works for infinite action spaces.34

Example 13 (Common Value All-Pay Auction). There are I ą 1 bidders for an object, each of whom

values the object at v ą 0. They all simultaneously submit bids, si ě 0. The object goes to the highest

bidder (randomly chosen amongst highest-bidders if there is a tie); everyone pays their bid to the auctioneer

regardless of whether they win or not. Hence, payoffs for bidder i are v ´ si is he wins, and ´si if he does

not.

You can (and should!) verify that there are no PSNE in this game. To find a MSNE, we look for a

symmetric MSNE, i.e. one where all players use the same mixed strategy. Let F pxq denote the cdf over

bids of a single player that is induced by the strategy; assume it has no atoms. For a player to be indifferent

over all the bids that he is mixing over, it must be that for all x P SupppF q,

rF pxqsI´1v ´ x “ ū

for some constant utility level ū. Rearranging gives

F pxq “

ˆ

ū` x

v

˙
1

I´1

.

We know that F pvq “ 1 (i.e., a player never bids more than his value, v) because any bid strictly above v is

strictly dominated. Plugging in F pvq “ 1 above yields ū “ 0, and hence we get the solution

F pxq “
´x

v

¯
1

I´1

.

To complete the argument, we must show that no x R SupppF q yields a strictly higher utility than ū “ 0,

but this is immediate since supppF q “ r0, vs and bidding any x ą v yields an expected payoff of v ´ x ă 0

(because it wins for sure).

Notice that in the equilibrium, each player has an expected payoff of ū “ 0 — competition amongst the

buyers has left them with 0 surplus from the auction. You can check that the expected payment of any

bidder is v{I, so that the auctioneer’s revenue in expectation is v. �

34Actually, if you were paying attention, the indifference property already came up in an infinite action space: the
asymmetric Bertrand game of Example 11.
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Remark 16. All-pay auctions are useful models in various contexts. For example, in Industrial Organization

and related fields, one can think of R&D as being an all-pay auction. That is, there are many firms competing

against each other to develop a new product. Each firm independently and simultaneously decides how much

money to sink into R&D. The “winner” is the one who invests the most money, but all players bear the

R&D costs regardless of whether they win or not. All-pay auctions are also widely used in political economy

to model lobbying or political campaigns.

3.3.4. Interpreting Mixed Strategy Equilibria

When we introduced mixed strategies in Subsection 2.2.3, I suggested that the easiest way to think about

them was as though players were rolling dice to determine which pure strategy to use. While this is

pedagogically true, some people find it a little uncomfortable to think that agents are actually choosing

their (pure) strategies though an act of explicit randomization. This may be particularly discomforting

given that we have already seen that in any Nash equilibrium, each player is indifferent over the set of pure

strategies that he is mixing over! So why would a player then randomize, instead of just picking one with

certainty? Of course, if he does pick one with certainty, this would in general destroy the indifference of the

other players over the strategies they are randomizing over, and break the equilibrium altogether.

One response is to say that the player is indifferent, hence is happy to randomize. But this won’t sit

well with you if you don’t like the idea that players randomize in practice. Fortunately, it turns out that we

do not need players to be actually randomizing in a MSNE. All that matters is that as far as other players

are concerned, player i’s choice seem like a randomized choice. That is, what matters is the uncertainty

that other players have about i’s strategy. To give an example, consider an NBA basketball game where

team A has possession, is down by 2 points, and there is only time for one more play. Team A is in a

time-out, and has to decide whether to go for a 2-pointer to tie the game, or a 3-pointer to win.35 Team B

is obviously deciding whether to focus its defense against a 2-point shot or a 3-point shot. This is basically

a generalized game of Matching Pennies, version A: team A wants to mismatch; team B wants to match.

It may be that Team A’s coach has a deterministic way of deciding whether to go for the win or the tie —

for example, he uses his star shooter’s morning practice 3-point accuracy as the critical factor. So long as

Team B did not observe the shooter’s morning practice accuracy, it is a randomized choice as far as they

are concerned. Hence, B’s belief about A’s play is a non-degenerate one, even though A may actually be

playing a pure strategy based on on some private information not available to B. That is, when we talk

about A’s mixed strategy, we are really talking about B’s beliefs about A’s strategy.

This way of justifying mixed strategy equilibria is known as purification (Harsanyi, 1973). We’ll come

back to it somewhat more precisely a bit later when we have studied incomplete information.

3.4. Normal Form Refinements of Nash Equilibrium

Many games have lots of Nash equilibria, and we’ve seen examples already. It’s natural therefore to ask

whether there are systematic ways in which we can refine our predictions within the set of Nash equilibria.

The idea we pursue here is related to weak dominance.

35 Incidentally, NBA wisdom has it that the “road” team should go (more often) for a win, whereas a “home” team
should go (more often) for the tie.
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Example 14 (Voting Game). Suppose there are an odd number, I ą 2, members of a committee, each of

whom must simultaneously vote for one of two alternatives: Q (for status quo) or A (for alternative). The

result of the vote is determined by majority rule. Every member strictly prefers the alternative passing over

the status quo.

There are many Nash equilibria in this game. Probably the most implausible is this: every member

plays si “ Q; and this results in the status quo remaining. There is a more natural PSNE: every member

plays si “ A; and this results in the alternative passing. �

Why is it Nash for everyone to vote Q in this game? Precisely because if all other players do so, then no

individual player’s vote can change the outcome. That is, no player is pivotal. However, it is reasonable to

think that a player would vote conditioning on the event that he is pivotal. In such an event, he should vote

A. One way to say this formally is that si “ Q is weakly dominated by si “ A (recall Definition 15). We

suggested earlier that players should not play weakly dominated strategies if they believe that there is the

slightest possibility that opponents will play a strategy profile for which the weakly dominated strategy is

not a best response. One way to justify this belief is that a player assumes that even though his opponents

might intend to play their Nash equilibrium strategies, they might make a mistake in executing them. This

motivates the notion of trembling-hand perfect Nash equilibrium: Nash equilibria that are robust to a small

possibility that players may make mistakes.

Given pure strategy spaces, tSiui, and a function ε :
Ť

Si Ñ p0, 1q, define

∆εpSiq “ tσi P ∆pSiq | σipsiq ě εpsiq for all si P Siu

as the space of ε-constrained mixed strategies for player i. This is the set of mixed strategies for i that place

at least εpsiq ą 0 probability on each of pure strategy si. If you recall our initial discussion of randomization,

every such strategy is a fully mixed strategy (see Definition 9). The idea here is that the non-zero probabilities

on each pure strategy capture the notion of “unavoidable mistakes”. We can now define an ε-constrained

equilibrium as a Nash equilibrium in which players play ε-constrained mixed strategies.

Definition 21. An ε-constrained equilibrium of a normal form game, ΓN ” tI, tSiu
I
i“1, tuiu

I
i“1u, is a pure

strategy Nash equilibrium of the perturbed game, Γε ” tI, t∆εpSiquIi“1, tuiu
I
i“1u.

Note that in the original game, ui : S Ñ R (with mixed strategy profiles evaluated according to expected

utility), while in the perturbed game we have extended to ui : ∆εpS1q ˆ ¨ ¨ ¨ ˆ ∆εpSIq Ñ R using expected

utility (with mixed strategy profiles—which are now compound lotteries over the original pure strategy

profiles—again evaluated using expected utility).

A trembling-hand perfect equilibrium is any limit of a sequence of ε-constrained equilibria.

Definition 22 (Trembling-Hand Perfect Equilibrium). A Nash equilibrium, σ˚, is a trembling-hand perfect

equilibrium (THPE) if there is a sequence, tεku8
k“1, with each εk :

Ť

Si Ñ p0, 1q, such that εkpsiq Ñ 0 for

all si as k Ñ 8, and an associated sequence of εk-constrained equilibria, tσku8
k“1, such that σk Ñ σ˚ as

k Ñ 8.

Selten (1975) proved the following existence theorem, paralleling that of Nash.

Theorem 6 (THPE Existence). Every finite game has a THPE.
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Proof Sketch. Given a finite game, ΓN , for any ε :
Ť

Si Ñ p0, 1q, we can define the perturbed game Γε as

above. It is straightforward to verify that Γε satisfies all the assumptions of Theorem 3 when each εpsiq is

small enough,36 and hence has a PSNE. Consider a sequence of perturbed games as εpsiq Ñ 0 for all si,

and any sequence of equilibria. By the compactness of ∆pSq, the equilibrium sequence has a convergent

subsequence. Since ui : ∆pSq Ñ R is continuous, this subsequence converges to a Nash equilibrium of the

original game. �

Notice that the definition of THPE only requires that we be able to find some sequence of ε-constrained

equilibria that converges to a THPE. A stronger requirement would be that every sequence of ε-constrained

equilibria converge to it. Unfortunately, this requirement would be too strong in the sense that many (finite)

games do not have equilibria that satisfy this property.37

The definition of THPE given above using ε-constrained equilibria is conceptually elegant because it

nicely captures the idea of mistakes that we started out with. However, it can be difficult to work with in

practice. A useful result is the following.

Proposition 2. A Nash equilibrium, σ˚, is a THPE if and only if there exists a sequence of fully mixed

strategy profiles, σk Ñ σ˚, such that for all i and k, σ˚
i is a best response to σk

´i.

Proof. (Only If.) Let σ˚ be a THPE. Take the sequence of εk-constrained equilibria, σk Ñ σ˚, from the

definition of THPE. We claim that for all i and si, if σ
˚
i psiq ą 0 then si is a best response to σk

´i for all k large

enough (and hence σ˚
i is a best response to σk

i for all k large enough). Suppose not. Then there is some player

i and a sub-sequence of tσku, call it tσnu, such that for all n, there is sni with uips
n
i , σ

n
´iq ą uipsi, σ

n
´iq. But

then, as σn is an εn-constrained equilibrium, it must hold that σn
i psiq Ñ 0 ă σ˚

i psiq, contradicting σ
n
i Ñ σ˚

i .

(If.) Fix σk Ñ σ˚ such that each σk
i is fully mixed and each σ˚

i is a best response to each σk
´i. Define

εkpsiq ” σk
i psiq if σ˚

i psiq “ 0 and εkpsiq ” 1{k if σ˚
i psiq ą 0. Note that εkpsiq Ñ 0 for all si as k Ñ 8. We

claim that σk is an εk-constrained equilibrium for all large enough k. This follows from the observation that

by construction, if σk
i psiq ą εkpsiq then σipsiq ą 0, which, using the hypothesis that σi is a best response

to σk
´i, implies that si is a best response to σk

´i (recall Proposition 1). In words: each σk
i only puts greater

than minimum probability (minimum according to εk) on pure strategies that are best responses to σk
´i, and

hence σk
i is a best response to σk

´i in the εk-perturbed game. �

The Proposition says that in a THPE, σ˚, each σ˚
i is a best response to not only σ˚

´i (as required

by Nash), but moreover, to each element of some sequence of fully mixed strategy profiles, σk
´i Ñ σ˚

´i.

Proposition 2 immediately implies:

Corollary 2. If σ˚ is a Nash equilibrium in which σ˚
i is fully mixed for each player i, then σ˚ is a THPE.

Furthermore, we can use the Proposition to show that no weakly dominated strategy can be part of a

THPE:

36Without the qualification we could have ∆εpSiq “ H.
37This is tied to the fact that there are games with multiple THPE, which cannot be justified by the same sequence

of ε-constrained equilibria. One could alternatively consider a set-valued concept of equilibria, where rather than
referring to a particular strategy profile as an equilibrium, one instead targets a collection of strategy profiles that
jointly satisfy certain desiderata. For instance, can we find a (non-trivial) minimal collection of Nash equilibria with
the property that every sequence of ε-constrained equilibria converges to some Nash equilibrium in the set? The set
may not be a singleton, but perhaps it is still typically “small”. For a solution concept along these lines, see the
notion of stability in Kohlberg and Mertens (1986).
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Proposition 3 (THPE and Weak Dominance). If σ˚ is a THPE, then for all i: (1) σ˚
i is not weakly

dominated; (2) for all si P Si such that σ˚
i psiq ą 0, si is not weakly dominated.38

Proof. The first claim is an immediate implication of Proposition 2. For the second claim, take a profile

σ˚ such that for some i and si P Si that is weakly dominated, σ˚
i psiq ą 0. Then, by the definition

of weak dominance, there exists s1
´i P S´i and σi P Σi such that uipσi, s

1
´iq ą uipsi, s

1
´iq, and for all

s´i P S´i, uipσi, s´iq ě uipsi, s´iq. Now consider a strategy σ̃i constructed as follows: for any s̃i P Siztsiu,

σ̃ips̃iq “ σ˚
i ps̃iq ` σ˚

i psiqσips̃iq; and σ̃i psiq “ σ˚
i psiqσipsiq. (Exercise: verify that σ̃i defines a valid strategy.)

It follows that for any σ´i in which σ´ips
1
´iq ą 0, uipσ̃i, σ´iq ą uipσ

˚
i , σ´iq. Hence, σ˚

i is not a best response

to any fully mixed strategy profile, σ´i. By Proposition 2, σ˚ is not a THPE. �

Combined with the existence result for THPE, the fact that THPE rules out weakly dominated strategies

makes it an appealing refinement of Nash equilibrium. You might wonder if we can say more: is any Nash

equilibrium in which players use strategies that are not weakly dominated a THPE? Unfortunately, this is

not true in general.39

Example 15. Consider the following three player game:

L R

T 1,1,1 1,0,1

B 1,1,1 0,0,1

L R

T 1,1,0 0,0,0

B 0,1,0 1,0,0

l r

You can verify that pB,L, lq is a Nash equilibrium where no strategy is weakly dominated. However,

it is not a THPE, because for any fully mixed strategies for players 2 and 3 that assign sufficiently low

probabilities to R and r respectively, player 1 strictly prefers to play T rather than B due to pL, rq being an

order of magnitude more likely to occur than pR, rq. As an exercise, check that pT, L, lq is the only THPE

in this game (hint: think first about the set of Nash equilibria). �

The result is true in the case of two-player games, however.

Proposition 4. In a two-player game, if σ˚ is a Nash equilibrium where both σ˚
1 and σ˚

2 are not weakly

dominated, then σ˚ is a THPE.

Proof Sketch. Assume that σ˚ is a Nash equilibrium where both σ˚
1 and σ˚

2 are not weakly dominated. It

can be shown that that for each player, i, there exists some fully mixed strategy of the opponent, σj (j ‰ i),

such that σ˚
i is a best response to σj .

40 For any positive integer n, define for each player the mixed strategy

σn
i “ 1

n
σi `

`

1 ´ 1
n

˘

σ˚
i . The sequence of fully mixed strategies profiles pσn

1 , σ
n
2 q converges to σ˚, and σ˚

i is

a best response to each σn
j . By Proposition 2, σ˚ is a THPE. �

38 Strictly speaking, it is unnecessary to state the two parts separately, because the first implies the second. You
can prove this along the lines of the proof below.

39As the example below and the logic of the proof of the following Proposition demonstrate, this is due to the
independence we assume in the players’ randomization when playing mixed strategies. If we allowed for correlation,
it would indeed be true.

40 See Osborne and Rubinstein (1994, p. 64, Exercise 64.2).
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(Do you see where in the above proof we used the assumption of two players? Hint: think about where

it fails to apply to Example 15.)

Finally, we show that THPE is consistent with a particular class of reasonable Nash equilibria.

Definition 23 (Strict Nash Equilibrium). A strategy profile, s˚, is a strict Nash equilibrium if for all i and

si ‰ s˚
i , uips

˚
i , s

˚
´iq ą uipsi, s

˚
i q.

Remark 17. There is no loss of generality in only considering PSNE in the definition of strict Nash equilib-

rium, since in any MSNE, a player is indifferent over the pure strategies he is mixing over.

In a strict Nash equilibrium, each player has a unique best response to his opponents’ strategy profile.

This implies that every strict Nash equilibrium is trembling-hand perfect.

Proposition 5 (Strict NE ùñ THPE). Every strict Nash equilibrium is a THPE.

Proof. Exercise. �

Remark 18. The converse is certainly not true: not every THPE is a strict Nash equilibrium. (We’ve already

seen multiple counter-examples.)

Sometimes a Nash equilibrium that is not strict is called a weak Nash equilibrium, but this is not very

common terminology. Keep also in mind that there is a distinct concept from strict Nash called strong Nash

equilibrium, which has to do with (lack of) “coalitional deviations”—outside our scope.

3.5. Correlated Equilibrium

As a final section on static games of complete information, we are going to briefly discuss the concept of

correlated equilibrium. At a few different points earlier, I mentioned that requiring players to randomize

independently when playing mixed strategies can be restrictive. Relaxing this is important for a fuller

treatment for at least two reasons: (1) certain results depend on it (such as the equivalence of iterative deletion

of strictly dominated strategies and rationalizability with more than 2 players); (2) it can be practically

relevant in thinking about behavior in some strategic situations. To illustrate the latter point, we start with

an example.

Example 16 (Battle of the Sexes). Spouses, Anne and Bob, must decide whether to go to the concert or

the baseball game. Both want to coordinate with the other, but Anne prefers to coordinate on the concert

whereas Bob prefers baseball. In normal form,

b c

B 2,6 0,0

C 0,0 6,2

You can verify that there are exactly three Nash equilibria to this game: pB, bq, pC, cq and a MSNE

p0.25B ` 0.75C, 0.75b ` 0.25cq. The corresponding (expected) payoffs are: p2, 6q, p6, 2q, and p1.5, 1.5q.

However, suppose that they can jointly observe a coin toss (or whether it is raining or sunny outside, or any

other publicly observable random variable) before acting. Then they can attain a new payoff outcome, one

that is more equitable than either PSNE, and Pareto-dominates the MSNE. For example, they toss a fair
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coin, and if the outcome is Heads, they both play B; if the outcome is Tails, they both play C.41 Clearly,

given that the opponent is following the prescribed strategy, it is optimal for each player to follow it. In

expectation, this achieves a convex combination of two PSNE payoffs, giving the payoff profile p4, 4q. More

generally, by using an appropriately weighted randomization device, any convex combination of the the NE

payoffs (or action-profiles) can be achieved. �

The next example demonstrates that by using correlated but private signals, players may be able to do

even better than by public randomization.

Example 17. Consider a modification of the Battles of the Sexes, as follows:42

b c

B 5,1 0,0

C 4,4 1,5

Now, the three Nash equilibria are pB, bq, pC, cq and p0.5B ` 0.5C, 0.5b ` 0.5cq, with corresponding

payoffs p5, 1q, p1, 5q, and p2.5, 2.5q. By using public randomization as before, any convex combination of

these can be attained. But the players can do even more by using a device that sends each player correlated

but privately observed signals. For example, suppose they hire an independent third party who tosses a

three-sided fair die and acts as follows: she reveals whether the roll is 1 or in the set t2, 3u to Anne; but to

Bob, she reveals whether the roll is 3 or in the set t1, 2u. Consider a strategy for Anne where she plays

B if told 1, and C if told t2, 3u; a strategy for Bob where he plays c if told 3, and b if told t1, 2u. Let us

check that it is optimal for Anne to follow her strategy, given that Bob is following his: (i) when Anne is

told 1, she knows that Bob will play b (since he will be told t1, 2u), hence it is optimal for her to play B; (ii)

when Anne is told t2, 3u, she knows that with probability 0.5, Bob was told t1, 2u and will play b, and with

probability 0.5, Bob was told 3 and will play c, hence she is indifferent between her two actions. A similar

analysis shows that it is optimal for Bob to follow his strategy given that Anne is following hers. Hence,

the prescribed behavior is self-enforcing, and attains a payoff of
`

3 1
3
, 3 1

3

˘

, which is outside the convex hull

of the original Nash equilibrium payoffs. �

Generalizing from the examples, we now define a correlated equilibrium.

Definition 24 (Correlated Equilibrium). A probability distribution p on the product pure strategy space,

S “ S1 ˆ ¨ ¨ ¨ ˆ SI , is a correlated equilibrium if for all i and all si chosen with positive probability under p,

ÿ

s´iPS´i

pps´i|siquipsi, s´iq ě
ÿ

s´iPS´i

pps´i|siquips
1
i, s´iq @s1

i P Si.

The way to think of this definition of correlated equilibrium is that everyone knows ex-ante that a

“device” (or outside party) will choose the pure strategy profile s with probability ppsq, but each player only

learns his component of the profile that was selected, si. We have a correlated equilibrium if all players want

to follow their recommendation to play si, given that all other players are following their recommendations.

41 Indeed, your own personal experience in such situations may suggest that this is precisely how couples operate!
42Unintendedly, I wrote this as Anne (row player) preferring baseball whereas Bob (column player) prefers the

concert.
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Observe that the key difference with the definition of Nash equilibrium is that the distribution p may

have correlation between si and s´i, and accordingly the optimality conditions account for the conditional

probability of s´i given si. This suggests that the set of correlated equilibria generalizes the set of Nash

equilibria.

Proposition 6 (NE ùñ Correlated Equilibrium). Every Nash equilibrium is a correlated equilibrium.

Proof. Given a Nash equilibrium, σ, simply define ppsq “
śI

i“1 σipsiq. In this case, pps´i|siq “ pps´iq, and

the optimality conditions for correlated equilibrium reduce to that of Nash. �

Corollary 3. Every finite game has a correlated equilibrium.

Correlated equilibrium is a useful solution concept when thinking about pre-play communication (possi-

bly through a mediator) and other contexts. However, we will stick to Nash equilibrium for the rest of this

course.

3.6. Bayesian Nash Equilibrium and Incomplete Information

The assumption heretofore maintained that all players know each other’s preferences over terminal nodes

(or strategy profiles) is clearly a very restrictive one. In fact, it is reasonable to think that in many

games, one doesn’t really know what the opponents’ payoffs are. For example, in the Bertrand or Cournot

competition games, each firm may not know the other firm’s cost function or cost parameter in the linear

case. Alternatively, in the auction examples, players won’t generally know their opponents’ valuations for

the object. Moreover, one may not even know one’s own payoff from some strategy profiles, since the payoff

could depend upon something that is only to known to another player (Example 18 below illustrates).

Definition 25 (Incomplete Information Game). A game has (or is of) incomplete information when at least

one player does not know the payoff that some player receives from some strategy profile (or terminal node).

Dealing with incomplete information would seem to require consideration of a player’s beliefs about

other players’ preferences, her beliefs about their beliefs about her preferences, and so on, ad infinitum.

This can quickly get very complicated. Fortunately, we have a now standard and beautiful way to approach

this problem, due to Harsanyi. His idea is to transform any game of incomplete information into a game

of complete but imperfect information as follows: we imagine that a player’s payoffs are determined at the

outset of the game by Nature, which chooses realizations of a random variable for each player. The vector

of realizations of random variables determines the payoffs for all players from each strategy profile. A

player observes the realization of his own random variable, but not necessarily that of others. As with

other moves of Nature, the probability distribution that Nature uses for each random variable is common

knowledge. This extended game is known as a Bayesian game (of incomplete information), and we call a

Nash equilibrium of this extended game a Bayesian Nash equilibrium. The realization of a player’s random

variable is often called his type.

Example 18 (For Love or Money). Suppose a wealthy Anne is considering whether to marry a pauper Bob,

but is not completely sure whether he loves her (probability α), or just wants her money (probability 1´α).

This is a game where each player must choose to marry or not. If either one chooses not to marry, then

both players gets a payoff of 0. If both choose to marry, then Bob gets a payoff of 5 if he is a lover, and 3 if
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he is a scoundrel; whereas Anne gets 5 if Bob is a lover and ´3 if he is a scoundrel. Clearly, if it were known

that Bob is a scoundrel, then every Nash equilibrium involves Anne choosing not to marry. Conversely, if

Bob were known to be a lover, then there is a Nash equilibrium where both Anne and Bob choose marriage.

The question is, what happens if Bob privately knows his type (lover or scoundrel), but Anne does not?

We can represent this game of incomplete information in extensive form using Nature’s move at the root

node. In this extended game, a pure strategy for Anne is simply a choice of marry or not marry; so she has

2 pure strategies. However, for Bob, a pure strategy is a contingent plan that specifies whether to marry or

not in each of two cases: if his type is lover, and if his type is scoundrel. Hence, Bob has 4 pure strategies in

the extended game: (marry if lover, marry if scoundrel), (marry if lover, don’t if scoundrel), (don’t if lover,

marry if scoundrel), and (don’t if lover, don’t if scoundrel). �

We now define a Bayesian game formally.

Definition 26 (Bayesian Game). A Bayesian game is defined by a tuple xI, tAiu, tuiu, tΘiu, py, where I is

the set of players, Ai is the action space for player i, Θi is the set of types for player i, ui : A ˆ Θ Ñ R is

the payoff function for player i, and p : Θ Ñ r0, 1s is the prior probability distribution over type profiles.43

p is assumed to be common knowledge, but each player i only knows her own θi.

Note that in the Bayesian game, players privately learn their types and then choose their actions si-

multaneously. You should think of the action space for each player as possibly representing normal-form

strategies of some underlying game. I use the terminology “action” rather than “strategy” because in the

context of a Bayesian game, there is something else we will want to call a strategy.

Remark 19. We allow each utility function, ui, to depend on the entire vector of types — not just player i’s

type. This is more general than MWG (p. 255), and is useful in many applications. We say that the game

has private values when each ui only depends on i’s type. The more general situation has interdependent

values, sometimes also referred to as correlated values.

If the prior distribution p is a product distribution, so that for each i the conditional distributional

ppθ´i|θiq is independent of θi, we say the game has independent types.

Remark 20. The above formulation of a Bayesian game is ex-ante: there is a stage at which players have

identical information/no private information, and they subsequently learn their private information. But in

many applications—including Example 18—it is more natural to take an interim perspective: players simply

begin with private information, and there is no literal ex-ante stage. From this perspective, we would define a

Bayesian game as a tuple xI, tAiu, tuiu, tΘiu, tqiuy, where the objects are as in Definition 26, except that each

qi : Θi Ñ ∆pΘ´iq. Here qipθiq captures type θi’s (subjective) belief about the opponents’ type profile. Up to

technical details, which don’t arise when Θ is finite, it is straightforward that for each i we can find a “prior”

pi P ∆pΘq such that qi obtains from pi via Bayesian updating. For example, set pipθq “ p1{|Θi|qqipθ´i; θiq;

although there are infinitely many others, as we could use any full-support marginal over Θi instead of the

uniform. But there is no guarantee that we can find single prior p P ∆pΘq that is simultaneously valid for all

players. That requires some degree of consistency in the subjective beliefs tqiu, which is referred to as the

common prior assumption (CPA). Under the CPA, the ex-ante interpretation is justified in an “as if” sense

even if there is no real ex-ante stage. The CPA is typically assumed in applications and we will maintain it

here—although I want to stress that there is no logical reason it must be required. One can study Bayesian

43Here, A ” A1 ˆ ¨ ¨ ¨ ˆ AI and Θ ” Θ1 ˆ ¨ ¨ ¨ ˆ ΘI .
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games without the CPA, contrary to some misconceptions. Indeed the CPA can be controversial; see Gul

(1998).

Remark 21. It is far from obvious that Definition 26 of a Bayesian game is sufficient to represent all games of

incomplete information. In particular, one key issue is, following the discussion after Definition 25, whether

Bayesian games (as defined above) are sufficiently rich to capture an infinite hierarchy of beliefs of every player

about other players’ beliefs. This was resolved by Mertens and Zamir (1985) and Brandenburger and Dekel

(1993) with constructions of the so-called universal type space. This is material suited for a more advanced

course, but see Zamir (2008) for a nice discussion. In a nutshell, they established that Bayesian games are

indeed sufficient under some reasonable “coherence” conditions on belief heirarchies. Caveat: whether the

CPA can be satisfied is another question.

A pure strategy for player i in a Bayesian game specifies what action to take for each of her possible

type realizations. That is, a (pure) strategy is a mapping si : Θi Ñ Ai. Given a profile of straegies for all

players, we compute i’s expected payoffs as

ũips1, . . . , sIq “ Eθruips1pθ1q, . . . , sIpθIq, θi, θ´iqs.

With these preliminaries, we can define a (pure strategy) Bayesian Nash equilibrium in the natural way.

Definition 27 (Bayesian Nash Equilibrium). A (pure strategy) Bayesian Nash equilibrium of the Bayesian

game, xI, tAiu, tuiu, tΘiu, py, is a profile of (pure) strategies ps1, . . . , sIq such that for all i and all s1
i P Si,

ũipsi, s´ip¨qq ě ũips
1
i, s´iq.

In the natural way, we can allow for mixed strategies, which are just probability distributions over the

pure strategies, and then define mixed strategy Bayesian Nash equilibrium. An important observation is

that by the Nash existence theorem, a (possibly mixed) Bayesian Nash equilibrium (BNE) exists if for all i,

Ai and Θi are finite.

The approach taken above is ex ante in the sense that players are choosing their strategies prior to

knowing their types. On the other hand, one can imagine that a player picks an action once he knows his

type, but not that of others; this is at the interim stage.44 It is straightforward that a strategy can be

part of a BNE if and only if it maximizes a player’s expected utility conditional on each θi that occurs with

positive probability.45

Proposition 7. A profile of strategies, s, is a (pure strategy) BNE if and only if, for all i and all θi P Θi

occurring with positive probability and all ai P Ai,

Eθ´i
ruipsipθiq, s´ipθ´iq, θi, θ´iq | θis ě Eθ´i

ruipai, s´ipθ´iq, θi, θ´iq | θis.

Proof. Exercise (or see MWG p. 256). �

The Proposition implies that we can essentially think of each type of a player as maximizing its own

payoffs independent of what other types of the player are doing. This is a very useful result since it permits

44Ex post would refer to a third stage where the types of all players become known, for example at the end of the
game when payoffs are realized.

45This is for finite Θi; in the infinite case, it applies to “almost all” θi.
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us to “decompose”, type by type, the process of finding an optimal response for a player to any strategy

profile of his opponents.

Remark 22. While we are focussing on BNE, one can also parallel other complete-information solution

concepts. For example, a strategy si is strictly dominant if for all s1
i ‰ si and s´i, ũipsi, s´iq ą ũips

1
i, s´iq.

In the private-value case, we can write this alternatively as for all θi (that occur with positive probability),

ai ‰ sipθiq, and a´i, uipsipθiq, a´i, θiq ą uipai, a´i, θiq.

In Bayesian games, a weakening of weak dominance is of interest: a strategy si is “very weakly dominant”

if for all s1
i, and s´i, ũipsi, s´iq ě ũips

1
i, s´iq. (This terminology is not common. Another way to say it is that

si is a best response to any strategy of the opponents. Do you see why it is weaker than weak dominance?)

In the context of mechanism/market design, where the action space is frequently Ai “ Θi and the strategy

of interest is sipθiq “ θi, this requirement is called strategyproofness.

Another concept of interest is that of ex-post (Bayesian Nash) equilibrium. A pure BNE s is an ex-

post equilibrium if for all θ, i, and ai, uipsipθiq, s´ipθ´iq, θq ě uipai, s´ipθ´iq, θq. Note that we are using

equilibrium information here; what we are dropping is information about other players’ types. Ex-post

equilibrium is appealing because it means we can be agnostic about players’ beliefs about others’ information;

it thus comes up in design problems.

3.6.1. Examples

Example 19 (BNE in For Love or Money). Continuing with Example 18, let us now find the (pure strategy)

BNE of this game. Denote Anne as player 1 and Bob as player 2; Bob’s types as l (lover) and c (scoundrel);

and the actions are M (marry) and N (not marry). We could proceed in two ways, corresponding to the

ex-interim and ex-ante definitions.

1. For the ex-interim procedure, we can treat a BNE as a triple ps1, s2plq, s2pcqq P tM,Nu3. Then

pN,N,Nq and pN,N,Mq are always BNE. In addition, there is at least one other BNE, though

what it is depends on the parameter α. If α ě 3
8
, pM,M,Mq is a BNE. If α ď 3

8
, pN,M,Mq is a

BNE. Notice that pM,N,Nq is never a BNE, and moreover, if α P p0, 1q, pM,M,Nq, pM,N,Mq, and

pN,M,Nq are not BNE.

2. For the ex-ante formulation, a BNE is a pair ps1, s2q P tM,Nu ˆ tMM,MN,NM,NNu, where for

player 2, pMNq is the strategy of playing M if l and N if c, for example. You can write out the BNE

in this formulation that are equivalent to the ex-interim formulation. �

Example 20 (Incomplete Information 2nd Price Auction). Recall the 2nd price auction we studied in

Example 9. Now, each player’s valuation vi is assumed to be private information. It is straightforward

that it remains a BNE for each player to bid the truth, i.e. play sipviq “ vi. This follows from the fact that

it was weakly dominant to bid the truth in the complete information case. �

Example 21 (1st Price Auction). Now we consider a 1st price Auction, which is an auction where the

highest bidder wins (bids are non-negative), the winner pays his own bid, and losers pay nothing. As before,

if there is a tie, the winner is randomly selected from the highest bidders. Assume that each vi is drawn

independently from the distribution F that is continuous on R and strictly increasing on the support rv, vs,

where v ě 0. This is a setting of independent private values.
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To find a BNE, we look for a symmetric pure-strategy equilibrium in which each player is playing the

same strictly increasing and differentiable strategy, denoted s˚pvq. Suppose that all other bidders are playing

s˚pvq. Player i’s expected payoff from a bid b when he has valuation v is46

πpb, vq “ rF pps˚q´1pbqqsI´1rv ´ bs.

The expected payoff in equilibrium for a bidder with valuation v is then

Πpvq “ πps˚pvq, vq “ rF pvqsI´1rv ´ s˚pvqs.

Note that Πpvq “ 0 because our hypothesis that s˚pvq is strictly increasing (and that F is continuous) implies

that a bidder with the lowest possible valuation wins with probability zero. Differentiating,

Π1pvq “ π1ps˚pvq, vq
ds˚

dv
pvq ` π2ps˚pvq, vq “ π2ps˚pvq, vq “ rF pvqsI´1,

where the second equality uses the envelope theorem, i.e., that π1ps˚pvq, vq “ 0 because s˚pvq is an optimal

bid with valuation v.47

Recall that by the Fundamental Theorem of Calculus,

Πpvq ´ Πpvq “

ż v

v

Π1pxqdx.

Substituting in to the above from the previous derivations gives

rF pvqsI´1rv ´ s˚pvqs “

ż v

v

rF pxqsI´1dx,

which rearranges as

s˚pvq “ v ´

ż v

v

„

F pxq

F pvq

I´1

dx.

It is clear that s˚pvq is strictly increasing and differentiable, as required. Notice that s˚pvq ă v if v ą v,

which makes sense: bidders should “shade down” their bids because winning is only beneficial if one pays

less than one’s valuation. (Indeed, verify that the strategy spvq “ v is weakly dominated.)

To complete the argument, one must verify that s˚pvq is in fact an optimal bid for type v—we only

derived necessary conditions above—which I omit. �

Remark 23. Above, we constructed a symmetric Bayes Nash equilibrium by assuming that bidders are using

a differentiable pure strategy. In fact, one can prove that in any symmetric equilibrium, each bidder must use

a continuous and strictly increasing (hence a.e. differentiable) pure strategy. This is proved by establishing

that there cannot be a “gap” in the range of bids played in equilibrium (because then it would be suboptimal

46Below, let ps˚q´1pbq “ v for b ă s˚pvq and ps˚q´1pbq “ v for b ą v.
47You may worry that this is not assured for type v, since s˚pvq may be zero, and as such one is not assured the

first order condition π1ps˚pvq, vq “ 0. But this won’t matter because it will be sufficient that the formula for Π1pvq
hold for v ą v.
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to bid just above the gap; one should instead bid at or just above the bottom of the gap) and there cannot

be any “atoms” in the equilibrium distribution of bids (because then no bidder would make an offer at or

just below the atom as it is better to deviate to just above the atom, leading to a gap). Thus, the symmetric

equilibrium is essentially unique.

Remark 24 (Revenue Equivalence). Let’s figure out the seller’s expected revenue in the 1st price auction if

the symmetric equilibrium is played. It is simply the expected winning bid, or the expected bid of the bidder

with the highest valuation. We may denote this Ers˚pV 1:Iqs, where, for any integer k P r1, Is, V k:I denotes

the k-th highest valuation out of I bidders. It is common to refer to V k:I as the pI ` 1´ kq-th order statistic

of F (with sample size I), so that V 1:I is the I-th order statistic. To compute the expected revenue more

explicitly, define F 1:Ipvq ” rF pvqsI , so that F 1:I is the cdf of V 1:I . We have

s˚pvq “ v ´

ż v

v

„

F pxq

F pvq

I´1

dx

“
1

F 1:I´1pvq

„

F 1:I´1pvqv ´

ż v

v

F 1:I´1pxqdx



“
1

F 1:I´1pvq

ż v

v

xdF 1:I´1pxq

“ ErV 1:I´1|V 1:I´1 ă vs, (2)

where the third equality is derived through an integration by parts. This says that if a bidder has valuation

v, he sets his bid equal to the expectation of the highest of the other I ´ 1 valuations, conditional on him

having the highest overall valuation. So, the expected revenue for the seller is

Ers˚pV 1:Iqs “ ErV 1:I´1|V 1:I´1 ă V 1:I s “ ErV 2:I s, (3)

where the first equality is from (2) and the second equality owes to iterated expectations.48 But observe that

ErV 2:I s, which is the expectation of the 2nd highest valuation among I bidders, is also the expected revenue

from a 2nd price auction! (Why?) We have thus proved that, given the relevant equilibria, the 1st price

auction and the 2nd price auction generate exactly the same expected revenue for the seller, even though the

payment rules and bidding behavior are very different.49 This is a particular case of the Revenue Equivalence

Theorem: the key points are that (i) the setting is one of independent private values (each bidder’s type

48More detail on the iterated expectations: for any vector of realized valuations, the second-highest valuation
can also be viewed as the highest remaining valuation after excluding the highest valuation. Thus, ErV 2:Is “
ErErV 1:I´1|V 1:I´1 ă vss, where the outer expectation is with respect to V I:I having realization v. But this is just
the middle expression of (3).

49Another way to see the revenue equivalence is to note that in the 2nd price auction, the expected payment for a
bidder i with valuation v is

Probri wins|vi “ vs ˆ Er2nd highest bid|v is the highest bids

“Probri wins|vi “ vs ˆ Er2nd highest value|v is the highest values

“F
1:Ipvq ˆ ErV 1:I´1|V 1:I´1 ă vs,

which, using our derivation (2), is the same as in the 1st price auction (because (2) gives the payment of bidder i

with valuation v when he wins, which occurs with probability F 1:Ipvq). If the expected payment is the same for every
bidder (conditional on his type, and hence on expectation too), then the expected revenue is the same.

37



is his own valuation and types are drawn independently); (ii) both auction formats allocate the object to

the bidder with the highest valuation; and (iii) a bidder with the lowest possible valuation (i.e., v) gets 0

expected payoff in equilibrium. More generally, the issue of how to design an auction to maximize the

seller’s revenue lies in the field of mechanism design.

As a third example of Bayes Nash equilibrium, we look at Cournot competition game with incomplete

information. It serves to illustrate a case where players’ types are not independent.

Example 22 (Incomplete Information Cournot). The setting is the same as the Linear Cournot case con-

sidered in Example 7, but modified so that each firm now has one of two potential cost parameters: cH or

cL, where cH ą cL ě 0. Each firm’s parameter is privately known to it alone, and the prior distribution

is given by ppcH , cHq “ ppcL, cLq “ 1
2
α and ppcH , cLq “ ppcL, cHq “ 1

2
p1 ´ αq, with α P p0, 1q commonly

known. Recall that inverse market demand is given by ppQq “ a ´ bQ; firm i’s cost function is ciqi, where

ci P tcH , cLu.

Let’s look for a symmetric pure-strategy BNE where each firm plays s˚pcHq and s˚pcLq for each of its

two types. To solve for these, we observe that if a firm is of type cH , then its maximization problem, taking

as given that the other firm is using s˚p¨q, is:

max
q

rαpa ´ bps˚pcHq ` qq ´ cHqq ` p1 ´ αqpa ´ bps˚pcLq ` qq ´ cHqqs .

By hypothesis that s˚p¨q is a symmetric equilibrium, a solution the above problem must be s˚pcHq. Taking

the FOC (presuming an interior solution) thus gives an equilibrium condition:

α pa´ cH ´ bs˚pcHq ´ 2bs˚pcHqq ` p1 ´ αq pa´ cH ´ bs˚pcLq ´ 2bs˚pcHqq “ 0. (4)

Similarly, the maximization problem when type is cL is

max
q

rp1 ´ αqpa ´ bps˚pcHq ` qq ´ cLqq ` αpa ´ bps˚pcLq ` qq ´ cLqqs ,

for which s˚pcLq must be a solution. This requires

p1 ´ αq pa´ cL ´ bs˚pcHq ´ 2bs˚pcLqq ` α pa´ cL ´ bs˚pcLq ´ 2bs˚pcLqq “ 0. (5)

The equilibrium is found by solving Eqns. (4) and (5), which involves tedious but straightforward algebra. �

3.6.2. Purification Theorem

In Subsection 3.3.4, we introduced the notion of purification (Harsanyi, 1973) as a justification for MSNE.

Using incomplete information, we can now state the idea more precisely. Start with a (finite) normal-form

game, ΓN “ tI, tSiu, tuiuu. Let θsi be a random variable with range r´1, 1s, and ε ą 0 a constant. Player

i’s perturbed payoff function depends on the collection θi ” tθsi usPS and is defined as

ũips, θiq “ uipsq ` εθsi

We assume that the θi’s are independent across players, and each θi is drawn from a distribution Pi with

density pi.
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Theorem 7 (Purification). Fix a set of players, I, and strategy spaces tSiu. For almost all vectors of payoffs,

u “ pu1, . . . , uIq,50 for all independent and twice-differentiable densities, pi on r´1, 1s|S|, any MSNE of the

payoffs tuiu is the limit as ε Ñ 0 of a sequence of pure-strategy BNE of the perturbed payoffs tũiu. Moreover,

the sequence of pure-strategy BNE are “essentially” strict.

The Theorem, whose proof is quite complicated, is the precise justification for thinking of MSNE as

PSNE of a “nearby” game with some added private information. Note that according to the Theorem, a

single sequence of perturbed games can be used to purify all the MSNE of the underlying game. In his

proof, Harsanyi showed that equilibria of the perturbed games exist (note that these are infinite games),

and moreover, that in any equilibrium of a perturbed game, almost all sipθiq must be pure strategies of the

underlying game, and that for almost all θi, sipθiq is the unique best response (this is the “essentially strict”

portion of the result).

3.6.3. The Importance of Higher-Order Beliefs

In the examples/applications so far, higher order beliefs have not played a major role. But consider the

following symmetric two-player game, where x P t0, 2u:

A B

A x,x ´ε,1

B 1,´ε 1,1

In what follows, ε ą 0 is common knowledge; you can think of it as small. If it is commonly known that

x “ 2 then we have a coordination game: both pA,Aq and pB,Bq are strict Nash equilibria; pA,Aq is Pareto

dominant while pB,Bq is risk dominant.51 If, on the other hand, x “ 0 is common knowledge, then B is a

strictly dominant strategy, so pB,Bq is the unique Nash equilibrium.

Suppose there isn’t common knowledge about which game is being played, i.e., there is incomplete

information about x. Assume the prior Prpx “ 2q ą 1{2 (and Prpx “ 0q “ 1 ´ Prpx “ 2q). If players

don’t receive any other information about x, then the corresponding Bayesian game has two Bayesian Nash

equilibria: pA,Aq and pB,Bq; both are strict and pA,A) remains Pareto dominant.

Let us add private information as follows. There is a “state” ω P Ω ” tω1, ω2, . . . , ωKu, where K ą 1 is

an odd integer. If ω ă ωK then x “ 2; if ω “ ωK then x “ 0. The distribution of ω is uniform. Player 1’s

type is depicted by the partition

ttω1u, tω2, ω3u, . . . , tωK´1, ωKuu,

which represents what he learns about ω. Player’s 2 type is depicted by the partition

ttω1, ω2u, . . . tωK´2, ωK´1u, tωKuu.

(Exercise: write down the Bayesian game in our standard notation. Note that the distribution of types

is correlated.)

50That is, for all but a set of payoffs of Lebesgue measure 0.
51 In a 2ˆ2 two-player game, a strategy is risk dominant if it is the unique best response to the other player playing

a 50-50 mixture.
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The key property here is that while there can be arbitrarily high finite order of knowledge of x (as

K Ñ 8), there is never common knowledge of x.52 For example, when ω “ ωK´2, there is mutual knowledge

that x “ 2, but player 2 does not know that player 1 knows x; rather player 2 puts probability 1{2 on player 1

thinking x “ 2 and probability 1{2 on player holding a uniform distribution over x P t0, 2u. When ω “ ωK´3,

not only do both players know x “ 2, but there is mutual knowledge of this (i.e., both players know that

both players know x “ 2); however, player 1 does not know that player 2 knows that player 1 knows x.

Notice that for any integer M and any probability p ă 1, as K Ñ 8, there is Mth-order knowledge of x with

ex-ante probability larger than p. It may appear, then, that for large K, it is “almost common knowledge”

that x “ 2.53 But:

Claim 1. In the above Bayesian game, IDSDS yields siptiq “ B for i “ 1, 2 and all ti.

Proof. Deleting dominated strategies rules out any strategy that does not have s2ptωKuq “ B. But then,

s1ptωK´1, ωKuq “ A is iteratively dominated because B is risk dominant. The result follows by induction. �

One take-away is that we have to be careful with what we mean by “almost common knowledge”: the

topology with respect to which continuity with common knowledge is viewed is crucial (cf. fn. 53.)

The argument in Claim 1 is due to ideas in Rubinstein (1989); it starkly illustrates the logic by which

outcomes in strategic settings can be sensitive to “tails” of higher-order beliefs. Notice that the argument

is based on “contagion” — dominance for some types feeds into (iterative) dominance for other types.

Carlsson and Van Damme (1993) introduced the terminology of “global games” to model situations in which

each player observes the true payoffs of the game with a very small amount of noise; dominance plus contagion

arguments prove powerful. I will give you a homework problem illustrating this. Morris and Shin (1998)

popularized global games for applications.54 More commonly, higher-order uncertainty is usually downplayed

in applied settings by modeling them with simple type spaces.

52 It is common knowledge that player 2 knows x. (Why?) What is not common knowledge is whether player 1
knows x.

53However, for any probability p close enough to 1, no matter the value of K ą 1, there is no state ω in which the
following statement is true: both players ascribe probability (at least) p to x “ 2, both players ascribe probability
(at least) p to both players ascribing probability (at least) p to x “ 2, . . . ad infinitum. In other words, for all high
p, there is a failure of “common p-belief” (Monderer and Samet, 1989), which is what drives the ensuing argument.

54While applied scholars often take the message of the global games literature to be that there is a “correct” unique
equilibrium in settings that prima facie have multiple equilibria, this is not the right interpretation. See me for more
discussion if you are interested, or have a look at Weinstein and Yildiz (2007).
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Figure 1 – Extensive Form for Predation Game

4. Dynamic Games and Extensive Form Refinements of Nash Equi-

librium

We now turn to a study of dynamic games, i.e. games where players are not just moving simultaneously.

The underlying theme will be to refine the set of Nash equilibria in these games.

4.1. The Problem of Credibility

One view towards studying dynamic games is to simply write down their normal form, and then proceed as

we did when studying simultaneous games. The problem however is that certain Nash equilibria in dynamic

games can be very implausible predictions. Let’s illustrate this through the following example.

Example 23 (Predation). Firm 1 (the entrant) can choose whether to enter a market against against a

single incumbent, Firm 2, or exit. If Firm 1 enters, Firm 2 can either respond by fighting or accommodating.

The extensive form and payoffs are drawn in Figure 1.

To find Nash equilibria of this game, we can write out the normal form as follows.

f a

e -3,-1 2,1

x 0,2 0,2

Clearly, px, fq is a Nash equilibrium, as is pe, aq.55 However, px, fq does not seem like a plausible

prediction: conditional upon Firm 1 having entered, Firm 2 is strictly better off accommodating rather than

fighting. Hence, if Firm 1 enters, Firm 2 should accommodate. But then, Firm 1 should foresee this and

enter, since it prefers the outcome pe, aq to what it what it gets by playing x. �

The problem in the Example is that the “threat” of playing f , that is fighting upon entry, is not

credible. The outcome px, fq is Nash because if Firm 2 would fight upon entry, then Firm 1 is better off

exiting. However, in the dynamic game, Firm 1 should not believe such an “empty threat”. The crux of

the matter is that the Nash equilibrium concept places no restrictions on players’ behavior at nodes that are

55There are also some MSNE involving x.
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never reached on the equilibrium path. In this example, given that Firm 1 is playing x, any action for Firm

2 is a best response, since all its actions are at a node that is never reached when Firm 1 places x. Thus, by

choosing an action pfq that it certainly wouldn’t want to play if it were actually forced to act, it can ensure

that Firm 1’s [unique, in this case] best response is to play x, guaranteeing that it in fact won’t have to act.

4.2. Backward Induction and Subgame Perfection

The natural way to solve the problem above is to require that a player’s strategy specify optimal actions

at every node of the game tree. That is, when contemplating an action, a player takes as given that the

relevant node has been reached, and thus should playing something that is optimal here on out (given her

opponents’ strategies). This is the principle of sequential rationality (which we define formally later). In

Example 23, action f is not optimal conditional on the relevant node being reached; only a is. Thus,

sequential rationality requires that 2’s strategy be a, to which the unique best response for 1 to play e,

resulting in the more reasonable outcome pe, aq.

4.2.1. Backward Induction

In general, we can try to apply this logic to any extensive game in the following way: start at the “end”

of the game tree, and work “back” up the tree by solving for optimal behavior at each node, determining

optimal behavior earlier in the game by anticipating the later optimal behavior. This procedure is known

as backward induction. In the class of finite games with perfect information (i.e. finite number of nodes and

singleton information sets), this is a powerful procedure.

Theorem 8 (Zermelo). Every finite game of perfect information has a pure strategy Nash equilibrium that

can be derived through backward induction. Moreover, if no player has the same payoffs at any two terminal

nodes, then backward induction results in a unique Nash equilibrium.

Proof. The uniqueness part is straightforward. The rest is in MWG pp. 272–273. �

Zermelo’s Theorem says that backward induction can be powerful in various finite games. For example

it implies that even a game as complicated as chess is solvable through backward induction; in chess, one of

the following mutually exclusive statements is true:

• White has a strategy that results in a win for him regardless of what Black does;

• Black has a strategy that results in a win for him regardless of what White does;

• Each player has a strategy that results in either a draw or a win for him regardless of what the other

player does.

In this sense, chess is “solvable”; alas, no-one knows what the solution is!56,57

56Note well what the application to chess is: it doesn’t just say that every chess game must end in one of the
players winning or in a draw (this is trivial, modulo the game ending—see the next footnote); it says that one of the
players has a strategy that guarantees a win for the player (regardless of what strategy the other player uses), or
both player have strategies that guarantee at least a draw (regardless of what the strategy the other player uses).

57There is actually a subtle caveat here with regards to real chess. Although game theorists often think of a chess
as a finite game, and this is needed to apply the Theorem above directly, in fact the official rules of chess make it
an infinite game. Nevertheless, the result above concerning chess (that either one player has a winning strategy, or
both players have strategies that individually ensure at least a draw) is true. See Ewerhart (2002).
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Corollary 4. Every finite game of perfect information has a PSNE.

As in illustration of how backward induction operates, here is a famous game.

Example 24 (Centipede Game). Two players, 1 and 2, take turns choosing one of two actions each time,

continue or stop. They both start with $1 in their respective piles, and each time i says continue, $1 is

taken away from his pile, and $2 are added to the other player’s pile. The game automatically stops when

both players have $1000 in their respective piles. Backward induction implies that a player should say stop

whenever it is his turn to move. In particular, Player 1 should say stop at the very first node, and both

players leave with just the $1 they start out with.58 �

4.2.2. Subgame Perfect Nash Equilibrium

We are now going to define a refinement of Nash equilibrium that captures the notion of backward induction.

To do so, we need some preliminaries. Recall from Definition 1 that an extensive form game, ΓE , specifies a

host of objects, including a set of nodes, X , an immediate predecessor mapping ppxq that induces a successor

nodes mapping Spxq, and a mapping Hpxq from nodes to information sets.

Definition 28 (Subgame). A subgame of an extensive form game, ΓE , is a subset of the game such that

1. (a) there is a unique node in the subgame, x˚, such that ppx˚q is not in the subgame. Moreover, (b)

x˚ is not a terminal node, and (c) Hpx˚q “ tx˚u;

2. a node, x, is in the subgame if and only if x P tx˚u Y Spx˚q;

3. if node x is in the subgame, then so is any x̃ P Hpxq.59

Remark 25. Notice that any extensive form game as whole is always a subgame (of itself). Thus, we use

the term proper subgame to refer to a subgame where x˚ ‰ x0 (recall that x0 is the root of the game).

Exercise 9. Draw an extensive form game and indicate three different parts of it that respectively each fail

the three components of the definition of a subgame.

The key feature of a subgame is that it is a game in its own right, and hence, we can apply the concept

of Nash equilibrium to it. We say that a strategy profile, σ, in the game ΓE induces a Nash equilibrium in

a particular subgame of ΓE if the [probability distribution over] moves specified by σ for information sets in

the subgame constitute a Nash equilibrium when the subgame is considered as a game by itself.

Definition 29 (Subgame Perfect NE). A Nash equilibrium, σ˚, in the extensive form game, ΓE , is a subgame

perfect Nash equilibrium (SPNE) if it induces a Nash equilibrium in every subgame of ΓE .

In finite extensive form games with possibly imperfect information, we conduct generalized backward

induction as follows:

1. Consider the maximal subgames (that is, subgames that have no further proper subgames) and pick

a Nash equilibrium in each maximal subgame (one exists! why?).

58Experiments with this game show that most players tend to continue until there is a substantial sum of money
in both their piles, and then one will say stop, almost always before the game automatically stops.

59Actually, this condition together with condition 1(a) implies 1(c). Can you prove it?
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Figure 2 – Extensive Form for Predation with Niches Game

2. Replace each maximal subgame with a “terminal” node that has the payoffs of the Nash equilibrium

we picked in the subgame. After replacement, call this a “reduced” game.

3. Iterate the process on a successive sequence of “reduced” games until the whole tree has been replaced

with a single terminal node.

It should be intuitive that the process of generalized backward induction yields a SPNE of a game of

imperfect information, and conversely every SPNE survives generalized backward induction.60 The following

example illustrates the idea.

Example 25 (Predation with Niches). This is an extended version of the Predation game from Example 23.

Now, Firm 1 (the entrant) first chooses to enter or not. If it enters, then the two firms simultaneously choose

a niche of the market to compete in: a (A) or b (B). Niche b is the “larger” niche. The extensive form and

payoffs are drawn in Figure 2.

To find the pure strategy SPNE equilibria of this game, we employ generalized backward induction as

follows. Notice that there is only one proper subgame here. We can write out the normal form of this

proper subgame as follows.

A B

a -6,-6 -1,1

b 1,-1 -3,-3

There are two PSNE in the subgame: pa,Bq and pb, Aq. If we replace the subgame with a terminal

node corresponding to pa,Bq payoffs, then it follows that Firm 1 prefers to play x at its first move. If on

the other hand we replace the subgame with a terminal node corresponding to pb, Aq payoffs, then it follows

that Firm 1 prefers to play e at its first move. Therefore, the two pure strategy SPNE of this game are

pxa,Bq and peb, Aq. �

60 See MWG Proposition 9.B.3 (p. 277) for a precise statement.
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Since every subgame of a finite game has a Nash equilibrium, and a SPNE of the whole game is derived

by “folding” together Nash equilibria of each subgame, we have the following existence result.

Theorem 9 (SPNE Existence). Every finite game has a SPNE.

Remark 26. MWG — and other textbooks — tend not to mention the above result because existence of

SPNE can also be derived as a corollary to the existence of Sequential Equilibrium, which we discuss later

on.

Obviously, in games of perfect information, every SPNE can be derived through the basic backward

induction process, since generalized backward induction reduces to this with perfect information. Using

Zermello’s Theorem, it follows that

Corollary 5 (Pure Strategy SPNE). Every finite game of perfect information has a pure strategy SPNE.

Moreover, if no player has the same payoffs at any two terminal nodes, there is a unique SPNE.

Exercise 10. Recall the centipede game from Example 24. Prove that the unique SPNE is where each player

plays “ stop” at every node he is the actor at (this is simply an application of the results above!). Show that

there are a plethora of Nash equilibria. However, prove that in every Nash equilibrium, Player 1 must play

“ stop” at the first node with probability 1 (hint: you have to consider mixed strategies).

Example 26 (Finite Horizon Bilateral Bargaining). Players 1 and 2 are bargaining over the split of v ą 0

dollars. The game lasts a finite odd number of T P t1, 3, . . .u periods. In period 1, player 1 offers player 2

some amount b1 P r0, vs, which player 2 can either accept or reject. If player 2 accepts, the game ends, with

the proposed split enforced. If player 2 rejects, then we move onto period 2, where player 2 offers player 1

some amount b2 P r0, vs, and player 1 can either accept or reject. The game proceeds in this way for up to

T periods; in the T ` 1 period, the game necessarily ends and both players get nothing if agreement has not

been reached. Players discount the future by a factor δ P p0, 1q, so that a dollar received in period t gives a

payoff of δt´1. What is the set of SPNE?

Remarkably, there is a unique SPNE. (This is not a consequence of Zermello’s Theorem.) We find the

SPNE through backward induction. Start at the end: in the final period, T , player 2 weakly prefers to

accept any offer bT ě 0, and strictly so if bT ą 0. Given this, the only offer for player 1 in period T that can

be part of a SPNE is bT “ 0, which player 2 must respond to by accepting in a SPNE.61 The corresponding

payoffs in the subgame starting at period T are pδT´1v, 0q. Now consider the subgame starting in period

T ´ 1, where player 2 is the proposer. Player 1 weakly prefers to accept any offer that gives him a payoff

of at least δT´1v, and strictly so if it provides a payoff of strictly more than δT´1v. Thus, the only offer

for player 2 that can be part of a SPNE is bT´1 “ δv, which player 1 must respond to by accepting in a

SPNE. The corresponding payoffs in the subgame starting at period T ´ 1 are thus pδT´1v, δT´2p1 ´ δqvq.

Now consider period T ´ 2. The above logic implies that the only offer that is part of a SPNE is such that

δT´3bT´2 “ δT´2p1 ´ δqv, i.e. bT´2 “ δp1 ´ δqv, which must be accepted in a SPNE.

61Any bT ą 0 is strictly worse for player 1 than some bT ´ ε ą 0, which player 2 necessarily accepts in a SPNE. If
player 2 rejects bT “ 0 with positive probability, then player 1 would strictly prefer to offer some bT “ ε ą 0. Note
that player 2 is indifferent when offered 0, but it is critical that we resolve his indifference in favor of accepting in
order to have a SPNE.
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Figure 3 – Extensive Form for Predation version 2 Game

Continuing this process all the way back to period 1, by induction we see that there is a unique SPNE

that involves the sequence of offers, b˚
T “ 0 and for all t P t1, . . . , T ´ 1u,

b˚
T´t “ ´v

t
ÿ

τ“1

p´δqτ “
δp1 ´ p´δqtq

1 ` δ
v.

In any period t, the responder’s accepts an offer if and only if it is at least b˚
t . Player 1’s equilibrium payoff

is therefore

π˚
1 “ v ´ b1 “ v

„

1 ´
δp1 ´ p´δqT´1q

1 ` δ



“ v
1 ` δT

1 ` δ
,

and player 2’s equilibrium payoff is π˚
2 “ b1 “ v δ´δT

1`δ
.

Observe that player 1’s equilibrium payoff is larger than player 2’s; this because player 1 is both the

first and last proposer—each aspect confers some benefit.62 As T Ñ 8, the equilibrium payoff vector

Ñ pv{p1 ` δq, vδ{p1 ` δqq, which in turn is « pv{2, v{2q when δ « 1. In other words, when the bargaining

horizon is long and both players are patient, each gets close to half the pie. Impatience pushes in favor of

the first proposer. �

Exercise 11. Construct a Nash equilibrium in the finite horizon bargaining game in which player 1 gets a

payoff of 0.

4.3. Systems of Beliefs and Sequential Rationality

A limitation of the preceding analysis is subgame perfection is powerless in dynamic games where there are

no proper subgames.

Example 27 (Predation version 2). Modify the Predation game in Example 23 so that Firm 1 now has two

ways in which it can enter the market. The extensive form is in Figure 3. Now, the set of SPNE is exactly

62Notice that in a 2-period version of this problem, for large δ, the second proposer gets most of the pie in
equilibrium; on the other hand, for small δ, the first proposer gets most of the pie in equilibrium.
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the same as the set of NE, because there are no proper subgames to this game. Hence, the NE px, fq is

a SPNE. But px, fq is no more plausible here than it was in the original Predation example; regardless of

whether Firm 1 entered using e1 or e2, given that it has actually entered, Firm 2 is strictly better off playing

a rather than f . �

4.3.1. Weak Perfect Bayesian Equilibrium

Accordingly, we need a theory of “reasonable” choices by players at all nodes, and not just at those nodes

that are parts of proper subgames. One way to approach this problem in the above example is to ask:

could f be optimal for Firm 2 when it must actually act for any belief that it holds about whether Firm 1

played e1 or e2? Clearly, no. Regardless of what Firm 2 thinks about the likelihood of e1 versus e2, it is

optimal for it to play a. This motivates a formal development of beliefs in extensive form games. Recall

the notation we use in such games: the set of nodes is X , the set of successor nodes to any x is denoted

Spxq, H is the set of information sets, Hpxq is the information set that a node x belongs to, and ιpHq is the

player who acts at an information set H .

Definition 30 (System of Beliefs). A system of beliefs is a mapping µ : X Ñ r0, 1s such that for all H P H,
ř

xPH µpxq “ 1.

In words, a system of beliefs, µ, specifies the relative probabilities of being at each node of an information

set, for every information set in the game. Obviously, µpxq “ 1 for all x such that Hpxq “ txu. That is, at

singleton information sets, beliefs are degenerate.

Using this notion of beliefs, we can state formally what it means for strategies to be sequentially rational

given some beliefs. Let Erui | H,µ, σi, σ´is denote player i’s expected utility starting at her information set

H if her beliefs regarding the relative probabilities of being at any node, x P H is given by µpxq, and she

follows strategy σi while the other plays follow the profile of strategies σ´i. Think about this via behavioral

strategies: conditional on any node in the information set H , the behavioral strategy σ induces a probability

distribution over terminal nodes, and so some expected utility for player i; we integrate these expected

utilities over all the nodes in H using weights given by µ.

Definition 31 (Sequential Rationality). A strategy profile, σ, is sequentially rational at information set H

given a system of beliefs, µ, if

EruιpHq | H,µ, σιpHq, σ´ιpHqs ě EruιpHq | H,µ, σ̃ιpHq, σ´ιpHqs

for all σ̃ιpHq P ΣιpHq.

A strategy profile is sequentially rational given a system of beliefs if it is sequentially rational at all

information sets given that system of beliefs.

In words, a strategy profile is sequentially rational given a system of beliefs if there is no information

set such that once it is reached, the actor would strictly prefer to deviate from his prescribed play, given his

beliefs about the relative probabilities of nodes in the information set and opponents’ strategies.

With these concepts in hand, we now define a weak perfect Bayesian equilibrium. The idea is straightfor-

ward: strategies must be sequentially rational, and beliefs must be derived from strategies whenever possible
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via Bayes rule. Recall that the statistical version of Bayes Rule (discrete case) says that given any events

A,B,C, where B occurs with positive probability given that C does,

ProbpA|B,Cq “
ProbpB|A,CqProbpA|Cq

ProbpB|Cq
. (6)

Definition 32 (Weak PBE). A profile of strategies, σ, and a system of beliefs, µ, is a weak perfect Bayesian

equilibrium (weak PBE), pσ, µq, if:

1. σ is sequentially rational given µ; and

2. µ is derived from σ through Bayes rule whenever possible. That is, for any information set H such

that ProbpH |σq ą 0, and any x P H ,

µpxq “
Probpx|σq

ProbpH |σq
. (7)

The first part of the definition is the requirement of sequential rationality, and the 2nd part is the

consistency of beliefs as embodied by Bayes Rule.63 Keep in mind that strictly speaking, a weak PBE is

a strategy profile-belief pair. However, we will sometimes be casual and refer to just a strategy profile as

a weak PBE. This implicitly means that there is at least one system of beliefs such the pair forms a weak

PBE.

Remark 27. The moniker “weak” in weak PBE is because absolutely no restrictions are being placed on

beliefs at information sets that do not occur with positive probability in equilibrium, i.e. on out-of-equilibrium

information sets. To be more precise, no consistency restriction is being placed; we do require that they be

well-defined in the sense that beliefs are probability distributions. As we will see, in many games, there are

natural consistency restrictions one would want to impose on out of equilibrium information sets as well.

To see the power of weak PBE, we return to the motivating example of Predation version 2.

Example 28 (Weak PBE in Predation version 2). Recall that Example 27 had px, fq as a SPNE. I claim

that it is not a weak PBE equilibrium (or more precisely, there is no weak PBE involving the strategy profile

px, fq). This is proved by showing something stronger: that there is a unique weak PBE, and it does not

involve px, fq. To see this, observe that any system of beliefs in this game, µ, can be described by a single

number, λ P r0, 1s, which is the probability that µ places on the node following e1. But for any λ, the

uniquely optimal strategy for Firm 2 is a. Hence, only a is sequentially rational for any beliefs. It follows

that only pe1, aq can be part of a weak PBE. Given this, we see that beliefs are also pinned down as λ “ 1

by Bayes Rule. There is thus a unique strategy-belief pair that forms a weak PBE in this game. �

Proposition 8 (Nash and weak PBE). A strategy profile, σ, is a Nash equilibrium of an extensive form

game if and only if there exists a system of beliefs, µ, such that

1. σ is sequentially rational given µ at all H such that ProbpH |σq ą 0 (not necessarily at those H such

that ProbpH |σq “ 0q; and

63To see that the 2nd part of the definition is just Bayes Rule, think of the the left-hand side of (7) as
Probpx|H,σq and the right-hand side as ProbpH|x,σqProbpx|σq

ProbpH|σq and then compare to (6). We are able to simplify

because ProbpH |x, σq “ 1 by the hypothesis that x P H .
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Figure 4 – Extensive Form for Predation version 3 Game

2. µ is derived from σ through Bayes rule at every information set H such that ProbpH |σq ą 0.

Proof. Exercise. �

Since we have already seen that not every NE is a weak PBE, and since the only difference in the above

Proposition with the definition of a weak PBE is that sequential rationality is only required at a subset of

information sets (those that occur with positive probability, rather than all of them), we immediately have

the following corollary.

Corollary 6. Every weak PBE is a Nash equilibrium; but not every Nash equilibrium is a weak PBE.

(You might be wondering what we can say about SPNE and weak PBE equilibrium: Example 28 showed

that a SPNE need not be a not be a weak PBE ... for the converse, hold off for just a little bit!)

The next example shows how to solve for weak PBE in a more complicated case than before.

Example 29 (Predation version 3). This is yet another variant of a predation game. The extensive form

is drawn in Figure 4. The key difference with before is that Firm 2’s optimal action if it must act depends

on whether Firm 1 played e1 or e2. To solve for weak PBE, let µ1 be the probability the system of beliefs

assigns to the node following e1, let σf be Firm 2’s probability of playing f , and σx, σe1 and σe2 denote the

respective probabilities in Firm 1’s strategy.

First, observe that x can never part of a weak PBE because e2 strictly dominates x for Firm 1, hence it

is never sequentially rational for Firm 1 to play x. Next, observe that it is sequentially rational for Firm

2 to put positive probability on f if and only if ´1pµ1q ` ´1p1 ´ µ1q ě ´2µ1 ` p1 ´ µ1q, i.e. if and only if

µ1 ě 2
3
. Now we consider two cases.

1. Suppose that µ1 ą 2
3
in a weak PBE. Then Firm 2 must be playing f (this is uniquely sequentially

rational given the beliefs). But then, Firm 1 must be playing e2 (since γ ą 0 ą ´1), and Bayes rule

requires µ1 “ 0, a contradiction.

2. Suppose that µ1 ă 2
3
in a weak PBE. Then Firm 2 must be playing a (this is uniquely sequentially

rational given the beliefs). But then, Firm 1 must be playing e1 (since 3 ą 2 ą 0), and Bayes rule

beliefs requires µ1 “ 1, a contradiction.
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Figure 5 – Extensive Form for Example 30

Therefore, any weak PBE has µ1 “ 2
3
. Given the earlier observation that σx “ 0 in any weak PBE,

Bayes rule holds if and only if σe1 “ 2
3
and σe2 “ 1

3
. For this to be sequentially rational for Firm 1 requires

it to be indifferent between e1 and e2, which is the case if and only if ´1σf ` 3p1 ´ σf q “ γσf ` 2p1 ´ σf q,

i.e. if and only if σf “ 1
γ`2

.

We conclude that there is a unique weak PBE in this game. �

Exercise 12. Solve for the weak PBE in the above game when γ P p´1, 0q.

Now we return to the issue of relating weak PBE to Nash equilibria, in particular, to SPNE. As we saw

earlier in Example 28, not every SPNE is a weak PBE. The following example demonstrates that not every

weak PBE is a SPNE.

Example 30 (wPBE Ę SPNE). In the game given by Figure 5, pb, u, lq is a weak PBE (with what beliefs?)

but the unique SPNE is pt, u, rq. [Question: what can you say about player 2’s strategy in any wPBE?]

The intuition behind the example is simple: weak PBE places minimal restrictions on behavior at a

subgame that is off the equilibrium path (i.e., not reached under the equilibrium strategies), while SPNE

requires more. Loosely speaking, within an off-path subgame, weak PBE just rules out dominated actions,

while SPNE requires mutual best responses. We have thus proved the following.

Proposition 9. A weak PBE need not be a SPNE; a SPNE need not be a weak PBE.

Exercise 13. Prove that in any extensive form game of perfect information, the set of weak PBE is the

same as the set of SPNE.

The fact that a weak PBE may not be subgame perfect (in imperfect information games) motivates a

strengthening of the solution concept. One strengthening is that of a perfect Bayesian equilibrium (PBE,

without the “weak” moniker). This requires that the strategy profile-belief pair be not only a weak PBE,
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Figure 6 – Extensive Form for Example 31

but moreover induce a weak PBE in every proper subgame.64 Clearly, this would assure subgame perfection.

However, it is still too weak in its restrictions on beliefs off the equilibrium path, as the following example

demonstrates.

Example 31 (Implausible Beliefs in PBE). Figure 6 shows a game form.65 Suppose payoffs were specified

so that it were strictly dominant for player 1 to choose t. Then, there are a continuum of PBE, all with

the same strategy profile, pt, aq, but supported by different beliefs: any µpxhq P r0, 1s and µpxlq “ 1´µpxhq.

The reason we can do this is that there are no proper subgames, hence the set of PBE is the same as set of

weak PBE, and no restrictions are placed on beliefs at information sets that are off the equilibrium path.

However, it should be clear that the only reasonable belief for player 2 is µpxhq “ µpxlq “ 1
2
, since player 1’s

move cannot depend on N ’s choice, and N picks h and l with equal probabilities.66 �

4.3.2. Sequential Equilibrium

A stronger equilibrium concept that we now introduce is that of sequential equilibrium, due to Kreps and Wilson

(1982).

Definition 33 (Sequential Equilibrium). A strategy profile, σ, and a system of beliefs, µ, is a sequential

equilibrium (SE), pσ, µq, if:

1. σ is sequentially rational given µ;

2. There exists a sequence of fully mixed strategy profiles tσku8
k“1 Ñ σ, such that tµku8

k“1 Ñ µ, where

µk denotes the beliefs derived from strategy profile σk using Bayes rule.

64 In textbook treatments, PBE is often defined as something that is a bit stronger than the definition I have given;
that is, not only is it a weak PBE that is subgame perfect, but other subtle conditions are typically imposed. See
for example Fudenberg and Tirole (1991a, pp. 331-333) or MWG (p. 452).

65Recall that this is called a game form rather than a game because payoffs are not specified.
66To keep it simple, this example is such that even the implausible PBE are outcome-equivalent (i.e. have the

same stategy profile) to plausible PBE. But it is easy to construct variants where this need not be the case: see
MWG Example 9.C.5 (p. 289) for one.
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Part 1 of the definition is the same as that of weak PBE. The 2nd part is a consistency of beliefs

notion that is more demanding than that of weak PBE.67 To interpret it, first note that given a fully mixed

strategy profile, every information set is reached with positive probability, and hence Bayes rule completely

determines a belief system. Thus, the definition roughly requires that the equilibrium beliefs be “close

to” beliefs that are fully determined via Bayes rule from a fully mixed strategy profile that is “near by” the

equilibrium strategy profile. There is obviously a connection here with trembling hand perfect equilibrium,68

since these “near by” fully mixed strategy profiles can be thought of as arising from mistakes in playing the

equilibrium strategies. Since sequential equilibrium places more restrictions on belief consistency than weak

PBE, it follows that every sequential equilibrium is a weak PBE. The converse is not true, as we now show

by example.

Example 32. Recall Example 30 that had pb, u, lq as weak PBE strategies. Let us argue that the unique

SE strategy profile is the unique SPNE: pt, u, rq. Let σu and σd denote the probabilities used by player 2;

H3 denote the only non-singleton information set; and let the four decision nodes be denoted as x1, x2, x3u

and x3d respectively. In any fully mixed strategy profile, σ, Bayes rule implies

µσpx3uq “
Probpx3u|σq

ProbpH3|σq
“
Probpx3u|x2, σqProbpx2|σq

ProbpH3|x2, σqProbpx2|σq
.

[Read Probpx3u|x2, σq as the probability that x3u is reached given that x2 has been reached and σ is the

profile being played, and so forth.]

Canceling terms and noting that ProbpH3|x2, σq “ 1, we have

µσpx3uq “ Probpx3u|x2, σq “ σu.

Thus, for any sequence of fully mixed profiles tσku8
k“1 that converges to a profile σ˚, the limit of the

sequence of beliefs derived from Bayes rule necessarily has µσ˚ px3uq “ σ˚
u . Since player 2 being sequentially

rational imposes that σ˚
u “ 1 in any SE, σ˚, it follows that µσ˚ px3uq “ 1 and hence player 3 must play r in

any sequential equilibrium. It is then uniquely sequentially rational for player 1 to play t in any SE. �

Remark 28 (Lower hemicontinuity of Beliefs in a SE). To get a better intuition for how sequential equilibrium

works, it is useful to think about the mapping from mixed strategies to beliefs for the relevant player(s) in

a game. Consider Example 30. Holding fixed a σu, we can think of the allowable beliefs in a weak PBE

by defining the maximal belief correspondence Bpσtq which satisfies the property that Bpσtq is derived from

Bayes Rule whenever possible, i.e. so long as σt ą 0. Graphically, this is illustrated in Figure 7. The key

67 It is possible to show that for any strategy profile σ, there is a system of beliefs satisfying this consistency
requirement.

68Note, however, that we only defined THPE for normal form games. It turns out that a normal form THPE
need not even be a SPNE. There is a definition of THPE for extensive form games that I won’t pursue in detail
(cf. MWG pp. 299-300). Briefly, an extensive form THPE is defined using normal form THPE but applied to the
“agent normal form” of the extensive form, in which each information set of a player is treated as belonging to a
separate copy of that player—so that trembles are independent across a player’s information sets. The upshot is
that extensive form THPE is slightly more demanding than sequential equilibrium (i.e., every extensive form THPE
is a sequential equilibrium strategy profile, but not vice-versa); nonetheless, generically they coincide (i.e., if we fix
a finite extensive game form, the two concepts produce different sets of equilibria for a set of payoffs of Lebesgue
measure 0).
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point of course is that when σt “ 0, Bayes Rule does not apply, and any Bp0q P r0, 1s is permitted in a

weak PBE. However, SE requires that Bp0q be the limit of Bpσtq as σt Ñ 0. In other words, SE requires

that we take a selection from correspondence B that satisfies lower hemicontinuity. Indeed, this was one of

motivations behind how Kreps and Wilson (1982) arrived at their definition of SE.

Exercise 14. Verify that in any SE in Example 31, µpxhq “ µpxlq “ 1
2
, and work through the lower

hemicontinuity of beliefs idea for this case.

Earlier, we noted that it is clear that every SE is a weak PBE. In fact, one can show that any SE is

subgame perfect (MWG Proposition 9.C.2), hence it follows that every SE is a PBE (not just a weak PBE).

We can summarize with the following partial ordering.

Theorem 10 (Solution Concepts Ordering). In any extensive form game, the following partial ordering

holds amongst solution concepts:

tSEu Ď tPBEu Ď

tweak PBEu
Ş

tSPNEu

Ď

tweak PBEu
Ť

tSPNEu

Ď tNEu .

It is fair to say that in extensive form games, sequential equilibrium is a fairly uncontroversial solution

concept to apply, at least amongst those who are willing to accept any type of “equilibrium” concept (rather

than sticking to just rationalizability, for example). However, it turns out that even sequential equilibrium

may not be completely satisfying in some games.

Example 33 (Predation version 4). This is another version of the Predation game, whose extensive form is

drawn in Figure 8. I leave it as an exercise to show that px, fq and pe1, aq are both SE strategy profiles (the

latter is straightforward; showing the former requires you to find a sequence of fully mixed strategies and

implied beliefs that make the required equilibrium beliefs consistent). However, the equilibrium play px, fq

can be argued to be implausible. Observe that by playing e2, player 1 will get a payoff of no more than -1,
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Figure 8 – Extensive Form for Predation version 4

with certainty. Hence, that strategy is strictly dominated by the strategy x. Accordingly, if player 2 must

actually move in the game, he should realize that player 1 must have played e1 (with the anticipation that

player 2 will play a), to which his best response is indeed a. Given this logic, player 1 should play e1 rather

than x; hence px, fq is not plausible. �

This is an example of forward induction, because we are requiring player 2 to reason about what he

should play at his information set not just on the basis of what will happen after his move (that is backward

induction, which is degenerate in this game for player 2 since he is the last mover), but moreover on the

basis of what player 1 could have rationally done prior to 2’s move.

Exercise 15. Prove that in the Example 33, there is a SE with strategy profile px, fq.

Applying forward induction to refine predictions in a game can be somewhat controversial.69 However,

as you will see when studying signaling games, without it, the set of (sequential) equilibria can be unbearably

large; whereas applying it yields a narrow set that accords with intuition.70

5. Market Power

In this section, we are going look at a few static models of markets with a small number of firms. We’ve

already seen some examples before: two-firm Bertrand and Cournot competition. The idea now is to

69This is partly because there is some tension between the motivating idea behind forward induction and the idea
of trembles, which is used to intuitively justify SE. In particular, forward induction operates on the notion that an
out-of-equilibrium action should be interpreted as a “rational” decision by a player, and subsequent players should
ask themselves what to play based on this interpretation (think of the logic we used in Example 33). On the other
hand, trembles are based on the idea that out-of-equilibrium actions result from “mistakes” rather than intended
deviations. This is a subtle issue that is more suitable for an advanced course, but do come to talk to me if you are
interested in discussing it more.

70 For those of you more cynical: this is of course the usual rhetoric that means “accords with the dominant
thinking of many people who have thought about this.”

54



generalize those examples into some broad ideas of oligopoly markets. Throughout, we take a partial-

equilibrium approach, focussing on only one market.

5.1. Monopoly

You’ve seen competitive market analysis earlier in the year; that is a benchmark against which we can view

the effect of market power. We begin this section by looking at the other extreme where a single firm

produces the good, known as a monopoly.

Market demand for the good at price p ě 0 is given by a function xppq, where x : R` Ñ R` Y

t`8u. Implicit in this formulation is the assumption that consumers are not strategic players, and they are

anonymous to the firm in the sense that the firm cannot charge separate prices to different consumers. We

assume that xppq “ 0 for all p ě p̄ P p0,8q, and that xp¨q is strictly decreasing on r0, p̄s (thus xpqq “ `8 ùñ

q “ 0). The monopolist knows the demand function, and can produce quantity q P R` at a cost cpqq, where

c : R` Ñ R`. Define the inverse demand function, p : r0, xp0qs Ñ R` by ppqq “ mintp : xppq “ qu. Observe

that pp0q “ p̄, and for all q P p0, xp0qs, ppqq “ x´1pqq, so that pp¨q is strictly decreasing on r0, xp0qs.

Rather than writing the monopolist’s objective as choosing price, it is convenient to take the equivalent

approach of maximizing quantity, so that the objective is

max
qPR`

ppqqq ´ cpqq. (8)

Under some assumptions, this problem will have a unique solution that can be found by analyzing the first

order condition. The assumptions are:

i) pp¨q and cp¨q are twice differentiable on their domains. [So we can take 1st and 2nd derivatives.]

ii) pp0q ą c1p0q. [So choosing q “ 0 will not be optimal for the monopolist.]

iii) There is a unique qe P p0,8q such that ppqeq “ c1pqeq; and p1pqeq ă c2pqeq. [This will be the socially

optimal quantity, and also ensure a solution to the monopolist’s problem.]

iv) p2pqqq ` 2p1pqq ´ c2pqq ă 0 for all q P p0, qes. [Will ensure that FOC is sufficient.]

Assumption (iv) seems convoluted, but is satisfied under various more primitive assumptions. For

example, it holds under linear demand pppqq “ a´ bqq and convex costs.

Recall that in a competitive market, price = marginal cost, so that qe defined above is the unique

competitive market quantity, and also that the socially optimal quantity.71 In contrast:

Proposition 10. Under the stated assumptions, the monopolist’s problem has a unique solution, qm P p0, qeq,

given by

p1pqmqqm ` ppqmq “ c1pqmq. (9)

The monopolist produces less than the socially optimal quantity. Moreover, ppqmq ą cpqmq, so that price

under monopoly exceeds marginal cost.

71The latter part of Assumption (iii) is needed to guarantee that qe is indeed a social optimum. Can you see why?
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Proof. If a solution exists to (8), call it qm, Assumption (i) implies that the objective is differentiable and

must satisfy the FOC:

p1pqmqqm ` ppqmq ď c1pqmq, with equality if qm ą 0.

The LHS above is marginal revenue while the RHS is marginal cost. By Assumption (iii), ppqq ă c1pqq

for all q ą qe, and since p1p¨q ă 0, it follows that qm P r0, qes. Since a continuous function attains a maximum

on a compact set, there is a solution to (8).

Assumption (ii) implies that qm ą 0 and the FOC must hold with equality. Assumption (iv) implies

that the objective is strictly concave on p0, qes, hence there is a unique solution to the FOC. �

The key observation here is that a monopolist recognizes that by reducing quantity, it increases revenue

on all the units sold because the price goes up on all units, captured by the term p1pqmqqm in (9). On the

other hand, the direct effect of reducing quantity only decreases revenue on the marginal unit, captured by

the term ppqmq in (9). When the quantity is qe, the marginal reduction in revenue is compensated equally

by the cost savings, since ppqeq “ c1pqeq. Thus, the inframarginal effect of raising revenue on all other units

makes it is optimal for the monopolist to produce quantity below qe. Note that the inframarginal effect is

absent for firms in a competitive market.

The deadweight welfare loss from a monopoly can be quantified as

ż qe

qm
rppqq ´ c1pqqsdq.

Graphically, this would be the region between the inverse demand curve and the marginal cost curve that is

foregone under a monopoly relative to a competitive market.

Remark 29. As is suggested by the above discussion of inframarginal effects, the social inefficiency arising

from a monopoly is crucially linked to the (often plausible) assumption that the monopolist must charge

the same price to all consumers. If the monopolist could instead perfectly price discriminate in the sense

of charges a distinct price to each consumer (knowing individual demand functions), then the inefficiency

would disappear — although all the surplus would be extracted by the monopolist. See MWG (p. 387) for

a formal treatment.

5.2. Basic Oligopoly Models

Let us now turn to oligopoly markets with at least 2 firms. We already studied price competition (Bertrand)

and quantity competition (Cournot) with exactly two firms (a duopoly). The first task is to generalize to

an arbitrary number of firms.

5.2.1. Bertrand oligopoly

The general Bertrand case is straightforward extension of the duopoly analysis and left as an exercise.

Exercise 16. Consider the Bertrand model of Example 10, except that there are now an arbitrary number

of n ě 2 firms, each with symmetric linear costs. Assume that if multiple firms all charge the lowest price,

they each get an equal share of the market demand at that price. Show that when n ą 2, (i) there are pure
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strategy Nash equilibria where not all firms charge marginal cost; (ii) but in any Nash equilibrium, all sales

take place at price = marginal cost (do it first for PSNE; then extend it to MSNE).72

Thus, under Bertrand competition, we see that just two firms is sufficient to make the market perfectly

competitive. Although this is striking, it doesn’t seem realistic in some applications. As we will see next,

the Cournot model is more satisfying in this regard (although arguably not as appealing in the sense that

we often think about firms as choosing prices rather than quantities—though in some cases, quantity choice

is not unreasonable).

5.2.2. Cournot oligopoly

We generalize the linear Cournot setting of Example 7 as follows. There are n ě 2 identical firms. Each

simultaneously chooses quantity qi P R`. Each has a twice differentiable, strictly increasing, and weakly

convex cost function cpqq, where c : R` Ñ R`. The inverse market demand given the total quantity,

Q “
ř

i qi, is given by ppQq, where p : R` Ñ R` is twice differentiable, strictly decreasing, and weakly

concave for all Q ě 0.73 Assume that pp0q ą c1p0q. Also assume that there is a unique socially efficient

total quantity Qe P p0,8q. Social efficiency requires that the aggregate output be distributed efficiently

across firms; since costs are weakly convex, one way to do this is to have each firm produce 1
n
Qe (this will

the unique way if costs are strictly convex). Thus, we have ppQeq “ c1p 1
n
Qeq, i.e. the marginal cost for each

firm is the price at the socially efficient aggregate quantity.

Now let us look for a symmetric pure strategy Nash equilibrium for the profit-maximizing firms in this

market. Taking as given other firms’ quantity choices, firm i’s objective is to choose qi to maximize

πipqi, q´iq “ pp
ÿ

j‰i

qj ` qiqqi ´ cpqiq.

In a symmetric equilibrium, we cannot have qi “ 0, since pp0q ą c1p0q. So a symmetric equilibrium must

have qi ą 0 for all i. This means that the FOC must be satisfied with equality for each firm:

p1p
ÿ

j‰i

qj ` qiqqi ` pp
ÿ

j‰i

qj ` qiq ´ c1pqiq “ 0. (10)

The assumptions we made guarantee that the problem is strictly concave when qi ą 0 (for any q´i), so the

FOC is also sufficient for a maximum. In a symmetric equilibrium, each firm produces the same quantity,

q˚ “ 1
n
Q˚, where Q˚ solves

p1pQ˚q
1

n
Q˚ ` ppQ˚q “ c1p

1

n
Q˚q. (11)

Our assumptions guarantee that there is a unique solution Q˚ ą 0 to the above equation. We therefore

conclude that:

Proposition 11. Qe ą Q˚ ą qm, where qm is the monopoly quantity. Moreover, the market price is strictly

above each firm’s marginal cost.

72For the MSNE argument, you can assume that that there is a well-defined monopoly price (i.e., pp ´ cqQppq has
a unique, finite maximum).

73The assumption that pp¨q is weakly concave is not a conventional property of demand functions, although it is
satisfied for linear demand. It is assumed to ensure that the payoff function for each firm is quasiconcave in its own
quantity, which recall is an assumption to guarantee existence of PSNE in infinite games (Theorem 3).
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Proof. If Q˚ “ qm, the LHS of (11) is strictly greater than the LHS of (9); while the RHS is weakly smaller

than that of (9). Thus equation (11) is not satisfied when Q˚ “ qm. By concavity of LHS and convexity

of RHS of (11), we must have Q˚ ą qm.

If Q˚ “ Qe, the RHS of (11) is equal to second term of the LHS, so is strictly smaller than the LHS,

since p1 ă 0. Again, by concavity/convexity, we must have Q˚ ă Qe.

That price is above marginal cost follows immediately from (11) and that p1 ă 0. �

Thus, the total quantity under Cournot oligopoly with 2 or more firms lies strictly between the socially

optimal quantity and the monopoly quantity. The intuition is as follows: following the same logic as in

the monopoly case, each firm has an incentive to reduce its individual quantity when the aggregate output

is the social optimum, because of the inframarginal effect. However, as compared to the monopoly case,

reducing quantity slightly only has an individual inframarginal benefit of p1pQq 1
n
Q, since each firm has 1

n

market share. This leads to a smaller reduction in quantity than would occur under a monopolist. To put

it differently: when reducing quantity, each oligopolist has a positive externality on all the other firms (since

it leads to an increase in price on all the units they sell) that it does not internalize.

This line of reasoning suggests that n Ñ 8, the incentive to reduce quantity starting at the social

optimum would vanish, since each individual firm would only be producing a very small quantity and thus

the individual inframarginal gain is small. On the other hand, one might worry that because there are more

and more firms, even if any individual firm’s quantity reduction (relative to the social optimum) vanishes,

the total quantity reduction does not. This turns out not to be the case under so long as the socially optimal

quantity remains bounded.74 In the proposition below, we introduce a subscript index for the number of

firms.

Proposition 12. Assume that tQe
nu8

n“1 is bounded. Then limnÑ8 Q˚
n “ limnÑ8 Qe

n.

Proof. Rewrite equation (11) as

´p1pQ˚
nq

1

n
Q˚

n “ ppQ˚
nq ´ c1p

1

n
Q˚

nq.

Let a finite upper bound on Qe
n be Q̄e. Proposition 11 implies that for any n, Q˚

n P rqm, Q̄es, hence Q˚
n is

uniformly bounded. Since p is twice differentiable, p1pQ˚
nq is also uniformly bounded. Thus the LHS above

converges to 0 as n Ñ 8. So the RHS must, as well. This implies the result. �

Exercise 17. Using the linear Cournot model of Example 7, but now allowing for n ě 2 identical firms,

solve explicitly for the symmetric PSNE quantities and market price. Verify directly the statements of

Proposition 11 and Proposition 12 for this example.

5.3. Stackelberg Duopoly

In a Stackelberg duopoly, both firms choose quantities, but one firm moves first and the second observes

the first mover’s choice before making its choice. The important point is that the first mover is able to

make a commitment to its quantity that the second mover must incorporate into its choice. The standard

74The socially optimal quantity could, in principle, go to 8 even though demand does not change, because by
adding firms we are changing the aggregate production technology. For instance, when cp¨q is strictly convex with
cp0q “ c1p0q “ 0, then with a very large number of firms, society can produce large quantities at close to zero total
cost by making each firm produce a very small quantity.
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application is to a market where there is an incumbent who is facing a potential entrant, with the incumbent

being able to pre-commit before the entrant arrives.

To illustrate the main idea, consider a linear market competition model, where inverse demand is given

by ppQq “ maxt0, a´ bQu, and two identical firms have linear costs cpqiq “ cqi, where a, b, c ą 0 and a ą c.

Firms choose non-negative quantities, but firm 1 chooses its quantity before firm 2 (the game is one of perfect

information). We call this the linear Stackelberg Duopoly. Note that a strategy for firm 2 is a function

from R` to R`.

We begin by observing that there there are plenty of pure strategy Nash equilibria.

Exercise 18. Show that in the linear Stackelberg Duopoly, for any pq1, q2q P R
2
` such that q1 ď a´c

b
and

q2 “ a´c´bq1
2b

, there is a pure strategy Nash equilibrium where firm 1 chooses q1 and firm 2 chooses q2 on the

equilibrium path.

However, most of these Nash equilibria rely upon incredible threats by firm 2: they are not subgame

perfect.

Proposition 13. The linear Stackelberg Duopoly has a unique SPNE: firm 2 plays s2pq1q “ maxt0, a´c´bq1
2b

u

and firm 1 plays s1 “ a´c
2b

. The equilibrium path quantity choices are therefore q1 “ a´c
2b

and q2 “ a´c
4b

, so

that total equilibrium quantity is 3pa´cq
4b

.

Proof. Exercise. �

Thus, in the linear Stackelberg duopoly, we see that firm 1 is more aggressive (produced more) and firm

2 is less aggressive (produces less) than in the Cournot duopoly. Total market quantity is between the total

of a Cournot duopoly (2pa´cq
3b

) and the efficient quantity (a´c
b

q. You can verify that firm 1’s profit is higher

here than in the Cournot game, and also higher than firm 2’s. On the other hand, firm 2 does worse here

than in the Cournot game.

The themes apply to general Stackelberg duopoly settings (not just this linear case). The main point

is that there is a first mover advantage to firm 1. Since quantity choices are strategic substitutes (each

firm’s best response is a decreasing function of the other firm’s quantity), the first mover is able to exploit

its ability to commit by increasing its quantity relative to the Cournot individual quantity, ensuring that

the second mover will reduce its quantity in response.

Remark 30. Notice that we have restricted attention to quantity competition above in treating the Stackel-

berg setting. This is the standard practice. But, one could study sequential moves by the two firms with

price competition. I will assign a homework problem on this.

5.4. Price Competition with Endogenous Capacity Constraints

In studying Bertrand competition to this point, we have assumed that a firm can produce any quantity that

is demanded at the price it charges. From a short run perspective, this is unrealistic: given that various

factors of production are fixed in the short run (after all, that is the definition of short run), there may be

an upper bound on how much a firm can supply, i.e. there may be a capacity constraint. In this section,

I mention how capacity constraints can be used to “bridge” the Bertrand and Cournot models: intuitively,

the quantity choices in Cournot can be viewed as long-run choices of capacity, so that firms choose prices in

the short-run a la Bertrand given these capacity choices.
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The following example illustrates how capacity choices can fundamentally change the nature of Bertrand

competition.

Example 34. Consider the linear Bertrand duopoly model of Example 10. Suppose now that each firm is

exogenously capacity constrained so that it cannot produce more than q̄ ą 0 units. Without specifying all

the details of how the market works, let us assume only that if pi ą pj , then firm j will sell at price pj a

quantity that does not exceed its capacity, and if this is not sufficient to cover the market demand at price

pj , then firm i will sell to some strictly positive mass of consumers at price pi.

The main observation is that if q̄ ě Qpcq, then there is a PSNE where both firms price at marginal cost.

But if q̄ ă Qpcq, then it is no longer a Nash equilibrium for both firms to price at marginal cost. Why?

As you will see in a homework problem, for an appropriate specification of how the market works and a

wide range of capacity constraints, q̄1 and q̄2 (this allows the constraints to differ across firms), the unique

equilibrium in the pricing game involves both firms setting an identical price equal to ppq̄1 ` q̄2), where

pp¨q is the inverse demand function. In other words, the outcome of Bertrand with exogenous capacity

constraints is just like what happens in a Cournot model if firms happen to choose quantities equal to these

capacity constraints! But now, consider a prior stage where firms get to endogenously choose their capacity

constraints, anticipating that after these are mutually observed, they will play a subsequent Bertrand-

with-capacity-constraints pricing game. Intuitively, SPNE of this two-stage game have to yield capacity

choices equal to the Nash quantity choices of the Cournot model, since in any subgame following capacity

choices pq1, q2q, the resulting payoffs are the same as in the Cournot model with quantity choices pq1, q2q.

See Kreps and Scheinkman (1983) for a thorough analysis. This formally justifies the interpretation of

Cournot quantity competition as capturing long-run capacity choices followed by short-run Bertrand price

competition.

Remark 31. In the above two-stage model, it is essential that the capacity choices are mutually observed

before the price competition. If firms cannot observe each other’s capacities when choosing prices, then it

is as though they choose capacities and prices simultaneously. Convince yourself that in such a variation,

Nash equilibria must yield zero profit (marginal cost pricing), just like unconstrained Bertrand competition.

6. Repeated Games

An important class of dynamic games are so-called repeated games. They are used to study strategic

interactions that are ongoing over time. For instance, a typical application of the Prisoner’s Dilemma or

Trust Game (Example 4) is to represent a situation where two parties have to exert some individually costly

effort in order to achieve a socially beneficial outcome, but there is an incentive to free ride on the other party.

Often, such interactions do not occur once and for all; rather they occur repeatedly, and each player is able

to observe something about the past history of play and condition her own behavior on that information.75

This implies that actions are strategically linked over time. Going back to the Trust Game, one intuition

is that under repeated interaction, a player may not Cheat because she fears that her partner will retaliate

by in turn Cheating in the future. (We will see under what conditions this reasoning can be justified.) As

a general principle, the inter-temporal strategic linkage can result in a much richer set of possible behavior

than mere repetition of the static game prediction.

75For example, you can think about your own experience exerting effort in a study group.
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6.1. Description of a Repeated Game

Stage Game. Formally, a repeated game consists of repetitions of a stage game. Although the stage

game itself could be a dynamic game, we will focus on the normal-form representation of the stage game, so

that a stage game is a one-period simultaneous move game of complete information given by xI, tAiu, tπiuy,

where I is the set of players, each Ai is the set of actions (or pure strategies of the stage game) for player

i, and πi : A Ñ R is the stage-game von Neumann- Morgenstern utility function for player i (where

A :“ A1 ˆ ¨ ¨ ¨ˆAI). Assume the stage game is finite in the sense that I and A are finite. As usual, this can

be relaxed at the cost of technical complications.76 In the standard way, we can extend each πi : ∆pAq Ñ R.

I will use the notation αi to denote an element of ∆pAiq and refer to this as a mixed action.

Repeated Game. A repeated game (sometimes also referred to as a supergame) is formed by a repetition

of the stage game for T P t1, . . . ,8u periods. If T is finite, we call it a finitely repeated game; if T “ 8, we

call it an infinitely repeated game. We will only consider repeated games of perfect monitoring: this means

that at the end of every period, every player observes the actions chosen by all players in that period.77

Strategies. It is convenient to represent strategies in the repeated game as behavioral strategies. Denote

the history of actions at period t as ht “ ta1, . . . , at´1u, where for any t, at “ pat1, . . . , a
t
Iq. Thus, ati refers to

player i’s action at time t. Let Ht denote the space of all possible histories at time t, and let H :“
ŤT

t“1H
t

denote the space of all possible histories in the repeated game. A (pure) strategy for player i in the repeated

game can be represented as a function si : H Ñ Ai. In words, it specifies what action to take in any period

following any history at that period. A (behavioral) mixed strategy can be represented as σi : H Ñ ∆pAiq.

Payoffs. If T is finite, then we could represent payoffs as usual via terminal nodes. But in an infinitely

repeated game, there are no terminal nodes. So we need to take a different approach. Notice that any

pure strategy profile in the repeated game maps into a unique profile of actions in each period (i.e., a unique

path through the game tree), and a mixed strategy maps into a distribution over actions in each period.

Thus, any (possibly mixed) strategy profile generates a sequence of expected payoffs for each player in each

period. It suffices therefore to specify how a player aggregates a sequence of period-payoffs into an overall

utility index. The standard approach is to assume exponential discounting, so that a sequence of expected

payoffs pv1i , v
2
i , . . .q yields player i an aggregate utility of

ũiptvtiuq “
T

ÿ

t“1

δt´1vti ,

76For example, if A is not finite, one needs to assume that a Nash equilibrium exists in the stage game, and also
make a boundedness assumption on payoffs.

77Repeated games of imperfect monitoring, or unobservable actions, are important but beyond the current scope.
An excellent textbook reference is Mailath and Samuelson (2006).
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where δ P r0, 1q is the discount factor, assumed to be the same across players for simplicity.78 When dealing

with infinitely repeated games, it is useful to normalize this into average discounted payoffs,

uiptvtiuq “ p1 ´ δq
8
ÿ

t“1

δt´1vti . (12)

To understand the normalization, let Ui be the value of (12) for some sequence of (possibly time-varying)

payoffs in each period. Now if we insert the constant Ui in place of vti for all t into (12), we would get

p1 ´ δq
ř8

t“1 δ
t´1Ui, which evaluates precisely as Ui. Thus, in the infinite horizon, we are justified in

interpreting (12) as the average discounted payoff: it gives a utility level such that if the player received that

utility level in every period, he would have the same average discounted utility as the discounted average of

the original stream of period-utilities. Notable then is that by using the average discounted payoff we put

the entire repeated game payoff on the “same scale” as any one period.

Remark 32. Above, I have assumed that δ ă 1. This means that periods are not treated symmetrically,

since a player has a preference for the same period-payoff sooner than later. For finitely repeated games

there is no difficulty whatsoever with allowing δ “ 1. For infinitely repeated games, the difficulty is that

when δ “ 1, total payoffs can be unbounded (even though stage-game payoffs are bounded), which can

create problems. Nevertheless, if one wants to treat periods symmetrically in an infinitely repeated, there

are criteria that can be used instead of exponential discounting, but I will not pursue those here.79

Remark 33. The previous remark also points to why the normalization from ũi to ui (by multiplying by

p1 ´ δq) is useful for infinitely repeated games: it allows us to take limits as δ Ñ 1 while keeping discounted

payoffs bounded.

Remark 34. The discount factor can be interpreted in the literal way of time preference. But there is an

another interpretation: it can capture uncertainty about when the game will end. That is, an infinitely

repeated game can be interpreted as situation where players know that the game will end in finite time with

probability one, but are unsure of exactly when it will end. To be specific, suppose that players have a

discount factor of ρ P r0, 1s and in addition, also think that conditional on the game having reached period

t, it will continue to period t` 1 with probability λ P r0, 1s (if the game does not continue, we normalize all

payoffs thereafter to zero). Under the condition that either λ or ρ is strictly less than one 1, one can show

that this induces the same expected payoff as a setting where the game continues with probability 1 in each

period, but players have a discount factor δ “ ρλ.

Given this setup for repeated games, we will look at Nash and SPNE equilibria as usual. Observe

that the beginning of every period t ą 1 marks a proper subgame, and these are the only proper subgames

because since we have assumed simultaneous moves in the stage game.

78To write payoffs directly as a function of mixed strategies, we would therefore write

ũipσq “
T

ÿ

t“1

δ
t´1

ÿ

htPHt

Prpht|σqπipσphtqq.

79Probably the most common alternative is known as limit of means criterion, which evaluates a sequence of
period-payoffs by the formula limTÑ8 inf 1

T

ř8
t“1

vti (note: lim inf because limit may not exist); another alternative
is known as the overtaking criterion which just uses limTÑ8 inf

ř8
t“1

vti .
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6.2. The One-Shot Deviation Principle

An essential result in the study of repeated games—indeed, dynamic games in general—is the one-shot

deviation principle. It says that when considering profitable deviations for any player from a SPNE, it

suffices to consider strategies where he plays as he is supposed to at all information sets except one, i.e. he

only behaves differently at a single history. To state the idea precisely, let σi|ht be the restriction of strategy

σi to the subgame following history ht.

Definition 34 (Profitable One-Shot Deviation). Fix a strategy profile σ. A profitable one-shot deviation

for player i is a strategy σ1
i ‰ σi s.t.

1. there is a unique history ht
1

such that for all h̃t ‰ ht
1

, σ1
iph̃

tq “ σiph̃
tq.

2. uipσ
1
i|ht1 , σ´i|ht1 q ą uipσ|ht1 q.

In the Definition above, the first part is what it means to be a one-shot deviation: there is exactly one

history at which the strategies differ. Note, however, that even if a deviation is one-shot, it can have a

significant effect on the path of play, since the behavior at histories subsequent to ht
1

can depend significantly

on exactly what what was played at ht
1

(we’ll see examples later). The second part of the definition is what

it means to for the deviation to be profitable. Note here that the profitability is defined conditional on the

history ht
1

being reached, even though it may not actually be reached given the profile σ. This means that

a Nash equilibrium can have profitable one-shot deviations off the equilibrium path. Yet:

Proposition 14 (One-Shot Deviation Principle). A strategy σ is a SPNE if and only if there are no profitable

one-shot deviations.

Proof. The “only if” is immediate: if there is a profitable one-shot deviation from σ, it cannot be a SPNE.

What needs to be shown shown is the “if” part. We prove the contrapositive: if σ is not a SPNE then there

is a profitable one-shot deviation.

So pick any strategy profile σ and suppose it is not a SPNE. Then there exists a deviation σ̃i that is

profitable for some player i in a subgame following some history ĥt. Without loss of generality, assume

that ĥt “ H, so that the deviation is profitable in the entire game (this is wlog because we can just “zoom

in” on the subgame and treat it as an entire game restricting everything that follows to the subgame).

Let ε ą 0 be the discounted utility gain from the deviation in absolute (rather than average) terms, i.e.

ε :“ ũipσ̃i, σ´iq ´ ũipσq. Since the stage game is finite,80 there exists some (potentially large) T ˚ ă 8 s.t.

δT
˚

1 ´ δ

ˆ

max
aPA

πipaq ´ min
aPA

πipaq

˙

ă
ε

2
.

This implies that at least half the discounted utility gain from deviating to σ̃i must accrue to player i by

period T ˚ — for no matter how big the gains in every period after T ˚, the discounted value is less than ε
2
.81

Hence, there must exist a profitable deviation σ̂i that differs from σi at only a finite number of histories.

80 or, more generally, by an assumption that payoffs in the stage game are bounded
81There is nothing important about choosing a half. The point is that the gains from the deviation in terms of

period-payoffs cannot accrue only too far out in the future, because of discounting. Note that this holds if the game
is finitely repeated even if there is no discounting.

63



Now we use induction to complete the proof. Look at any history, ht
1

, such that there is no possible

later history at which σ̂i differs from σi. (This is well-defined because σ̂i and σi only differ at a finite number

of histories.) If we modify σ̂i by only replacing σ̂iph
t1

q with σiph
t1

q, is this new strategy still a profitable

deviation from σi? There are only two possibilities:

• If the answer is NO, we are done, since we could take σi, switch it at only history ht
1

with σ̂iph
t1

q, and

we have created a profitable one-shot deviation.

• If the answer is YES, redefine σ̂i by just replacing the behavior at ht
1

with σiph
t1

q, and go back to

the inductive step. Eventually, we must hit the previous bullet and would have found a profitable

one-shot deviation. �

Remark 35. That the game is a repeated game is not important for the one-shot deviation principle. The

argument applies to various classes of extensive form games that are either finite, or more generally, satisfy a

“continuity-at-infinity” condition that is ensured by discounting.82 The canonical class is referred to as multi-

stage games with observable actions: roughly, the only nonsingleton information sets capture simultaneous

moves. See Fudenberg and Tirole (1991a).

The one-shot deviation principle is very useful because it means that we can always focus on “simple”

deviations when thinking about SPNE. Let me stress that the one-shot deviation principle does not apply

to Nash equilibria; we’ll see an example later.

6.3. A Basic Result

The one-shot deviation principle allows us to make a simple but useful observation: repetition of stage-game

Nash equilibria is a SPNE of a repeated game. To state this precisely, say that a strategy profile σ is

history-independent if for all ht and h̃t (i.e., any two histories at the same time period), σphtq “ σph̃tq.

Proposition 15. A history-independent profile, σ, is a SPNE if and only if for each t, σphtq (for any ht)

is a Nash equilibrium of the stage game.

Proof. For the if part, observe that because each σphtq is a Nash equilibrium of the stage game, there is no

profitable one-shot deviation, and hence no profitable deviation by the one-shot deviation principle. For

the only if part, suppose that some σphtq is not a Nash equilibrium of the stage game. Then some player i

has a profitable deviation where he deviates at ht but otherwise plays just as σi; since all others are playing

history-independent strategies, this is indeed a profitable deviation in the subgame starting at ht. �

It is important to emphasize two things about the Proposition: first, it applies to both finitely- and

infinitely-repeated games; second, it does not require that the same Nash equilibrium be played at every

history; only that in any given period, the Nash equilibrium being played not vary across possible histories

at that period. So, for example, if we consider a finitely- or infinitely-repeated version of Battle of the

Sexes (Example 16), the following strategies form a SPNE: in every odd period, regardless of history, row

plays B and column plays b; in every even period, regardless of history, they play C and c respectively.

82Here is a (somewhat contrived, but perfectly valid) counter-example illustrating why some condition is needed
in infinite games: suppose a single player makes an infinite sequence of decisions of Left or Right. If he chooses Left
an infinite number of times, he gets a payoff of 1, otherwise he gets 0. Then there is a profitable deviation from the
strategy of playing Right always (e.g., deviate to playing Left always), but there is no profitable one-shot deviation.
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Consequently, there are an infinite number of pure strategy SPNE in the infinitely repeated Battle of Sexes,

or a large number in the finitely repeated case when there are many periods.

Although Proposition 15 is not terribly exciting, one reason to state it is that it implies existence of

SPNE in infinitely repeated games (under our maintained assumptions).

Corollary 7. If the stage game has a Nash equilibrium,83 then the repeated game has a SPNE.

6.4. Finitely Repeated Games

Proposition 15 doesn’t say anything about strategies that are not history independent. Moreover, in games

with a unique stage game Nash equilibrium (such as Matching Pennies or the Trust Game), it doesn’t offer

existence beyond repetition of the same (possibly mixed) action profile. As it turns out, there are no other

SPNE in such cases for finitely repeated games!

Proposition 16. Suppose T ă 8 and the stage game has a unique (possibly mixed) Nash equilibrium, α˚.

Then the unique SPNE of the repeated game is the history-independent strategy profile σ˚ s.t. for all t and

ht, σ˚phtq “ α˚.

Proof. The argument is by generalized backward induction. In any SPNE, we must have σ˚phT q “ α˚ for

all hT . Now consider period T ´1 with some history hT´1. There are no dynamic incentive considerations,

since no matter what players do at this period, they will each get πipα
˚q in the last period. Thus each

player must be playing a stage-game best response to others’ play in this period. Since α˚ is the unique

stage-game Nash equilibrium, we must have σ˚phT´1q “ α˚; otherwise there is a profitable deviation for

some player. Induction yields the same conclusion for all periods. �

The Proposition implies, for instance, that no matter how many periods it is repeated, so long as there

are only a finite number of repetitions, the Trust Game has a unique SPNE where each player plays Cheat

in every period.

On the other hand, we can have interesting history-dependent play in finitely repeated games if there

are multiple Nash equilibria of the stage game. In such cases, there can be SPNE in the repeated game

where some periods involve action profiles being played that are not Nash equilibria of the stage game. The

following example illustrates some general principles about sustaining “good” outcomes in repeated games.

Example 35 (Modified Prisoner’s Dilemma). Let δ “ 1 (no discounting) and T “ 2 and consider the

following stage game:

L C R

T 10,10 2,8 -5,13

M 8,2 5,5 0,0

B 13,-5 0,0 1,1

There are two PSNE in the stage game: MC and BR. This has a Prisoner’s Dilemma flavor because in

the stage game, both players would be better off if they could somehow manage to play TL, but the problem

is that each has a unilateral deviation from that profile that is profitable (B and R respectively). So the stage

game PSNE are pareto-inefficient. From Proposition 15 we know there are at least four history-independent

83To be clear: this is automatic if the stage game is finite, but the statement is intended to emphasize that the
result also applies to infinite stage games that have Nash equilibria.
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SPNE of the repeated game, where the outcomes are playing MC in each period, BR in each period, or MC

in one period and BR in the other.

But we can actually do better: there is a SPNE of the repeated game where TL is played in the first

period. Consider the following strategy profile: TL is played in the first period, and in the 2nd period,

s2 pTLq “ MC and s2
`

h2
˘

“ BR for all h2 ‰ TL. Clearly, there are no profitable deviations in the 2nd

period alone, since MC and BR are both Nash equilibria of the stage game (why would it not suffice to only

note that MC is?). In the first period, a player’s expected payoff from following his prescribed strategy

(given that the opponent is playing his prescribed strategy) is 10 ` 5 “ 15. By deviating from T or L

respectively, either player can get at most 13 ` 1 “ 14. Hence, there is no profitable deviation.

Now suppose we relax the assumption that δ “ 1. Plainly, if δ is close enough to 1, the same logic

would apply. How high must δ be in order to sustain a pure-strategy SPNE (PSSPNE) where TL is played

in the first period? As already noted, in period 2, following any history, either MC or BR must be played.

Intuitively, the best hope of sustaining TL in period 1 is to play the above-specified s2 in period 2 — this

provides the “highest reward” for playing TL in period 1 and the “worst punishment” for playing anything

else, subject to the requirement of subgame perfection. So we can sustain TL in the first period of a

PSSPNE if and only if 10 ` 5δ ě 13 ` δ, or δ ě 3
4
.

A related point is that if we added periods, then the requirement on the discount factor becomes less

demanding. As an illustration, consider now T “ 3. If δ ě 3
4
, we can sustain outcomes of TL in the first

two periods. If δ ă 3
4
, we know from the above analysis that TL cannot be sustained in the 2nd period of a

PSSPNE. But how about having it played in just the first period? This can be done in a PSSPNE if and

only if 10 ` 5δ ` 5δ2 ě 13 ` δ ` δ2, or δ ě 1
2
.84

As a final variation, suppose again T “ 2, but we now modify the game so that each player has an

additional action in the stage game, D (for Destruction) such that the payoffs from DD are p´x,´xq, the

payoffs from aD for any a ‰ D is p0,´xq and symmetrically the payoffs from Da for any a ‰ D are p´x, 0q.

Let x ą 0. Since D is strictly dominated for both players, it does not change any of the prior analysis for

PSSPNE of the repeated game. However, if we turn to Nash equilibria of the repeated game, things are

quite different.85 TL can be sustained in the first period in a Nash equilibrium so long as 10 ` 5δ ě 13, or

δ ě 3
5
. A NE strategy profile would be as follows: play TL in the first period, and s2 pTLq “ MC and

s2
`

h2
˘

“ DD for all h2 ‰ TL. This is a Nash equilibrium when δ ě 3{5 because given column’s play,

a best response for row is either to follow the prescribed behavior or to play B in both periods (but not

to play B followed by D), and the former is at least as good as the latter if and only if δ ě 3{5. Notice

that when δ ă 3{5, the row player, say, would deviate with a two-stage deviation — this reiterates that the

one-shot deviation principle does not apply to Nash equilibria. Of course, even when δ ě 3{5, the prescribed

strategy profile is not a SPNE because at any h2 ‰ TL (which are off the equilibrium path), players are not

playing optimally. Thus there are profitable one-shot deviations according to Definition 34; they just occur

at histories that are never reached. �

Remark 36. Note well that actions which are dominated in the stage-game can be played in a SPNE of the

repeated game, even on the equilibrium path. They just cannot be played in the last period of the (finitely)

repeated game. Indeed, we have demonstrated this point in the example above: why so?

84 Showing the “only if” part requires considering various pure strategy profiles and ruling them out as SPNE.
85You can check that in the original game without D, one cannot sustain TL in the first period in a pure strategy

Nash equilibrium unless δ ě 3{4, just as with PSSPNE.
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General principles illustrated by the example:

1. What is needed to sustain stage-game outcomes that are not sustainable in a one-shot game is that

the ability to “reward” current-period behavior with future behavior, or the flip side of the coin, to

“punish” deviations by switching to less-desirable future behavior.

2. The importance of the future — either via high discount factor or the length of the future horizon —

is key: the future losses from deviations must outweigh current gains.

3. Looking only at Nash equilibria instead of SPNE allows a greater scope to deter current deviations,

since more threats about future play are possible. Although this can helpful in sustaining cooperative

outcomes, it is not satisfactory when these threats are incredible (just as NE that are not subgame

perfect are not compelling in simple dynamic games).

Exercise 19. Does Proposition 16 apply to Nash equilibria? That is, does a finitely repeated game have a

unique Nash equilibrium if the stage-game has a unique Nash equilibrium? Prove or give a counter-example.

6.5. Infinitely Repeated Games

Now we turn to infinitely repeated games where T “ 8. (Keep in mind that that δ ă 1 throughout now,

and when we refer to “payoff” of the infinitely repeated game, we mean the normalized or average discounted

payoff.) Our goal is to develop simple versions of a classic result known as the Folk Theorem. Let us begin

with an example.

Example 36 (Infinitely Repeated PD). Consider an infinitely repeated game where the stage game is the

following Prisoner’s Dilemma:86

Player 2

Player 1

C D

C 5, 5 0, 6

D 6, 0 2, 2

As we already noted, Proposition 16 implies that with only a finite number of repetitions, there is a

unique SPNE (no matter the discount factor), with the outcome of DD in every period. In the current

infinitely repeated case, we also know that history-independent repetition of DD is a SPNE. But are there

other SPNE?

Grim-Trigger: Consider the following pure strategy for each player: in the first period, play C; in any

subsequent period, play C if the history is such that neither player has ever played D before, and play D

otherwise. This strategy is known as grim-trigger. Under what conditions, if any, is it a SPNE for both

players to play grim-trigger? By the one-shot deviation principle, we only need to check that there is no

profitable one-shot deviation. In principle, this could be very complicated to check, since there are an infinite

number of histories. But given the simple structure of the strategy profile, it turns out to be straightforward.

First, observe that there is no profitable one-shot deviation at any history where D has already been played

by some player in the past, since such a one-shot deviation would only lower the current period payoff and

86The payoffs are slightly modified from the original Trust Game, but preserving the same qualitative structure —
the reason will become clear.
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not affect future payoffs.87 Thus, we can focus on one-shot deviations at histories where CC has always

been played in the past. Wlog, we can now consider a one-shot deviation for player 1 of playing D at

period 1 (why?). In so doing, player 1 triggers a switch from perpetual CC to (DC,DD,DD, ...q . So the

deviation is not profitable if and only if:

5 ě p1 ´ δq

„

6 ` 2
δ

1 ´ δ



,

or δ ě 1
4
. Remarkably, so long as the discount factor is not too low, we have a SPNE where on the

equilibrium path there is mutual cooperation in all periods! The reason we get this stark difference compared

to the finitely repeated game is that now there is no specter of the last period hanging over the players.88,89

Mathematically, we have a failure of continuity—specifically, lower hemi-continuity—of the SPNE payoff set

at T “ 8.

Tit-for-Tat SPNE: Now consider another strategy: play C in the first period; in any subsequent

period, play whatever the opponent played in the previous period. This is known as tit-for-tat. For mutual

play of tit-for-tat to be a SPNE, we must again show that there is no profitable one-shot deviation. Wlog,

focus on player 1’s deviations. Given the structure of tit-for-tat, whether a one-shot deviation is profitable

at some history ht only depends upon the action profile played in the previous period, at´1, since this is

what determines how the opponent plays in the current period (i.e., what happened in periods t´ 2, t´ 3, ...

is irrelevant). So we consider the four possibilities for at´1. First, suppose at´1 “ CC or t “ 1. In the

subgame starting at ht, not deviating leads to CC in every period on the path of play; a (one-shot) deviation

to D leads to DC,CD,DC,CD,... So the constraint is

5 ě p1 ´ δq
“

6 ` δ p0q ` δ2 p6q ` δ3 p0q ` δ4 p6q ` ¨ ¨ ¨
‰

“ p1 ´ δq
6

1 ´ δ2
,

or δ ě 1
5
. Next, suppose at´1 “ CD. Not deviating at ht leads to DC, CD, DC,... whereas deviating

to C leads to CC, CC, ... So the constraint is

p1 ´ δq
6

1 ´ δ2
ě 5,

or δ ď 1
5
. Third, suppose at´1 “ DC. Not deviating at ht leads to CD, DC, CD, ... whereas deviating

leads to DD, DD, ... So the constraint is

p1 ´ δq
6δ

1 ´ δ2
ě 2,

87You might wonder why we even had to consider such a deviation, since if players follow the prescribed strategies,
there never would be such a history. But it is crucial that we rule out such deviations because we are looking at
SPNE (and the one-shot deviation principle relies on subgame perfection).

88 It is worth emphasizing at this point that what is important is not that the game literally be infinitely repeated,
but rather that there always be a (non-vanishing) possibility that there will be another period, i.e. that “today is
not the end”.

89The difference between finitely- and infinitely-repeated games is less stark when there are multiple Nash equilibria
of the stage game. See Benoit and Krishna (1985).
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or δ ě 1
2
. Finally, suppose at´1 “ DD. Not deviating at ht leads to DD, DD, ... whereas deviating leads

to CD, DC, CD, ... So the constraint is

2 ě p1 ´ δq
6δ

1 ´ δ2

or δ ď 1
2
. Plainly, there is no δ that can satisfy all the four requirements. Thus, mutual tit-for-tat is

not a SPNE in this game, no matter the discount factor. (An exercise below will clarify how generally this

point holds.)

Tit-for-Tat NE: On the other hand, is mutual tit-for-tat a Nash Equilibrium? Answering this requires

some care, because we cannot appeal to the one-shot deviation principle any longer, so we have to consider

all possible deviations. You asked to show in an exercise below that if the opponent is playing tit-for-tat,

then one of the three following strategies is a (not necessarily unique) best response for a player: either (i)

play tit-for-tat; (ii) play D in every period; or (iii) alternate between D and C, beginning with D in period

1. From this, it follows that tit-for-tat is a best response if and only if

5 ě p1 ´ δqmax

"

6

1 ´ δ2
, 6 ` 2

δ

1 ´ δ

*

,

or δ ě 1
4
. Thus, mutual tit-for-tat is a NE for all sufficiently high discount factors. (This is not a

general property of Prisoner Dilemma games; the exact specification of the payoff matrix matters, and for

some specifications mutual tit-for-tat is not a NE for any δ.90)

Other SPNE: So far we have seen that for sufficiently high discount factors, we can achieve a payoff

profile in SPNE of the repeated game that is equal to the efficient payoff profile p5, 5q of the stage game, and

also one equal to the stage game Nash equilibrium payoff profile p2, 2q. But we can also achieve various other

payoff profiles. For example, consider a strategy that modifies grim-trigger as follows: play C in the first

period; in any even period, play D; in any odd period ą 1, play D if either player ever played D in a prior odd

period, otherwise play C. One can show that mutual play of this strategy is a SPNE if δ is sufficiently large.

In this SPNE, each player gets a payoff of p1 ´ δq
`

5 ` 2δ ` 5δ2 ` 2δ3 ` ...
˘

“ p1 ´ δq
´

5
1´δ2

` 2δ
1´δ2

¯

“ 5`2δ
1`δ

.

As you would expect, this converges to 3.5 as δ Ñ 1, which is the simple average of the stage-game payoffs

from CC and DD. �

Exercise 20. Suppose the stage game prisoner’s dilemma has different payoffs: upC,Cq “ p3, 3q, upD,Dq “

p1, 1q, upC,Dq “ p0, 4q and upD,Cq “ p4, 0q. For what discount factors (if any) is tit-for-tat a SPNE in the

infinitely repeated game?

Exercise 21. In Example 36, show that the modified grim-trigger profile described at the end is a SPNE for

all discount factors high enough, and identify the minimum discount factor needed.

Exercise 22. Show that in Example 36, if player 2 plays tit-for-tat, a best response for player 1 is either (i)

play tit-for-tat; (ii) play D in every period; or (iii) alternate between D and C, beginning with D in period

1. [Hint: first consider the payoff to player 1 from using any strategy such that the path of play is CC in

every period. Then argue that if 1’s best response is a strategy such that he takes action D in some period,

then either strategy (ii) or (iii) is a best response.]

90For example, if you replace the DC and CD payoffs by 10,0 and 0,10 respectively, then you can check that the
incentive constraint we just derived cannot be satisfied for any δ; hence mutual tit-for-tat would not be a NE. (This
is the reason I changed payoffs from the original Trust game.)
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6.5.1. Folk Theorems

The natural question raised by the discussion in Example 36 is: what are all the payoff profiles that can be

achieved by a SPNE of an infinitely repeated game? It is this question that various folk theorems provide

answers to. We will state two such theorems, starting with the more straightforward one. We need two

definitions.

Definition 35 (Feasible Payoffs). Let Ṽ :“ tpπ1paq, . . . , πIpaqquaPA be the set of all payoff vectors that are

attained by some action profile of the stage game. The set of feasible payoffs, V , is defined as V :“ copṼ q,

i.e., the convex hull of Ṽ .

To interpret this, draw the set of feasible payoffs for Example 36. The reason we are interested in

the convex hull of the payoffs from action profiles is that as δ Ñ 1, any payoff that is in the convex hull

can be obtained (ignoring any equilibrium or incentive issues for now, just as a matter of “technology”) by

having players play an appropriate sequence of (possibly time-varying) action profiles. Indeed, recall the last

construction in Example 36. The general point was made by Sorin (1986).

It is intuitive that no payoff vector outside the set of feasible payoffs can be achieved as the average

discounted payoffs in a SPNE (or Nash Equilibrium, for that matter) of an infinitely repeated game. But

is any feasible payoff vector supportable in SPNE? It is not hard to see that the answer is no (can you

provide an example?). But it turns out that “almost everything of interest” in V — in the sense of economic

interest, not mathematical — with sufficiently patient players.

Definition 36 (Nash-threat Payoff). Any player i’s Nash-threat payoff is

vi :“ inftvi : D stage-game (possibly mixed) Nash equilibrium α s.t. πipαq “ vi.u

Theorem 11 (Nash-threats Folk Theorem). Fix a stage game and pick any v P R
I such that v P V and for

all i, vi ą vi. There is δ P r0, 1q such that for all δ ą δ, there is a SPNE of the infinitely repeated game

with average discounted payoff profile v.

Proof. To simplify the proof, we will make two assumptions that can be dispensed with:

• at the start of each period, players observe the realization of a (sufficiently rich) public randomization

device that allows them to correlate their strategies.91 This means that in any period, they can play

any mixed action profile in ∆pAq, as opposed to just mixed action profiles in ∆pA1q ˆ ¨ ¨ ¨ ˆ ∆pAIq.

• at the end of each period, players observe not just the realization of the mixed action profile being

played that period, but the actual mixture itself. This means that if a player is supposed to mix

over actions in a particular way (potentially degenerately) at some history but deviates to some other

mixture, this will observed by everyone.

Since v P V is a feasible payoff vector, there is some α˚ P ∆pAq such that πpα˚q “ v. Now consider the

following strategy profile:

91Formally, let tω1, . . . , ωt, . . .u be a sequence of independent draws from a uniform distribution on r0, 1s. We
expand the notion of a history as follows: for each t ě 1, ht “ pa1, . . . , at´1, ω1, . . . , ωtq. Thus, players are able to
condition their behavior at t on not only the history of actions but also the history of (and current) realizations of
the randomization device.
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1. In the first period, play α˚.

2. At any history where α˚ was played in every prior period, play α˚.

3. At any history ht where some α ‰ α˚ was played in some prior period, let t1 :“ mintt̃ : αt̃ ‰ α˚u and

let j :“ minti : αt1

i ‰ α˚
i u. That is, j is a “first deviator”. Let α be the stage-game Nash equilibrium

(possibly mixed) such that πjpαq “ vj . (If there are multiple such stage-game Nash equilibria, any

can be used, but pick the same one every time.) At ht, players play α.

Let’s argue that this strategy profile is a SPNE. On the path of play, α˚ is played every period. Observe

that once there is a deviation in some period, call it t, players are just repeating the same stage-game Nash

equilibrium profile regardless of what happens in any period following t. Thus, by the logic of Proposition 15,

there are no profitable deviations in any subgame following the first deviation. So it suffices to argue that

a unilateral first deviation is not profitable. The first deviator, call him j, can gain at most some finite

amount of period-utility in the period he deviates. But in all future periods, he foregoes vj ´ vj ą 0. Let

d :“ minitvi ´ viu ą 0. Since limδÑ1
δ

1´δ
d “ 8, no deviation is profitable for large enough δ. �

The strategy profile used in the proof is known as Nash Reversion, since the key idea is to punish a

deviator by just playing a stage-game Nash equilibrium in every period thereafter that gives him the lowest

payoff amongst all stage-game Nash equilibria. Note the parallel with grim-trigger in the repeated Prisoner’s

Dilemma. In a homework problem, you will apply this idea to a simple model of repeated market power.

Nash reversion is a very intuitive way to punish a player for deviating from the desired action profile.

It turns out, however, that there may be more “severe” punishment schemes than Nash reversion. The

following example illustrates.

Example 37 (Minmax Punishments). Consider the following stage-game:

Player 2

Player 1

C D

C 3, 3 0, 4

D 4, 1 1, 0

Observe that player 1 has a strictly dominant strategy ofD, whereas player 2’s best response is to “mismatch”

with player 1’s action. So the unique Nash equilibrium of the stage game is DC.

In the infinitely repeated game, can we find a SPNE where CC is played every period with high enough

discount factor? Nash reversion is of no help, since player 1 prefers the the unique Nash equilibrium of the

stage game to CC. Nevertheless, one can do it (and you are asked to, below!). Note that it is easy to

sustain play of CC in a Nash Equilibrium (with patient players); what makes the question interesting is the

requirement of subgame perfection. �

Exercise 23. For the above example, for high enough discount factors, construct a SPNE where CC is

played in every period on the equilibrium path.

To generalize the example, make the following definition.

Definition 37 (Individually Rational Payoffs). A player i’s minmax payoff of the stage game is given by:

v
i
:“ min

α´i

max
αi

πipαi, α´iq.
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A vector of payoffs, v “ pv1, . . . , vIq is strictly individual rational if for all i, vi ą v
i
.

You’ve seen the idea of minmax in a homework problem a while back. A player’s minmax payoff is

the lowest payoff his opponents can “force” him down to in the stage game so long as he plays an optimal

response to his opponents’ play. Thus, a player will obtain at least his minmax payoff in a Nash equilibrium

of the stage game.92 It is in this sense that no payoff below the minmax payoff is “individually rational.”

But then, in any Nash equilibrium—indeed, any rationalizable strategy profile—of the infinitely repeated

game, a player’s average discounted payoff cannot be lower than his minmax payoff either, for he can assure

at least his minmax payoff by just playing a strategy where at each history he myopically best responds to

what his opponents are doing at that history. Our final result of this section is that essentially any vector of

feasible and strictly individually rational payoffs can be obtained as a SPNE of an infinitely repeated game.

Theorem 12 (Minmax Folk Theorem). Fix a (finite) stage game and let V ˚ Ď V be the set of feasible and

strictly individually rational payoffs. Assume the interior of V ˚ is nonempty.93 For any v P V ˚, there is

δ P r0, 1q such that for all δ ą δ there is a SPNE of the infinitely repeated game with average discounted

payoff profile v.

A full proof is somewhat involved, but we can illustrate the key idea how minimax rather than Nash

reversion can be used as a credible threat.

Proof (Partial). Let us assume there are only two players, that the payoff vector we seek, v, is the payoff

vector from some pure action profile, a˚ (i.e., v “ πpa˚q), and that vi ą vP
i
:“ mina´i

maxai
πipai, a´iq. The

last assumption means that each player is getting strictly more than his pure strategy minmax, not just his

his individually rational payoff (cf. fn. 92). Let ami be some action of i that that holds his opponent j to j’s

pure strategy minmax payoff, and consider the following stick-and-carrot strategy:

1. Play a˚
i initially or if a˚ was played in previous period.

2. If there was a deviation from (1), play ami K times and then restart (1).

3. If there is a deviation from (2), begin (2) again.

The lengthK of phase 2 (the “punishment phase”) will be determined momentarily. Let v̄i :“ maxa πipaq

be the maximum stage payoff for i, and let vmi :“ πipa
m
i , a

m
´iq be i’s stage payoff in phase (2). Note that

vmi ď vP
i

ă vi ď v̄i.

Pick any integer K ą 0 such that for both players i, Kpvi ´ vmi q ą v̄i ´ vi.

All we need to check is that there is no profitable one-shot deviation from phase 1 or phase 2.

92Note that the definition above explicitly considers mixed strategies for both player i and his opponents. This
is not innocuous. For example, if you consider simultaneous Matching Pennies where the utility from matching is 1
and mismatching is 0 for player 1, say, then the minmax payoff for player 1 is 0.5 according to our definition; whereas
if we only consider pure strategies, the “pure strategy minmax” payoff would be 1.

93The interior is relative to I-dimensional Euclidean space.

72



There is no profitable one-shot deviation from phase 1 of the strategy profile if

p1 ´ δq
8
ÿ

t“0

δtvi ě p1 ´ δq

˜

v̄i `
K
ÿ

t“1

δtvmi `
8
ÿ

t“K`1

δtvi

¸

ðñ
K
ÿ

t“1

pvi ´ vmi q ě v̄i ´ vi.

Since the LHS Ñ Kpvi ´ vmi q as δ Ñ 1, this inequality holds for all δ ă 1 large enough because of our choice

of K above. Intuitively, a deviation from phase 1 triggers phase 2, in which a player will get a per-period

payoff no higher than his pure strategy minmax, which is strictly less than his payoff in phase 1; if phase 2

is long enough then a patient player will not find this profitable.

In phase 2, deviation is most tempting in the initial period, as that is when there are the most remaining

punishment periods. A one-shot deviation in the initial period is not profitable if

p1 ´ δq

˜

K´1
ÿ

t“0

δtvmi `
8
ÿ

t“K

δtvi

¸

ě p1 ´ δq

˜

vP
i

`
K
ÿ

t“1

δtvmi `
8
ÿ

t“K`1

δtvi

¸

ðñ vmi ` δKvi ě vP
i

` δKvmi

ðñ δKvi `
`

1 ´ δK
˘

vmi ě vP
i
.

The last inequality holds when δ is large enough because vi ą vP
i
. Intuitively, given the specification of

phase 3, the effect of a deviation in the initial period of phase 2 is to swap a future period’s payoff of vi with

a payoff of vP
i
today; when a player is patient, this is not profitable.94

The above logic shows why phase 2 is the “stick” that enforces phase 1, while at the same time phase

1 acts as a “carrot” for carrying out phase 2. This carrot is used to ensure that a player carrying out the

punishment of his opponent even when it is not in her myopic interest to do so. �

See Mailath and Samuelson (2006, p. 101) for a full proof. The general idea remains that a player who

deviates from the equilibrium path is minmaxed by his opponents. To induce the opponents to carry out the

minmaxing, they must be given a small reward once the punishment phase is completed. The assumption

that the interior of V ˚ is nonempty ensures that rewards/punishment incentives can be provided to each

player independently of the others. In particular, the condition rule out any pair of players having identical

payoff functions.95

We can apply the Theorem to Example 37 by deducing what the set V ˚ is there. (Draw a picture.)

We see immediately that the payoff profile from CC (3, 3) is supportable in SPNE as δ Ñ 1, which you were

asked to prove earlier with an explicit equilibrium construction.

Remark 37 (Comments on Folk Theorems). Theorem 11 and Theorem 12 show that standard equilibrium

requirements do very little to narrow down predictions in infinitely repeated games:96 in terms of payoffs,

94Note that if we fix δ ă 1, then the last inequality places an upper bound on K. But that upper bound diverges
to 8 as δ Ñ 1. We have fixed an arbitrary large enough K, and we are then taking δ large.

95 In fact, instead of assuming V ˚ has a nonempty interior, the following weaker “nonequivalent utilities” condition
suffices (Abreu, Dutta, and Smith, 1994): either there are two players, or no two players have identical preferences
in the sense that there are no i, j P I (i ‰ j) and a ą 0, b P R with πip¨q “ aπjp¨q ` b.

96There are also folk theorems for finitely repeated games when there are multiple Nash equilibria of the stage
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more or less “anything can happen” as δ Ñ 1 (subject to being feasible and strictly individually rational).

Some comments:

1. This can make comparative statics difficult.

2. With repeated interactions, players are able to get around inabilities to write binding contracts (at

least in the perfect monitoring environment we have been considering). Anything achievable through

a binding contact can also be attained as a non-binding equilibrium.

3. Which equilibrium gets played could be thought of determined by some kind of pre-play negotiation

amongst players. It is natural to then think that the payoff profile will be efficient, and which efficient

profile is selected may depend on bargaining powers. (There is not much formal work on this yet.)

4. Although the Theorems only discuss SPNE payoffs, one can say a fair bit about what strategies

can be used to attain these payoffs. An important technique is known as self-generation; see

Abreu, Pearce, and Stacchetti (1990).

5. Although they yield multiplicity of equilibria, folk theorems are important because of what they tell

us about how payoffs can be achieved, what the qualitative structure of reward and punishment is

(more relevant under imperfect monitoring, which we haven’t studied here), and what the limitations

are.

6. In applications, people usually use various refinements to narrow down payoffs/equilibria, such as

efficiency, stationarity, Markov strategies, symmetric strategies, etc.

7. It is also important to understand what payoffs are supportable for a given δ (not close to 1). There

is some work on this.

game, see for example Benoit and Krishna (1985).
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7. Signaling and Cheap Talk

Dynamic games of incomplete information are particularly rich in application. In this section, we study a

class of such games that involve asymmetric information, viz. situations where some players hold private

information that is valuable to other players.

7.1. Costly Signaling

We first consider the classic idea of Spence (1973). We’ll frame it in the context of labor markets, as he did,

but it is important to stress that the same principle has been applied in a host of other contexts.

7.1.1. The Setting

There is a worker and two firms.97 For simplicity, we study here the canonical case where there are only two

types of workers, θH and θL, with θH ą θL ą 0. Let λ “ Probpθ “ θHq P p0, 1q be the fraction of high type

workers. A worker’s type is his private information. Prior to entering the labor market, workers can obtain

education at some cost. In particular, a worker of type θ P tθL, θHu can obtain education level e ě 0 at a

cost cpe, θq. We assume that c1pe, θq ą 0 and c12pe, θq ă 0. In words, the first condition says that acquiring

more education is always costly on the margin; the second condition says that the marginal cost is lower for

the higher type worker. It is critical that firms observe a worker’s education level after he has acquired it

(but they do not observe his productivity type). We set the reservation wage for both types to be 0; the

important assumption here is that it is the same for both types, but otherwise 0 is a normalization. The

game that the worker then plays with the firms is as follows:98

1. Nature chooses worker’s type, θ P tθL, θHu, according to λ “ Probpθ “ θHq.

2. Having privately observed θ, worker chooses e.

3. Having observed e but not θ, each firm i P t1, 2u simultaneously offers a wage, wi.

4. Worker accepts one or neither job.

Payoffs are as follows: the worker gets upw, e, θq “ w ´ cpe, θq if she accepts an offer and ´cpe, θq if she

does not; the firm that employs the worker gets θ´w; the other firm gets 0. Note that as specified, education

is absolutely worthless in terms of increasing productivity — it is solely an instrument to potentially signal

some private information.99 This is known as purely dissipative signaling.

97We could also do this more workers and more firms. Two firms is sufficient because when firms compete for
workers through their wage offerings, Bertrand competition between any two firms is sufficient to drive wages up to
the marginal product of labor.

98You can think of the multiple workers case as simply each worker playing this game simultaneously with the
firms, with types drawn independently across workers.

99Of course, in practice, education also has a productivity-enhancing purpose . . . we hope. Even in that case, it
can serve as a signaling instrument. As you’ll see, what is important is the difference in marginal costs of acquiring
education for the different worker types.
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7.1.2. Basic Properties

The goal is to study whether and how education can be used by workers to signal their type to the firms. In

what follows, we are going to analyze pure strategy weak PBE that satisfy the following additional property:

for any level of education chosen by the worker, e, both firms have the same belief over the worker’s type.

That is, if µipeq represents the belief of firm i P t1, 2u that the worker is type θH given that he has chosen

education e, then we require that µ1peq “ µ2peq for all e.100 It turns out that the set of such weak PBE

is identical to the set of sequential equilibria in this model (strictly speaking, in a discretized version of the

model, since sequential equilibrium is only defined for finite games); see Fudenberg and Tirole (1991b) for

a more general equivalence of (a version of) PBE and sequential equilibria in (a class of) signaling games.

For short, I will just refer to any of these weak PBE as an equilibrium in the ensuing discussion.

Using generalized backward induction, we start analyzing play at the end of the game.

Stage 4: In the last stage, sequential rationality requires that a worker accepts a job offer from the firm

that offers the higher wage, so long as it is non-negative.101 If they both offer the same wage, he randomly

accepts one of them.

Stage 3: Given Stage 4 behavior of the worker, we can see that for any belief µpeq, both firms must

offer the wage

wpeq “ Erθ|µpeqs “ µpeqθH ` p1 ´ µpeqqθL. (13)

To see this, note that a firm expects strictly negative payoffs if it hires the worker at a wage larger than

Erθ|µpeqs, and strictly positive payoffs if it hires him at less than Erθ|µpeqs. Since firms are competing in

Bertrand price competition, the unique sequentially rational best responses are wpeq as defined above.

What more can be said about wpeq? At this stage, not much, except that in any equilibrium, for all

e, wpeq P rθL, θH s because µpeq P r0, 1s. Note that in particular, we cannot say that that wp¨q even need

be increasing. Another point to note is that there is a 1-to-1 mapping from µpeq to wpeq. Remember

that equilibrium requires µpeq to be derived in accordance with Bayes rule applied to the worker’s on-path

education choices .

Stage 2: To study the worker’s choice of education, we must consider her preferences over wage-

education pairs. To this end, consider the utility from acquiring education e and then receiving a wage w,

for type θ: upw, e, θq “ w ´ cpe, θq. To find indifference curves, we set upw, e, θq “ ū (for any constant ū),

and implicitly differentiate, obtaining
dw

de

ˇ

ˇ

ˇ

ˇ

u“ū

“ c1 pe, θq ą 0.

Thus indifference curves are upward sloping in e-w space, and moreover, at any particular pe, wq, they are

steeper for θL than for θH by the assumption that c12pe, θq ă 0. Thus, an indifference curve for type θH

crosses an indifference curve for type θL only once (so long as they cross at all). This is known as the

(Spence-Mirlees) single crossing property, and it plays a key role in the analysis of many signaling models.

Figure 9 shows a graphical representation.102

100MWG call this a PBE, and indeed, in accordance with our terminology, any weak PBE equilibrium with com-
monality of beliefs will be subgame perfect. However, subgame perfection does not require the commonality of
beliefs; this is an added restriction, albeit a natural one.
101 Strictly speaking, he can reject if the wage is exactly 0, but we resolve indifference in favor of acceptance, for

simplicity. This is not important.
102Here is another way to state the requisite single-crossing property in a manner that is portable to many types:
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Figure 9 – The Single-Crossing Property

Obviously, the choice of e for a worker of either type will depend on the wage function wpeq from Stage 3.

But in turn, the function wpeq (or equivalently, µpeq) must be derived from Bayes rule for any e that is chosen

by the worker (of either type). For any e not chosen by either type, any wpeq P rθL, θH s is permissible since

Bayes rule doesn’t apply. This flexibility in specifying “off-the-equilibrium-path” wages yields a multiplicity

of equilibria. Equilibria can be divided into two classes:

1. Separating equilibria. Here, the two types of worker choose different education levels, thus “separat-

ing” themselves.

2. Pooling equilibria. Here, the two types choose the same education level, thereby “pooling” together.

We study each of them in turn.103

7.1.3. Separating Equilibria

Let e˚pθq denote a worker’s equilibrium education choice, and w˚peq denote an equilibrium wage offer given

the equilibrium beliefs µ˚peq.

Claim 2. In any separating equilibrium, w˚pe˚pθiqq “ θi for i P tL,Hu, i.e., a worker is paid her marginal

product.

Proof. By definition, in a separating equilibrium, the two types choose different education levels, call them

e˚pθLq ‰ e˚pθHq. Bayes rule applies on the equilibrium path, and implies that µpe˚pθLqq “ 0 and

µpe˚pθHqq “ 1. The resulting wages by substituting into equation (13) are therefore θL and θH respec-

tively. �

@pw, eq ą pw1, e1q, where ą is in the vector sense, and @θ ą θ1, upw, e, θ1q ě upw1, e1, θ1q ùñ upw, e, θq ą upw1, e1, θq.
Given the separability upw, e, θq “ w ´ cpe, θq, it is sufficient that c satisfy decreasing differences, which under
smoothness of c can be stated as ceθpe, θq ă 0.
103The two classes are exhaustive given the restriction to pure strategies. If we were to consider mixed strategies,

there would be a third class of partial pooling or hybrid equilibria where types could be separating with some
probability and pooling with some probability.
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Figure 10 – Separating Equilibrium Low Type’s Allocation

Claim 3. In any separating equilibrium, e˚pθLq “ 0, i.e., the low type worker chooses 0 education.

Proof. Suppose towards contradiction that e˚pθLq ą 0. By Claim 2, type θL’s equilibrium utility is θL ´

cpe˚pθLq, θLq. If she instead chose education level 0, she would receive a utility of at least θL ´ cp0, θLq,

because w˚p0q ě θL. Since c1p¨, θLq ą 0, it follows that the worker gets a strictly higher utility by deviating

to an education level of 0, a contradiction with equilibrium play. �

Claim 2 and Claim 3 combined imply that the equilibrium utility for a low type is upθL, 0, θLq. This

puts the low type on the indifference curve passing through the point p0, θLq in e-w space, as drawn in

Figure 10.

We can use this picture to construct a separating equilibrium. By Claim 2, the θH worker must receive

a wage of θH , hence an allocation somewhere on the horizontal dotted line at θH . If the allocation were to

the left of where ICpθLq crosses that dotted line, then type θL would prefer to mimic θH worker rather than

separate (i.e. it would prefer to choose the education level that θH is supposed to, rather than 0); this follows

from the fact that allocations to the “left” of a given indifference curve are more desirable. So, a candidate

allocation for the high type is education level ê with wage θH in Figure 10. That is, we set e˚pθHq “ ê and

w˚pêq “ θH , where ê is formally the solution to

upθH , ê, θLq “ upθL, 0, θLq.

It remains only to specify the wage schedule w˚peq at all points e R t0, êu. Since we are free to specify

any w˚peq P rθL, θH s, consider the one that is drawn in Figure 11.

Given this wage schedule, it is clear that both types are playing optimally by choosing 0 and ê respectively,

i.e., neither type strictly prefers choosing any other education level and receiving the associated wage over

its prescribed education and associated wage. Beliefs (or wages) are correct on the equilibrium path, and

thus firms are playing optimally. Thus, e˚ and w˚ as defined is in fact a separating equilibrium. It is

obvious that there are various wage schedules that can support the same equilibrium education choices: an

alternate schedule that works, for example, is wpeq “ θL for all e P r0, êq and wpeq “ θH for all e ě ê.
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Figure 11 – A Separating Equilibrium

The more interesting question is whether there are other education levels that can be sustained in a

separating equilibrium. Claim 3 says that the low type must always play epθLq “ 0, but could we vary

e˚pθHq? Yes. Let ē be the education level that solves

upθH , ē, θHq “ upθL, 0, θHq.

In words, ē is the education level that makes type θH indifferent between acquiring ē with pay θH and

acquiring 0 with pay θL. The single-crossing property stemming from c12p¨, ¨q ă 0 ensures that ē ą ê. A

separating equilibrium where e˚pθHq “ ē is illustrated in Figure 12.

It follows from the construction’s logic that for every e P rê, ēs, there is a separating equilibrium with

e˚pθHq “ e; and there is no separating equilibrium with e˚pθHq R rê, ēs. It is easy to see that we can

Pareto-rank these separating equilibrium allocations.

Proposition 17. A separating equilibrium with e˚pθHq “ e1 Pareto-dominates a separating equilibrium with

e˚pθHq “ e2 if and only if e1 ă e2.

Proof. Straightforward, since firms are making 0 profit in any separating equilibrium, the low type of worker

receives the same allocation in any separating equilibrium, and the high type of worker prefers acquiring less

education to more at the same wage. �

So the first separating equilibrium we considered with e˚pθHq “ ê Pareto-dominates all others with

different high-type allocations; it has the least inefficiency via the costly signaling. This outcome—note that

because there the flexibility with off-path beliefs means that there are many equilibria leading to the same

outcome or on-path behavior—is referred to as the least-cost separating equilibrium outcome or the Riley

outcome after Riley (1979).
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Figure 12 – A Separating Equilibrium with e˚pθHq “ ē

7.1.4. Pooling Equilibria

Now we turn to the other class of equilibria, where both types of worker choose the same education level,

thus pooling together. That is, we are looking for equilibria where e˚pθHq “ e˚pθLq “ eP for some eP . In

any such equilibrium, Bayes rule implies that µ˚peP q “ λ, hence from equation (13), w˚peP q “ Epθq. To

determine which eP are feasible in a pooling equilibrium, define e as the education level that makes type θL

indifferent between acquiring education e with wage Epθq and acquiring education 0 with wage θL. Formally,

e is the solution to

upEpθq, e, θLq “ upθL, 0, θLq

Since Epθq P pθL, θHq, it follows that e P p0, êq. Figure 13 shows the construction of a pooling equilibrium

with eP “ e. Of course, there are multiple wage schedules that can support this pooling choice of eP “ e.

Moreover, the logic of this construction implies that there is a pooling equilibrium for any eP P r0, es;

but not for any eP ą e. The reason for the latter is that a worker of type θL would strictly prefer to choose

education 0 and get and w˚p0q ě θL rather than choose eP ą e and get wage Epθq. We can also Pareto-rank

the pooling equilibria.

Proposition 18. A pooling equilibrium with education level eP Pareto-dominates a pooling equilibrium with

education level ẽP if and only if eP ă ẽP .

Proof. Straightforward, since firms are making 0 profit (in expectation) in any pooling equilibrium, both

types of of worker receive the same wage in any pooling equilibrium, and both type of workers strictly prefer

acquiring lower education levels for a given wage. �

Note also that any pooling equilibrium is completely wasteful in the sense both types of worker would

be better off if the ability to signal had been absent altogether, and the market just functioned with no

education acquisition and a wage rate of Epθq. Contrast this with separating equilibria, where at least

the high type is able to reap some benefit from signaling in terms of a higher wage (though it may not

compensate him for the cost of signaling relative to the absence of the signaling altogether).
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Figure 13 – A Pooling Equilibrium

7.1.5. Equilibrium Refinement

The fact that we have been able to construct a continuum of equilibrium allocations in both separating

and pooling classes is somewhat troublesome. To put it another way, is there a reason why some of these

equilibria should be thought of as more “reasonable” than others? The latitude in selecting wpeq for all e

that are not chosen in equilibrium is what leads to the multiplicity of equilibria. Based on the culminating

discussion in Section 4, you might guess that we have to turn to forward induction arguments. No time like

the present, so let’s do so without further ado!

The refinement we analyze is called equilibrium dominance or the intuitive criterion and the ideas are

due to Cho and Kreps (1987) and Banks and Sobel (1987).104

Definition 38 (Equilibrium Dominance). A signaling equilibrium, pe˚pθq, w˚peqq and beliefs µ˚peq, satisfies

the equilibrium dominance condition if µ˚pẽq “ 1 for any ẽ such that

1. ẽ is not chosen by either type in the equilibrium;

2. for all w P rθL, θHs, upw˚pe˚pθLqq, e˚pθLq, θLq ą upw, ẽ, θLq;

3. for some w P rθL, θH s, upw˚pe˚pθHqq, e˚pθHq, θHq ă upw, ẽ, θHq.

What does the equilibrium dominance condition require? Condition 2 is the key. It says that type θL

gets strictly higher utility in the equilibrium than any w P rθL, θH s it could get in return for choosing the

out-of-equilibrium education ẽ. Condition 3 says that there is some w P rθL, θH s that would make type θH

prefer acquiring ẽ if it received w in return, relative to what it gets in equilibrium. Note that it is sufficient

to check this condition using the most attractive wage, i.e., w “ θH .

104 Strictly speaking, there is a difference between the equilibrium dominance criterion and the intuitive criterion
(Cho and Kreps, 1987, Section 3). In general, the former is stronger (i.e., more restrictive) because, vaguely speaking,
they turn on the same principle but the former entails iterated applications. The criteria are, however, equivalent
in our environment with two types. I use the term “equilibrium dominance” because it is more informative than
“intuitive criterion”.
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The intuition behind this condition is quite simple: since type θL can only do worse by playing ẽ relative

to what it gets in equilibrium (so long as it gets in response some w P rθL, θH s — sequential rationality is

important), if we do observe the choice of ẽ, we ought to rule out the possibility that it was made by θL.

Moreover, there is some response w P rθL, θH s that justifies θH choosing ẽ. Thus, we must infer that the

deviation to ẽ was made by θH , hence we must put µ˚pẽq “ 1, or equivalently w˚pẽq “ θH . (This is a good

time to go back and look at Example 33 and the logic we discussed there, it’s very similar.)

It turns out that this equilibrium dominance condition is very powerful in signaling games with 2 types

of the privately informed player. Let’s apply it to the current model.

Proposition 19. The only signaling equilibria (amongst both pooling and separating) that satisfy the equi-

librium dominance condition are the separating equilibria with e˚pθHq “ ê.

Proof. For any separating equilibrium with e˚pθHq ą ê, consider any out-of-equilibrium ẽ P pê, e˚pθHqq.

It can be seen (graphical argument) that Conditions 2 and 3 of Definition 38 are met. So we must have

µ˚pẽq “ 1, or equivalently, w˚pẽq “ θH . But then type θH has a profitable deviation to ẽ.

For any pooling equilibrium with education level eP (recall eP ď e ă ê), define ě by upEpθq, eP , θLq “

upθH , ě, θLq. Note that ě P peP , êq, and because of the single-crossing property, upEpθq, eP , θHq ă upθH , ě, θHq.

Consider the out-of-equilibrium ẽ “ ě` ε for a small ε ą 0 such that upEpθq, eP , θHq ă upθH , ẽ, θHq. It can

be seen (graphical argument) that Conditions 2 and 3 of Definition 38 are met. So we must have µ˚pẽq “ 1,

or equivalently, w˚pẽq “ θH . But then type θH has a profitable deviation to ẽ. �

Thus, application of the equilibrium dominance condition yields a unique equilibrium outcome (i.e., the

equilibria that survive can only differ in off-the-equilibrium path wages), which is the least-cost separating

outcome. In fact, hybrid or partially-pooling equilibria (see fn. 103) are also eliminated by the equilibrium

dominance condition.

7.2. Cheap Talk

We’ll also cover the classic cheap-talk model of Crawford and Sobel (1982). TBAdded.
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8. Mechanism Design

We only have time to peek into mechanism design.

We consider a framework with I ” t1, . . . , Iu agents. Each agent has a type θi P Θi, which is the agent’s

private information. There is prior distribution of the vector θ P Θ ” Θ1 ˆ ¨ ¨ ¨ ˆ ΘI .
105 There is a set Z

of allocations/alternatives/outcomes. Each agent has a vNM utility function uipz, θq. The environment has

private values if we can reduce to uipz, θiq; otherwise there is interdependent values. (Recall the terminology

from our discussion of Bayesian games.)

A canonical special case is to take Z ” X ˆ T , where T ” R
I , with the interpretation that t P R

I is the

vector of transfers paid by the agents. In this case, we refer to just the element of X as the allocation. We

will assume quasi-linearity here: utility for each i is given simply by uipx, θq ´ ti. Note that this imposes

risk neutrality with respect to the transfer.

We will be interested in achieving or implementing (in a sense to be made precise below) an objective

given by a social choice function, SCF, or allocation rule ψ : Θ Ñ Z. In the quasi-linear environment, typical

objectives of interest include efficiency (maximize
ř

I uipx, θq),106 revenue maximization (maximize
ř

I ti),

or profit maximization (maximize u0px, θq`
ř

I ti, with the interpretation that u0px, θq is the “cost” for some

additional player, usually called the principal).

A mechanism is a game form, given by pA1 . . . AI , gq, or just pA, gq for short, where A ” A1 ˆ ¨ ¨ ¨ ˆ AI

and g : A Ñ Z. The interpretation is that for each i, Ai is the pure action set in some game set up by the

designer; note that the game need not be a simultaneous-move game, just like in our discussion for Bayesian

games. A mechanism, together with the other primitives (utilities and type distribution) defines a Bayesian

game; a (pure) strategy for an agent in this game is si : Θi Ñ Ai.

We say that a mechanism implements SCF ψ in a given solution concept if the Bayesian game has an

“equilibrium” of that concept, ps˚
1 , . . . , s

˚
I q, such that for all θ, ψpθq “ gps˚

1 pθ1q, . . . s˚
I pθIqq. “Equilibrium”

should be understood broadly; it is just some solution concept. Note that we are restricting to pure strategy

equilibria. This can be relaxed. More importantly, we are focussing on what is called weak/partial imple-

mentation — i.e., we are not requiring that every equilibrium must lead to the desired outcomes.107 Three

common solutions concepts are Bayesian Nash equilibrium (BNE), ex post BNE, and dominant strategies. It

is important to note that dominant strategies here refers to the “very weakly dominant” notion we mentioned

in Remark 22, i.e., for each agent i, s˚
i should be a best response to any strategy profile of the opponents in

the Bayesian game.

8.1. Revelation Principle

A direct mechanism has Ai “ Θi for all i. A direct mechanism is said to be incentive compatible if it has a

truth-telling equilibrium, i.e, all agents playing s˚
i pθiq “ θi is an equilibrium. An incentive compatible direct

105As usual, for general results below we treat Θi as finite. Furthermore, to simplify, I’ll assume every θi has positive
prior probability. These can be relaxed.
106The interpretation of this as (Pareto) efficiency requires some clarification. The best way to think of it is efficiency

subject to holding constant the sum of transfers. That is, given any θ, if we don’t choose x to maximize
ř

I
uipx, θq,

we can always find a redistribution of transfers that will lead to a Pareto improvement while not changing the sum
of transfers.
107That requirement is called full implementation. Classic references on this include Maskin (1999) (circulated since

1977) and Jackson (1991). There is a nice survey by Jackson (2001).
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mechanism implements a SCF if the implementation is achieved in the truth-telling equilibrium.

The following result is the revelation principle.

Proposition 20. If some mechanism implements a SCF in dominant strategies (BNE), then there is an

incentive compatible direct mechanism that also implements the SCF in dominant strategies (BNE).

Proof. We prove it for dominant strategies and the case of private values. Suppose pA, gq implements ψ.

Write s˚pθq as shorthand for ps˚
i pθiqqIi“1 and similarly s´ipθ´iq. Consider the direct mechanism pΘ, γq, where

γpθq ” gps˚pθqq.

For any i, θi, θ̂i, and θ´i, the dominance of s˚
i implies that

ui
`

g
`

s˚
i pθiq , s

˚
´ipθ´iq

˘

, θi
˘

ě uipgps˚
i pθ̂iq, s

˚
´ipθ´iqq, θiq,

and hence that

ui pγ pθi, θ´iq , θiq ě uipγpθ̂i, θ´iq, θiq,

But this means that in the direct mechanism pΘ, γq, truth-telling is a [very weakly!] dominant strategy

for each player. Moreover, it is clear that the truth-telling equilibrium of the direct mechanism implements

the SCF.

The argument for BNE and private values is analogous, and a good exercise. The argument is also

similar absent private values. �

The revelation principle is a crucial result because it affords a tremendous simplification when we search

for what SCFs can be implemented: not only can we restrict attention to a relatively small space of mecha-

nisms, but moreover, the constraints we need consider are just those of incentive compatibility.

8.2. Vickrey-Clarke-Groves Mechanisms

Now consider an environment with private values and quasi-linearity. Let x˚ : Θ Ñ X be some (ex post)

efficient allocation rule: @θ, x˚pθq P argmax
xPX

ř

i uipx, θiq. (Assume maximizers exist.)

Consider the following transfer rule:

tGi pθq “ ´
ÿ

j‰i

ujpx˚pθq, θjq ` hipθ´iq,

where hi : Θ´i Ñ R is arbitrary. A direct mechanism with allocation and transfer functions px˚, ptGi qIi“1q is

called a Groves mechanism. (Hence the superscript G on ti.)

Proposition 21. Any Groves mechanism is dominant strategy incentive compatible.

Proof. Type θi of agent i’s payoff from reporting θ̂i when others report θ̂´i is

uipx
˚pθ̂i, θ̂´iq, θiq ´ tGi pθ̂i, θ̂´iq

“uipx
˚pθ̂i, θ̂´iq, θiq `

ÿ

j‰i

ujpx˚pθ̂i, θ̂´iq, θ̂jq ´ hipθ̂´iq. (14)

Since x˚ is an efficient allocation rule, it follows that the function above is maximized over θ̂i when θ̂i “ θi.

Dominant strategy incentive compatibility follows. �
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The key intuition here is that the specification of the transfer rule, along with an efficient allocation

rule, ensures that each agent is maximizing efficiency given his type and that his opponents’ types are their

reports. To make that clear, consider the first two terms in (14); we can ignore the third term as it is

independent of θ̂i. You see that by announcing θ̂i “ θi, agent i maximizes the sum of those two terms,

producing an efficient allocation for the type profile pθi, θ̂´iq. To say this yet another way, ignoring the hi

term, a Groves mechanism pays each agent the total utility of the other agents; hence, when including his

own utility, each agent ends up maximizing the total utility of all agents — he internalizes any externalities

caused by his report.

Let x˚
´i : Θ´i Ñ X denote an efficient allocation rule if we ignore agent i’s payoff: @θ, x˚

´ipθ´iq P

argmax
xPX

ř

j‰i ujpx, θjq. A special case of Groves mechanisms, called the Vickrey-Clarke-Groves (VCG) mech-

anism, obtains when we set

hipθ´iq “
ÿ

j‰i

ujpx˚
´ipθ´iq, θjq,

so that the transfer rule becomes

tVi pθq “
ÿ

j‰i

ujpx˚
´ipθ´iq, θjq ´

ÿ

j‰i

ujpx˚pθq, θjq. (15)

The direct mechanism here is defined so as to make each agent precisely pay for the externality his

presence (or his announcement) creates. To see this, note that the first term in tVi above is the total utility

for all agents but i from an efficient allocation that ignores i’s presence, while the second term is their total

utility from an efficient allocation when i is present. In particular, tVi pθq “ 0 if i is not “pivotal”, i.e., if

x˚
´ipθ´iq “ x˚pθq.

The VCG mechanism (or Groves mechanisms, more broadly) is important because it says that we can

achieve efficiency despite private information in various problems. Here is one example.

Example 38. Consider allocating an indivisible good. Let X “ I, denoting which agent gets the good.

Let uipi, θiq “ θi and uipj, θiq “ 0 for j ‰ i. So the agent who gets the good gets payoff θi, and all other

agents get 0. Consequently, ignoring the issue of ties (i.e., assuming θj ‰ θi for all i, j P I), there is a unique

efficient allocation rule:

x˚pθq “ argmax
jPI

θj , and x
˚
´ipθ´iq “ argmax

j‰i
θj .

Plugging into (15) yields

tVi pθq “

$

&

%

maxj‰i θj if x˚pθq “ i

0 otherwise.

That is, the VCG mechanism in this context is simply a second-price auction!
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