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Disclaimer

• I won’t get too deeply into any one area

• The monograph (in preparation) fills in more details

– Theorem† means there are some terms I did not define

– Theorem‡ means that additional technical conditions are needed

• I cover mostly work in decision theory. I am not an expert on
neighboring fields, such as discrete choice econometrics, structural IO
and labor, experimental economics, psychology and economics,
cognitive science. Happy to talk if you are one.

• All comments welcome at tomasz strzalecki@harvard.edu

mailto:tomasz_strzalecki@harvard.edu


Notation

X · · · · · · · · · · · · · · · · · · · · · · · · · · · · set of alternatives

x , y , z ∈ X · · · · · · · · · · · · · · · · · · · typical alternatives

A,B,C ⊆ X · · · · · · · · · · · · · · · · · · finite choice problems (menus)

ρ(x ,A) · · · · · · · · · · · · · · · · · · probability of x being chosen from A

ρ · · · · · · · · · · · · · · · · · · · · · · · · stochastic choice function (rule)



Stochastic Choice

• Idea: The analyst/econometrician observes an agent/group of agents

• Examples:

– Population-level field data: McFadden (1973)

– Individual-level field data: Rust (1987)

– Between-subjects experiments: Kahneman and Tversky (1979)

– Within-subject experiments: Tversky (1969)



Is individual choice random?

Stylized Fact: Choice can change, even if repeated shortly after

• Tversky (1969)

• Hey (1995)

• Ballinger and Wilcox (1997)

• Hey (2001)

• Agranov and Ortoleva (2017)



Why is individual choice random?

• Randomly fluctuating tastes

• Noisy signals

• Attention is random

• Experimentation (experience goods)

• People just like to randomize

• Trembling hands

Agent does not see
his choice as random.
Stochastic choice is a
result of informational
asymmetry between
agent and analyst.

Analyst and agent on
the same footing



Questions

1. What are the properties of ρ (axioms)?

• Example: “Adding an item to a menu reduces the choice probability of
all other items”

2. How can we “explain” ρ (representation)?

• Example: “The agent is maximizing utility, which is privately known”



Goals

1. Better understand the properties of a model. What kind of predictions
does it make? What axioms does it satisfy?

– Ideally, prove a representation theorem (ρ satisfies Axioms A and B if
and only if it has a representation R)

2. Identification: Are the parameters pinned down uniquely?

3. Determine whether these axioms are reasonable, either normatively, or
descriptively (testing the axioms)

4. Compare properties of different models (axioms can be helpful here,
even without testing them on data). Outline the modeling tradeoffs

5. Estimate the model, make a counterfactual prediction, evaluate a
policy (I won’t talk about those here)



Testing the axioms

• Axioms expressed in terms of ρ, which is the limiting frequency

• How to test such axioms when observed data is finite?

• Hausman and McFadden (1984) developed a test of Luce’s IIA axiom
that characterizes the logit model

• Kitamura and Stoye (2018) develop tests of the static random utility
model based on axioms of McFadden and Richter (1990)

• I will mention many other axioms here, without corresponding “tests”



Richness

• The work in decision theory often assumes a “rich” menu structure

– Menu variation can be generated in experiments

– But harder in field data

– But don’t need a full domain to reject the axioms

• The work in discrete choice econometrics often assumes richness in
“observable attributes”

– I will mostly abstract from this here

• The two approaches lead to somewhat different identification results

– Comparison?
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Random Utility (RU)

Idea: Choice is random because:

• There is a population of heterogenous individuals

• Or there is one individual with varying preferences

Story (Data Generating Process):

• The menu A is drawn at random

– maybe by the analyst or the experimenter

• A utility function is drawn at random (with probability distribution P)

– independently of the menu

• Agent chooses x ∈ A whenever x maximizes the utility on A



Questions

• The most we can obtain from the data (with infinite sample) is

– The distribution over menus

– The conditional choice probability of choosing x from A: ρ(x ,A)

• So you can think of the likelihood function P 7→ ρ(x ,A)

– Is this mapping one-to-one? (Identification/ Partial Identification)

– What is the image of this mapping? (Axiomatization)



Random Utility (RU)

How to model a random utility function on X ?

Depending on the context it will be either:

• a probability distribution µ over utility functions living in RX

• a probability space (Ω,F ,P) and a F-measurable random utility
function Ũ : Ω→ RX

Notes:

• Given µ we can always take the canonical state space where Ω = RX ,
Ũ the identity mapping, and P = µ.

• Or even Ω = all strict preferences

• Ω is a subjective state space, related to Kreps (1979) and Dekel,
Lipman, and Rustichini (2001)  Lecture 3



Random Utility (RU)

C (x ,A) is the event in which the agent chooses x from A

C (x ,A) := {ω ∈ Ω : Ũω(x) ≥ Ũω(y) for all y ∈ A}

This is the event in which the utility is maximized at x ∈ A

Definition: ρ has a random utility representation if there exists Ũ and

ρ(x ,A) = P
(
C (x ,A)

)
Key assumption:

• P is independent of the menu; it’s the structural invariant of the model

• Menu-dependent P can trivially explain any ρ



Discrete Choice (DC)

• Let v ∈ RX be a deterministic utility function

• Let ε̃ : Ω→ RX be a random unobserved utility shock or error

– the distribution of ε̃ has a density and full support

Definition: ρ has a discrete choice representation if it has a RU
representation with Ũ(x) = v(x) + ε̃(x)

Remark: This is sometimes called the additive random utility model



Ties

• T Ũ is the event in which there is a tie

T Ũ := {ω ∈ Ω : Ũω(x) = Ũω(y) for some x 6= y}

• Notice that RU implies that P(T Ũ) = 0

– this is because
∑

x∈A ρ(x ,A) = 1

– in DC guaranteed by assuming that ε̃ has a density

• So not every Ũ leads to a legitimate ρ



Ways to deal with ties

• Sometimes convenient to allow ties (esp. when X is infinite)

• For example, randomize uniformly over argmaxx∈A Ũω(x)

• A more general idea of tie-breaking was introduced by Gul and
Pesendorfer (2006)

• A different approach is to change the primitive (stochastic choice
correspondence: Barberá and Pattanaik, 1986; Lu, 2016; Gul and
Pesendorfer, 2013)



Random Utility (with a tiebreaker)

• A tie-breaker is a random utility function W̃ : Ω→ RX , (which is
always a strict preference)

• The agent first maximizes Ũ and if there is a tie, it gets resolved
using W̃

Definition: ρ has a random utility representation with a tie-breaker if there
exists (Ω,F ,P), Ũ, W̃ : Ω→ RX such that P(T W̃ ) = 0, and

ρ(x ,A) = P
(
{ω ∈ Ω : W̃ω(x) ≥ W̃ω(y) for all y ∈ argmaxx∈A Ũω(x)}

)
.



Equivalence

Theorem: The following are equivalent when X is finite:

• ρ has a RU representation

• ρ has a RU representation with uniform tie breaking

• ρ has a RU representation with a tiebreaker

Thus, even though the representation is more general, the primitive is not.

When X is infinite (for example lotteries) these things are different.



Positivity

The full support assumption on ε̃ ensures that all items are chosen with
positive probability

Axiom (Positivity). ρ(x ,A) > 0 for all x ∈ A

• This leads to a non-degenerate likelihood function—good for
estimation

• Positivity cannot be rejected by any finite data set



Equivalence

Theorem: If X is finite and ρ satisfies Positivity, then the following are
equivalent:

(i) ρ has a random utility representation

(ii) ρ has a discrete choice representation

Questions:

• What do these models assume about ρ?

• Are their parameters identified?

• Are there any differences between the two approaches?
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i.i.d. DC

• It is often assumed that ε̃x are i.i.d. across x ∈ X

– logit, where ε has a mean zero extreme value distribution

– probit, where ε has a mean zero Normal distribution

• In i.i.d. DC the binary choice probabilities are given by

ρ(x , {x , y}) = P(v(x) + ε̃x ≥ v(y) + ε̃y )

= P(ε̃y − ε̃x ≤ v(x)− v(y)) = F (v(x)− v(y)),

where F is the cdf of ε̃y − ε̃x (such models are called Fechnerian)



Fechnerian Models

Definition: ρ has a Fechnerian representation if there exist a utility
function v : X → R and a strictly increasing transformation function F
such that

ρ(x , {x , y}) = F (v(x)− v(y))

Comments:

• This property of ρ depends only on its restriction to binary menus

• RU in general is not Fechnerian because it violates Weak Stochastic
Transitivity (Marschak, 1959)

• Some models outside of RU are Fechnerian, e.g., APU  Lecture 2

References: Davidson and Marschak (1959); Block and Marschak (1960);
Debreu (1958); Scott (1964); Fishburn (1998)



The Luce Model

Definition: ρ has a Luce representation iff there exists w : X → R++ such
that

ρ(x ,A) =
w(x)∑
y∈A w(y)

.

Intuition 1: The Luce representation is like a conditional probability: the
probability distribution on A, is the conditional of the probability
distribution on the grand set X .

Intuition 2: w(x) is the “response strength” associated with x . Choice
probability is proportional to the response strength.



Equivalence

Theorem (McFadden, 1973): The following are equivalent

(i) ρ has a logit representation with v

(ii) ρ has a Luce representation with w = ev

Proof: This is a calculation you all did in 1st year metrics



DC with characteristics

• Typically menu is fixed, A = X

• ξ ∈ Rn vector of observable characteristics

• Ũ(x ; ξ) = v(x ; ξ) + ε̃(x)

• Observed choices ρ(x ,X ; ξ)

Note: Allen and Rehbeck (2019) also study ρ(x ,X ; ξ), but with a
perturbed utility representation instead of discrete choice representation  
Lecture 2



Generalizations

• Removing Positivity (Echenique and Saito, 2015; Cerreia-Vioglio,
Maccheroni, Marinacci, and Rustichini, 2018; Ahumada and Ülkü,
2018)

• Nested logit (Train, 2009, for axioms see Kovach and Tserenjigmid,
2019)

• GEV (generalized extreme value; Train, 2009)

• Multivariate probit (Train, 2009)

• Mixed logit (McFadden and Train, 2000; Gul, Natenzon, and
Pesendorfer, 2014; Saito, 2018)



Generalizations

• Elimination by aspects (Tversky, 1972)

• Random Attention (Manzini and Mariotti, 2014)

• Attribute rule (Gul, Natenzon, and Pesendorfer, 2014)

• Additive Perturbed Utility (Fudenberg, Iijima, and Strzalecki, 2015)

• Perception adjusted Luce (Echenique, Saito, and Tserenjigmid, 2018)

• Imbalanced Luce (Kovach and Tserenjigmid, 2018)

• Threshold Luce (Horan, 2018)
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Regularity

Axiom (Regularity). If x ∈ A ⊆ B, then ρ(x ,A) ≥ ρ(x ,B)

Intuition When we add an item to a menu, existing items have to “make
room” for it.

Theorem (Block and Marschak, 1960). If ρ has a random utility
representation, then it satisfies Regularity.

Proof:

Step 1: If x maximizes u on B, then x maximizes u on A (because A is
smaller). Thus, For any x ∈ A ⊆ B we have C (x ,A) ⊇ C (x ,B).

Step 2: P is set-monotone, so P(C (x ,A)) ≥ P(C (x ,B))



Violations of Regularity

1. Iyengar and Lepper (2000): tasting booth in a supermarket

– 6 varieties of jam — 70% people purchased no jam
– 24 varieties of jam — 97% people purchased no jam

2. Huber, Payne, and Puto (1982): adding a “decoy” option raises
demand for the targeted option

preference

preference

dimension 1

dimension 2

x

y

decoy
 for y



Axiomatic Characterizations

Theorem (Block and Marschak, 1960). Suppose that |X | ≤ 3. If ρ
satisfies Regularity, then ρ has a random utility representation.

Proof Idea:

• For each menu A sets C (x ,A) form a partition of Ω

• ρ defines a probability distribution over each partition

• Need to ensure that they are consistent with a single P



Proof

Wlog Ω = {xyz , xzy , yxz , yzx , zxy , zyx}. To define P(xyz) note that
C (y , {y , z}) = {xyz , yxz , yzx} and C (y ,X ) = {yxz , yzx}, so define

P(xyz) := ρ(y , {y , z})− ρ(y ,X ).

Likewise,

P(xzy) := ρ(z , {y , z})− ρ(z ,X )

P(yxz) := ρ(x , {x , z})− ρ(x ,X )

P(yzx) := ρ(z , {x , z})− ρ(z ,X )

P(zxy) := ρ(x , {x , y})− ρ(x ,X )

P(zyx) := ρ(y , {x , y})− ρ(y ,X )

By Regularity, they are nonnegative. They sum up to 3− 2 = 1. Finally,
ρ(x ,A) = P(C (x ,A)) follows from the above definitions as well.



Axiomatic Characterizations

Comments:

• Unfortunately, when |X | > 3, Regularity alone is not enough

• More axioms are needed, but they are hard to interpret

• More elegant axioms if X consists of lotteries (Gul and Pesendorfer,
2006)  later in this lecture



Block and Marschak

Axiom (Block and Marschak, 1960): For all x ∈ A∑
B⊇A

(−1)|B\A|ρ(x ,B) ≥ 0.

Comments:

• Generalizes the idea that we get information from looking at
difference between ρ(x ,A) and ρ(x ,B)

• Inclusion-Exclusion formula (Möbus transform)



Other Axioms

Axiom (McFadden and Richter, 1990): For any n, for any sequence
(x1,A1), . . . , (xn,An) such that xi ∈ Ai

n∑
i=1

ρ(xi ,Ai ) ≤ max
ω∈Ω

n∑
i=1

1C%(xi ,Ai )
(%).

Axiom (Clark, 1996): For any n, for any sequence (x1,A1), . . . , (xn,An)
such that xi ∈ Ai , and for any sequence of real numbers λ1, . . . , λn

n∑
i=1

λi1C%(xi ,Ai )
≥ 0 =⇒

n∑
i=1

λiρ(xi ,Ai ) ≥ 0.

Remark: These axioms refer to the canonical random preference
representation where Ω is the set of all strict preference relations and the
mapping % is the identity



Axiomatic Characterizations

Theorem: The following are equivalent for a finite X

(i) ρ has a random utility representation

(ii) ρ satisfies the Block–Marschak axiom

(iii) ρ satisfies the McFadden–Richter axiom

(iv) ρ satisfies the Clark axiom.

Comments:

• The equivalence (i)–(ii) was proved by Falmagne (1978) and Barberá
and Pattanaik (1986).

• The equivalences (i)–(iii) and (i)–(iv) were proved by McFadden and
Richter (1990, 1971) and Clark (1996) respectively. They hold also
when X is infinite (Clark, 1996; McFadden, 2005; Chambers and
Echenique, 2016).



Axioms for Luce/Logit

Axiom (Luce’s IIA). For all x , y ∈ A ∩ B whenever the probabilities are
positive

ρ(x ,A)

ρ(y ,A)
=
ρ(x ,B)

ρ(y ,B)
.

Axiom (Luce’s Choice Axiom). For all x ∈ A ⊆ B

ρ(x ,B) = ρ(x ,A)ρ(A,B).

Theorem (Luce, 1959; McFadden, 1973): The following are equivalent

(i) ρ satisfies Positivity and Luce’s IIA

(ii) ρ satisfies Positivity and Luce’s Choice Axiom

(iii) ρ has a Luce representation

(iv) ρ has a logit representation



Proof

Luce ⇒ IIA is straightforward:

ρ(x ,A)

ρ(y ,A)
=

w(x)

w(y)
=
ρ(x ,B)

ρ(y ,B)

Luce ⇒ Positivity is also straightforward since w(x) > 0 for all x ∈ X



Proof

To show Luce’s IIA+Positivity ⇒ Luce for X finite, define
w(x) := ρ(x ,X ).

Fix A and x∗ ∈ A. By IIA,

ρ(x ,A) = ρ(x ,X )
ρ(x∗,A)

ρ(x∗,X )
= w(x)

ρ(x∗,A)

w(x∗)
.

Summing up over y ∈ A and rearranging we get ρ(x∗,A)
w(x∗) = 1∑

y∈A w(y) .

When X is infinite, need to modify the proof slightly.



Proof

To show IIA+Positivity ⇒ Luce for X finite, define w(x) := ρ(x ,X ).

Fix A. By Luce’s Choice Axiom,

ρ(x ,X ) = ρ(x ,A)ρ(A,X )

= ρ(x ,A)
∑
y∈A

ρ(y ,X )

so w(x) = ρ(x ,A)
∑

y∈A w(y). When X is infinite, need to modify the
proof slightly.

Remark: Luce’s IIA is equivalent to Luce’s Choice Axiom even without
Positivity, see Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini
(2018).



Other forms of IIA

Remark: IIA has a cardinal feel to it (we require ratios of probabilities to
be equal to each other). Consider the following ordinal axiom.

Axiom (GNP IIA). If A ∪ B and C ∪ D are disjoint, then

ρ(A,A ∪ C ) ≥ ρ(B,B ∪ C ) =⇒ ρ(A,A ∪ D) ≥ ρ(B,B ∪ D)

Theorem† (Gul, Natenzon, and Pesendorfer, 2014). In the presence of
Richness†, ρ satisfies GNP IIA iff it has a Luce representation.



Blue bus/red bus paradox for i.i.d. DC

Example: Transportation choices are: train, or bus. There are two kinds of
buses: blue bus and red bus. So X = {t, bb, rb}. Suppose that we
observed that

ρ(t, {t, bb}) = ρ(t, {t, rb}) = ρ(bb, {bb, rb}) =
1

2
.

If ρ is i.i.d. DC, then ρ(t,X ) = 1
3 . But this doesn’t make much sense if

you think that the main choice is between the modes of communication
(train or bus) and the bus color is just a tie breaker. In that case we would
like to have ρ(t,X ) = 1

2 .

If you are still not convinced, imagine that there n colors of buses. Would
you insist on ρ(t,X )→ 0 as n→∞?



Solution to the blue bus/red bus paradox

• Don’t use i.i.d. DC, but some RU model

– for example put equal probability on orders
bb � rb � t, rb � bb � t, t � bb � rb, t � rb � bb

– or use the attribute rule of Gul, Natenzon, and Pesendorfer (2014)

– or use parametric DC families (nested logit, GEV)

• But no need to go outside of the RU class. This is not a paradox for
RU but for i.i.d. DC



Weak Stochastic Transitivity

Definition: x %s y iff ρ(x ,A) ≥ ρ(y ,A) for A = {x , y}

Definition: ρ satisfies Weak Stochastic Transitivity iff %s is transitive

Satisfied by: Fechnerian models because x %s y iff v(x) ≥ v(y)

Can be violated by:

– RU (Marschak, 1959)

– random attention (Manzini and Mariotti, 2014)

– deliberate randomization (Machina, 1985)

Stylized Fact: Weak Stochastic Transitivity is typically satisfied in lab
experiments (Rieskamp, Busemeyer, and Mellers, 2006)



Forms of Stochastic Transitivity

Let p = ρ(x , {x , y}), q = ρ(y , {y , z}), r = ρ(x , {x , z}).

Definition: Suppose that p, q ≥ 0.5. Then ρ satisfies

– Weak Stochastic Transitivity if r ≥ 0.5

– Moderate Stochastic Transitivity if r ≥ min{p, q}

– Strong Stochastic Transitivity if r ≥ max{p, q}



Forms of Stochastic Transitivity

Tversky and Russo (1969) characterize the class of binary choice models
that satisfy (a slightly stronger version of) Strong Stochastic Transitivity.
Under Positivity, they are the models that have a simple scalability
representation.

Definition: ρ has a simple scalability representation if
ρ(x , {x , y}) = F (v(x), v(y)) for some v : X → R and F : R2 → [0, 1],
defined on an appropriate domain, is strictly increasing in the first
argument and strictly decreasing in the second argument.

Note: Fechnerian is a special case where F (v(x), v(y)) = F (v(x)− v(y)).



Forms of Stochastic Transitivity

He and Natenzon (2018) characterize the class of models that satisfy (a
slightly stronger version of) Moderate Stochastic Transitivity. These are
the models that are represented by moderate utility.

Definition: ρ has a moderate utility representation if

ρ(x , {x , y}) = F
(
u(x)−u(y)
d(x ,y)

)
for some u : X → R, distance metric

d : X × X → R+, and F : R→ [0, 1] strictly increasing transformation,
defined on an appropriate domain, that satisfies F (t) = 1− F (1− t)
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Identification of Utilities

• Since utility is ordinal, we cannot identify its distribution—at best we
can hope to pin down the distribution of ordinal preferences

• But it turns out we can’t even do that

Example (Fishburn, 1998). Suppose that X = {x , y , z ,w}. The following
two distributions over preferences lead to the same ρ.

(x � y � z � w)

1
2

(y � x � w � z)
1
2

(x � y � w � z)

1
2

(y � x � z � w)
1
2

Note that these two distributions have disjoint supports!



Identification of “Marginal” Preferences

Theorem (Falmagne, 1978). If P1 and P2 are RU representations of the
same ρ, then for any x ∈ X

P1(x is k-th best in X ) = P2(x is k-th best in X )

for all k = 1, . . . , |X |.



Identification in DC

Theorem: If (v1, ε̃1) is a DC representation of ρ, then for any v2 ∈ RX

there exists ε̃2 such that (v2, ε̃2) is another representation of ρ

Comments:

• So can’t identify v (even ordinally) unless make assumptions on
unobservables

• If assume a given distribution of ε̃, then can pin down more

• Also, stronger identification results are obtained in the presence of
“observable attributes”



i.i.d. DC with known distribution of ε̃

Theorem: If (v1, ε̃) and (v2, ε̃) are i.i.d DC representations of ρ that share
the distribution of ε̃, then there exists k ∈ R such that v2(x) = v1(x) + k
for all x ∈ X .

Proof: Fix x∗ ∈ X and normalize v(x∗) = 0. Let F be the cdf of the ε
difference. By Fechnerianity

ρ(x , {x , x∗}) = F (v(x)),

so v(x) = F−1(ρ({x , {x , x∗})).

Remark: If we know F , this gives us a recipe for identifying v from data.



Unknown distribution of ε̃; observable attributes

• Under appropriate assumptions can identify v(x ; ξ) and the
distribution of ε̃

• Matzkin (1992) and the literature that follows
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Random Expected Utility (REU)

• Gul and Pesendorfer (2006) study choice between lotteries

• Specify the RU model to X = ∆(Z ), where Z is a finite set of prizes

• Typical items are now p, q, r ∈ X

Definition: ρ has a REU representation if has a RU representation where
with probability one Ũ has vNM form:

Ũ(p) := Epũ :=
∑
z∈Z

ũ(z)p(z)

for some random Bernoulli utility function ũ ∈ RZ



REU—Axioms
Notation: Ext(A) is the set of extreme points of A

Axiom (Extremeness). ρ(Ext(A),A) = 1

Idea: The indifference curves are linear, so maximized at an extreme point
of the choice set (modulo ties)



REU—Axioms

Definition: αA + (1− α)q := {αp′ + (1− α)q : p′ ∈ A}

Axiom (Linearity). For any α ∈ (0, 1) and p ∈ A and q ∈ X

ρ(p,A) = ρ(αp + (1− α)q, αA + (1− α)q)

Idea: The vNM Independence axiom applied utility by utility

ũw ∈ C (p,A)⇐⇒ uw ∈ C (αp + (1− α)q, αA + (1− α)q)



Linearity

C (p,A) is the normal cone of A at p
same for the mixture with q

they are equal because they are “corresponding angles”



REU—Gul and Pesendorfer (2006) Results

Theorem† (Characterization). ρ has a REU representation if and only if it
satisfies

– Regularity

– Extremeness

– Linearity

– Continuity†

Theorem† (Uniqueness). In a REU representation the distribution over
ordinal preferences is identified.



REU—Comments

• Simpler axioms

• Better identification results

• Stronger assumptions: vNM relaxed  Lecture 2

– Allais (1953) paradox is a rejection of Linearity

– Agranov and Ortoleva (2017) is a rejection of Extremeness

• Model used as a building block for a lot to come

• This is only one possible specification of risk preferences . . .



REU—Comments

• Gul and Pesendorfer (2006) introduce tiebreakers

– weakening of Continuity, tiebreaker are finitely additive

– Extremeness hinges on tiebreakers being EU themselves (uniform
tiebreaking violates Extremenes)

• finite support: Ahn and Sarver (2013)

– Add a Finiteness axiom to get finitely many Ũ
– Useful in dynamic model to avoid conditioning on zero-probability

events
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Measuring Risk Preferences

• Let Uθ be a family of vNM forms with CARA or CRRA indexes

• Higher θ is more risk-aversion (allow for risk-aversion and risk-loving)

Model 1 (à la REU): There is a probability distribution P over error shocks
ε̃ to the preference parameter θ

ρREUθ (p,A) = P{Uθ+ε̃(p) ≥ Uθ+ε̃(q) for all q ∈ A}

Model 2 (à la DC): There is a probability distribution P over error shocks
ε̃ to the expected value

ρDC
θ (p,A) = P{Uθ(p) + ε̃(p) ≥ Uθ(q) + ε̃(q) for all q ∈ A}

Comment: In Model 2, preferences over lotteries are not vNM!



Measuring Risk Preferences

Notation:

• FOSD—First Order Stochastic Dominance

• SOSD—Second Order Stochastic Dominance

Observation 1: Model 1 has intuitive properties:

• If p FOSD q, then ρREUθ (p, {p, q}) = 1

• If p SOSD q, then ρREUθ (p, {p, q}) is increasing in θ

Observation 2: Model 2 not so much:

• If p FOSD q, then ρDC
θ (p, {p, q}) < 1

• If p SOSD q, then ρDC
θ (p, {p, q}) is not monotone in θ



Measuring Risk Preferences

Theorem‡: (Wilcox, 2008, 2011; Apesteguia and Ballester, 2017) If p
SOSD q, then ρDC

θ (p, {p, q}) is strictly decreasing for large enough θ.

Comments:

• This biases parameter estimates

• Subjects may well violate FOSD and SOSD. Better to model these
violations explicitly rather than as artifacts of the error specification?

• A similar lack of monotonicity for discounted utility time-preferences

• Apesteguia, Ballester, and Lu (2017) study a general notion of
single-crossing for random utility models



Lecture 2 on Stochastic Choice

Tomasz Strzalecki



Learning

Attention
Optimal Attention
Random Attention

Controlled Randomization



Recap of Random Utility

• (Ω,F ,P) · · · · · · · · · · · · · · · · · · probability space

• Ũ : Ω→ RX · · · · · · · · · · · · · ·· random utility

• C (x ,A) := {ω ∈ Ω : Ũω(x) ≥ Ũω(y) for all y ∈ A}

– agent learns the state (his utility) and chooses optimally

• ρ(x ,A) = P(C (x ,A))

– analyst does not see the state; the observed choice frequency of x from
A is the probability that x is the argmax of the agent’s utility on A



Learning

• In RU choice is stochastic because preferences are fluctuating

• Another possible reason: choices are driven by agent’s noisy signals

– Agent does not learn the state perfectly but gets a signal of it

• What kinds of ρ does this lead to?

– If information is independent of the menu, this is a special case of RU

– Strict subset of RU if model is rich enough

– What if information can depend on the menu?  later today



Learning—probabilistic model

• Let G represent menu-independent information the agent is learning.

• Conditional on the signal the agent maximizes E[Ũ(x)|G]

Example: Hiring an applicant based on an interview

– Interview is a noisy signal

– Interview goes well =⇒ E[Ũ(hire)|G] > E[Ũ(not)|G]

– Interview goes badly =⇒ E[Ũ(hire)|G] < E[Ũ(not)|G]



Learning—probabilistic model

Comment: Choices are random because they depend on the signal
realization

• No information (G trivial) ⇒ choices are deterministic (agent
maximizes ex ante expected utility)

• Full information (G = F) ⇒ this is just a RU model

• In general, the finer the G, the more random the choices, keeping
(Ω,F ,P) constant



Learning—probabilistic model

Proposition: ρ has a probabilistic learning representation iff it has a RU
representation

Proof:

• For any G the induced ρ has a RU representation (Ω,G,P, Ṽ )
with Ṽ := E[Ũ|G]

• Any RU has a learning representation where G = F
(signal is fully revealing)

Comment: Need to enrich the model to get a strictly special case

• Separation of tastes and beliefs  next slide

• Strictly special case of RU in a dynamic setting (Frick, Iijima, and
Strzalecki, 2019)  Lecture 3



Learning—statistical model

S · · · · · · · · · · · · · · · · · · · · · · · · set of unknown states

p ∈ ∆(S) · · · · · · · · · · · · · · · prior belief

u : S → RX · · · · · · · · · · deterministic state-dependent utility function

Epu(x) · · · · · · · · · · · · · · · · · · (ex ante) expected utility of x

• Signal structure: in each state s there is a distribution over signals

• For each signal realization, posterior beliefs are given by the Bayes rule

• The prior p and the signal structure ⇒ random posterior q̃

– For each posterior q̃ the agent maximizes maxx∈A Eq̃u(x)



Learning—statistical model

For each s, the model generates a choice distribution ρs(x ,A)

• In some lab experiments the analyst can control/observe s

• This is a special case of observable attributes ξ from Lecture 1

An average of ρs according to the prior p generates ρ(x ,A)

• That’s when the analyst does not observe s



Learning—statistical model

Example (Classical experimental design in perception literature):

• s% of dots on the screen are moving left, 100− s% are moving right

• subject has to guess where most dots are moving

• imperfect perception, so noisy guesses

• experimenter controls s, observes ρs



Learning—statistical model

Comments:

• The class of ρ generated this way equals the RU class

• For each s conditional choices ρs also belong to the RU class

– Consistency conditions of ρs across s  Caplin and Martin (2015)

• The (statistical) learning model becomes a strictly special case of RU
when specified to Anscombe–Aumann acts (Lu, 2016)



Learning—the Lu (2016) model

• Random Utility model of choice between Anscombe–Aumann acts

• This means X = ∆(Z )S

– In each state the agent gets a lottery over prizes in a finite set Z

– Typical acts are denoted f , g , h ∈ X

• Random Utility Ũ(f ) =
∑

s∈S u(f (s))q̃(s), where

– u is a (deterministic) linear utility over ∆(Z )

– q̃ is the (random) posterior over S

• The distribution over q̃ is given by µ



Learning—the Lu (2016) model

Let A(s) := {f (s) : f ∈ A}.

Axiom (S-monotonicity): If ρ(f (s),A(s)) = 1 for all s ∈ S then
ρ(f ,A) = 1.

Axiom (C-determinism): If A is a menu of constant acts, then ρ(f ,A) = 1
for some f ∈ A.

Axiom (Non-degeneracy): ρ(f ,A) ∈ (0, 1) for some f ∈ A.



Learning—the Lu (2016) model

Theorem‡ (Characterization). ρ has a (statistical) learning representation
iff it satisfies the Gul and Pesendorfer (2006) axioms plus S-monotonicity,
C-determinisim.

‡ (Ties dealt with by stochastic choice correspondence)

Theorem‡ (Uniqueness). Under Non-degeneracy the the information
structure µ is unique and the utility function u is cardinally-unique.

– In fact, the parameters can be identified on binary menus

– Test functions: calibration through constant acts

Theorem‡ (Comparative Statics). Fix u and p and consider two
information structures µ and µ′. ρ is “more random” than ρ′ if and only if
µ is Blackwell-more informative than µ′.



Menu-dependent Learning

• Models of learning so far:

– the probabilistic model (information is G)

– the statistical model (information is µ)

– the Lu (2016) model

• In all of them information is independent of the menu

• But it could depend on the menu (so we would have GA or µA):

– if new items provide more information

– or if there is limited attention  later today



Example

Ũω(steak tartare) Ũω(chicken) Ũω(fish)

ω = good chef 10 7 3
ω = bad chef 0 5 0

• fish provides an informative signal about the quality of the chef
– G{s,c,f } gives full information:

– if the whole restaurant smells like fish → chef is bad
– if the whole restaurant doesn’t smell like fish → chef is good

– ρ(s, {s, c , f }) = ρ(c , {s, c , f }) = 1
2 and ρ(f , {s, c , f }) = 0

• in absence of f get no signal
– G{s,c} gives no information
– ρ(s, {s, c}) = 0, ρ(c , {s, c}) = 1 (if prior uniform)

• violation of the Regularity axiom!
– menu-dependent information is like menu-dependent (expected) utility



Bayesian Probit

• Natenzon (2018) develops a Bayesian Probit model of this, where the
agent observes noisy signal of the utility of each item in the menu

– signals are jointly normal and correlated

– model explains decoy effect, compromise effect, and similarity effects

– correlation ⇒ new items shed light on relative utilities of existing items

• Note: adding an item gives Blackwell-more information about the
state, the state is uncorrelated with the menu

• Question: What is the family of ρ that has a general menu-dependent
learning representation? What is the additional bite of Blackwell
monotonicity? What if Blackwell is violated (information overload)?



Learning so far

• Information independent of the menu (RU or special case of RU)

• Information dependent on the menu (more general than RU)

In both cases, the true state was uncorrelated with the menu. What if
there is such a correlation?  in general can explain any ρ



Example (Luce and Raiffa, 1957)

Ũω(steak tartare) Ũω(chicken) Ũω(frog legs)

ω = good chef 10 7 3
ω = bad chef 0 5 0

• frog legs provides an informative signal about the quality of the chef

– only good chefs will attempt to make frog legs
– so {s, c , f } signals ω = good chef
– so {s, c} signals ω = bad chef

• this implies

– ρ(s, {s, c , f }) = 1, ρ(c , {s, c , f }) = ρ(f , {s, c , f }) = 0
– ρ(s, {s, c}) = 0, ρ(c , {s, c}) = 1 (if prior uniform)

• so here the menu is directly correlated with the state

– unlike in the fish example where there is no correlation
– Kamenica (2008)–model where consumers make inferences from menus

(model explains choice overload and compromise effect)



Learning—recap

• Information independent of menu

– Special case of RU (or equivalent to RU depending on the formulation)

– More informative signals ⇒ more randomness in choice

• Information depends on the menu

– More general than RU (can violate Regularity)

– Two flavors of the model:

• more items ⇒ more information (Natenzon, 2018)

• correlation between menu and state (Kamenica, 2008)

– General analysis? Axioms?



Learning
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Optimal Attention

• Imagine now that the signal structure is chosen by the agent

– instead of being fixed

• The agent may want to choose to focus on some aspect

– depending on the menu

• One way to model this margin of choice is to let the agent choose
attention optimally:

– Costly Information Acquisition (Raiffa and Schlaifer, 1961)

– Rational Inattention (Sims, 2003)

– Costly Contemplation (Ergin, 2003; Ergin and Sarver, 2010)



Value of Information

For each information structure µ its value to the agent is

V A(µ) =
∑

q̃∈∆(S)

[max
x∈A

Eq̃v(x)]µ(q̃)

Comment: Blackwell’s theorem says the value of information is always
positive: more information is better



Optimal Attention

• For every menu A, the agent chooses µ to maximize:

max
µ

V A(µ)− C (µ)

• where C (µ) is the cost of choosing the signal structure µ

– could be a physical cost

– or mental/cognitive

• this is another case where information depends on the menu A

– this time endogenously



Optimal Attention

Example (Matejka and McKay, 2014): ρ(x , {x , y , z}) > ρ(x , {x , y})
because adding z adds incentive to learn about the state

s1 s2

x 0 2
y 1 1
z 2 0

• Prior is ( 1
2 ,

1
2 )

• Cost of learning the state perfectly is 0.75

• No other learning possible (cost infinity)

• ρ(x , {x , y}) = 0, ρ(x , {x , y , z}) = 1
2



Optimal Attention

Special cases of the cost function:

• Separable cost functions C (µ) =
∫
φ(q̃)µ(dq̃)

– for some function φ : ∆(S)→ R

• Mutual information: separable where φ(q) is the relative entropy
(Kullback-Leibler divergence) of q with respect to the prior

∫
q̃µ(dq̃)

• General cost functions: C is just Blackwell-monotone and convex



Optimal Attention

Question: Is it harder to distinguish “nearby” states than “far away”
states?

• In the dots example, is it harder to distinguish s = 49% from s = 51%
or s = 1% from s = 99%?

• Caplin and Dean (2013), Morris and Yang (2016), Hébert and
Woodford (2017)



Optimal Attention

• Matejka and McKay (2014) analyze the mutual information cost
function used in Sims (2003)

– show the optimal solution leads to weighted-Luce choice probabilities ρs

– can be characterized by two Luce IIA-like axioms on ρs



Optimal Attention

• Caplin and Dean (2015) characterize general cost C

– assume choice is between Savage acts

– assume the analyst knows the agent’s utility function and the prior

– can be characterized by two acyclicity-like axioms on ρs

– partial uniqueness: bounds on the cost function

• Denti (2018) and Caplin, Dean, and Leahy (2018) characterize
separable cost functions (and mutual information)

– additional axioms beyond the two acyclicity-like axioms on ρs

• Chambers, Liu, and Rehbeck (2018) characterize a more general
model without the V A(µ)− C (µ) separability

– like Caplin and Dean (2015), they assume that the analyst knows the
agent’s utility function and the prior



Optimal Attention

• Lin (2017) characterizes general cost C

– building on Lu (2016) and De Oliveira, Denti, Mihm, and Ozbek (2016)

– the utility and prior are recovered from the data

– can be characterized by a relaxation of REU axioms plus the
De Oliveira, Denti, Mihm, and Ozbek (2016) axioms

– essential uniqueness of parameters: minimal cost function unique

• Duraj and Lin (2019a) the agent can buy a fixed signal

– either at a cost, or experimentation takes time

– axiomatic characterization and uniqueness results
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Random Attention

• In the Optimal Attention model, paying attention meant optimally
choosing an informative signal about its utility (at a cost)

• In the Random Attention model, attention is exogenous (and random)

– Γ̃(A) ⊆ A is a random Consideration Set

– v ∈ RX is a deterministic utility function

– for each possible realization Γ̃(A) the agent maximizes v on Γ̃(A)

– so for each menu we get a probability distribution over choices

• So this could be called Random Consideration



Random Attention

• Manzini and Mariotti (2014)

– each x ∈ A belongs to Γ̃(A) with prob γ(x), independently over x

– if Γ̃(A) = ∅, the agent chooses a default option

– axiomatic characterization, uniqueness result

– turns out this is a special case of RU

• Imagine that Γ̃(A) = Γ̃ ∩ A for some random set Γ̃. Items outside of Γ̃
have their utility set to −∞; inside of Γ̃ utility is unchanged. If Γ̃ is
independent of the menu, then this is a special case of RU.



Random Attention

• Brady and Rehbeck (2016): allow for correlation

– axiomatic characterization, uniqueness result

– now can violate Regularity

• Cattaneo, Ma, Masatlioglu, and Suleymanov (2018): even more
general

– attention filters, following Masatlioglu, Nakajima, and Ozbay (2011)

– axiomatic characterization, uniqueness result



Random Attention

• Suleymanov (2018) provides a clean axiomatic classification of these
models

• Aguiar, Boccardi, Kashaev, and Kim (2018)

– theoretical and statistical framework to test limited and random
consideration at the population level

– experiment designed to tease them apart



Random Attention

• Abaluck and Adams (2017): model with characteristics ξ

– a version of Manzini and Mariotti (2014) where γ(x) depend only on ξx

– a version where the probability of being asleep (only looking at status
quo) depends only on ξstatus quo

– identification results and experimental proof of concept



Satisficing

• Aguiar, Boccardi, and Dean (2016): agent is Satisficing

– draws a random order

– goes through items till an item is “good enough”

– randomness in orders generates randomness in choice
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Controlled Randomization

Idea: The agent directly chooses a probability distribution on actions
ρ ∈ ∆(A) to maximize some non-linear value function V (ρ)

Examples:

• Trembling hands with implementation costs

• Allais-style lottery preferences

• Hedging against ambiguity

• Regret minimization



Trembling Hands

Idea: The agent implements her choices with an error (trembling hands)

– can reduce error at a cost that depends on the tremble probabilities

• When presented with a menu A choose ρ ∈ ∆(A) to maximize

V (ρ) =
∑
x

v(x)ρ(x)− C (ρ)

• v ∈ RX is a deterministic utility function

• C is the cost of implementing ρ

– zero for the uniform distribution

– higher as ρ focuses on a particular outcome

• This is called the Perturbed Utility model, used in game theory



Additive Perturbed Utility

Typically used specification: Additive Perturbed Utility

C (ρ) = η
∑
x∈A

c(ρ(x)) + k

• log cost: c(t) = − log(t) (Harsanyi, 1973)

• quadratic cost: c(t) = t2 (Rosenthal, 1989)

• entropy cost: c(t) = t log t (Fudenberg and Levine, 1995),

General C function used in

• Mattsson and Weibull (2002), Hofbauer and Sandholm (2002),
van Damme and Weibull (2002)

a recent decision theoretic study is Allen and Rehbeck (2019)



The Quadruple Equivalence

Theorem (Anderson, de Palma, and Thisse, 1992): The following are
equivalent

(i) ρ satisfies Positivity and IIA

(ii) ρ has a Luce representation

(iii) ρ has a logit representation

(iv) ρ has an entropy APU representation

Comments:

• Another application to game theory: Quantal Response Equilibrium
(McKelvey and Palfrey, 1995, 1998) uses logit



Additive Perturbed Utility

Axiom (Acyclicity): For any n and bijections f , g : {1, ..., n} → {1, ..., n},

ρ(x1,A1) > ρ(xf (1),Ag(1))

ρ(xk ,Ak) ≥ ρ(xf (k),Ag(k)) for 1 < k < n

implies

ρ(xn,An) < ρ(xf (n),Ag(n)).

Condition (Ordinal IIA): For some continuous and monotone
φ : (0, 1)→ R+

φ(ρ(x ,A))

φ(ρ(y ,A))
=
φ(ρ(x ,B))

φ(ρ(y ,B))

for each menu A,B ∈ A and x , y ∈ A ∩ B.



Additive Perturbed Utility

Theorem†(Fudenberg, Iijima, and Strzalecki, 2015): The following are
equivalent under Positivity:

(i) ρ has an APU representation with steep cost†

(ii) ρ satisfies Acyclicity

(iii) ρ satisfies Ordinal IIA

Comments:

• Weaker forms of Acyclicity if c is allowed to depend on A or on z
(Clark, 1990; Fudenberg, Iijima, and Strzalecki, 2014)

• The model explains any ρ if c is allowed to depend on both A and z

• Hedging against ambiguity interpretation (Fudenberg, Iijima, and
Strzalecki, 2015)



Allais-style lottery preferences

• Agent is choosing between lotteries, X = ∆(Z )

• She has a deterministic nonlinear lottery preference %` over ∆(Z )

• If %` is quasiconcave, then the agent likes to toss a “mental coin”

– Example: p1 ∼` p2

– Strictly prefer q

– To implement this, choice
from A = {p1, p2} is
ρ(p1,A) = ρ(p2,A) = 1

2

– what if B = {p1, p2, q}?
(Is the “mental coin” better or
worse than actual coin?)



Allais-style lottery preferences

• Machina (1985): derives some necessary axioms that follow from
maximizing any general %`

• Cerreia-Vioglio, Dillenberger, Ortoleva, and Riella (2017):

– characterize maximization of a general %` −→ Rational Mixing axiom

– show that violations of Regularity obtain iff %` has a point of strict
convexity

– characterize maximization of a specific %` that belongs to the Cautious
Expected Utility class −→ Rational Mixing + additional axioms

• Lin (2019) shows lack of uniqueness for other classes of risk
preferences

– betweenness

– also can rationalize REU as betweenness



Evidence

• In experiments (Agranov and Ortoleva, 2017; Dwenger, Kubler, and
Weizsacker, 2013) subjects are willing to pay money for an “objective”
coin toss

• So “objective” coin better than “mental” coin

• No room in above models for this distinction...
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Recap of Static Random Utility

• (Ω,F ,P) · · · · · · · · · · · · · · · · · · probability space

• Ũ : Ω→ RX · · · · · · · · · · · · · ·· random utility

• C (x ,A) := {ω ∈ Ω : Ũω(x) = maxy∈A Ũω(y)}

– agent learns the state (his utility) and chooses optimally

• ρ(x ,A) = P(C (x ,A))

– analyst does not see the state; the observed choice frequency of x from
A is the probability that x is the argmax of the agent’s utility on A



Dynamic Random Utility (DRU)

In every period ρt has a RU representation with utility Ũt(x0)

Conditional choice probability (given a history of choices ht):

ρt(xt ,At |ht) = P
[
C (xt ,At)

∣∣∣ht
]

Two main dynamic effects that connect ρt and ρt+1

• Backward Looking: (if Ũt and Ũt+1 are correlated)

– History-Dependence, Choice-Persistence

• Forward Looking: (if Ũt satisfies the Bellman Equation)

– Agent is Bayesian, has rational expectations, and correctly calculates
option value



History Dependence and Selection on Unobservables

2016

2020
Democrat

Republican
Democrat

2020
Democrat

Republican

Republican

If political preferences persistent over time, expect history dependence:

ρ(R2020|R2016) > ρ(R2020|D2016)

History independence only if preferences completely independent over time.

History Dependence is a result of informational asymmetry between agent
and analyst



Types of History Dependence (Heckman, 1981)

1. Choice Dependence: A consequence of the informational asymmetry
between the analyst and the agent

– Selection on unobservables
– Utility is serially correlated (past choices partially reveal it)

2. Consumption Dependence: Past consumption changes the state of
the agent

– Habit formation or preference for variety (preferences change)
– Experimentation (beliefs change)

Questions:

• How to distinguish between the two?

• How much history-dependence can there be?

• What are the axioms that link ρt and ρt+1?



Dynamic Decisions

Decision Trees: xt = (zt ,At+1)

– Choice today leads to an immediate payoff and a menu for tomorrow

Examples:

– fertility and
schooling choices
(Todd and Wolpin,
2006)

– engine replacement
(Rust, 1987)

– patent renewal
(Pakes, 1986)

– occupational
choices (Miller,
1984)

00

lapse
0

0

lapse
z1

patent expires

z2

renew

z1
− c

renew

−c



Primitive

• The analyst observes the conditional choice probabilities ρt(·|ht−1)

– at each node of a decision tree

• Dynamic Discrete Choice literature

– typically for a fixed tree, but have covariates ξ

• Decision Theory literature

– typically across decision trees



Bellman Equation

In addition, it is often assumed that:

• In period 0 the agent’s utility is

Ũ0(z0,A1) = ũ0(z0) + δE0

[
max
z1∈A1

ũ1(z1)

]

• ũ0 is private information in t = 0

• ũ1 is private information in t = 1 (so may be unknown in t = 0)

Question: What do these additional assumptions mean?



Introduction

Dynamic Random Utility

Dynamic Optimality

Dynamic Discrete Choice

Decision Times



Decision Trees

Time: t = 0, 1

Per-period outcomes: Z

Decision Nodes: At defined recursively:

• period 1: menu A1 is a subset of X1 := Z

• period 0: menu A0 is a subset of X0 := Z ×A1

pairs x0 = (z0,A1) of current outcome and continuation menu

Comment: Everything extends to finite horizon by backward induction;
infinite horizon—need more technical conditions (a construction similar to
universal type spaces)



Conditional Choice Probabilities

ρ is a sequence of history-dependent choice distributions:

period 0: for each menu A0, observe choice distribution

ρ0(·,A0) ∈ ∆(A0)

period 1: for each menu A1 and history h0 that leads to menu A1, observe
choice distribution conditional on h0

ρ1(·,A1|h0) ∈ ∆(A1)

H0 · · · · · · · · · · · · period-0 histories

H0 := {h0 = (A0, x0) : ρ0(x0,A0) > 0}

H0(A1) · · · · · · · · · is set of histories that lead to menu A1

H0(A1) := {h0 = (A0, x0) ∈ H0 : x0 = (z0,A1) for some z0 ∈ Z}



Dynamic Random Utility

Definition: A DRU representation of ρ consists of

• a probability space (Ω,F ,P)

• a stochastic process of utilities Ũt : Ω→ RXt

such that for all x0 ∈ A0

ρ0(x0,A0) = P [C (x0,A0)]

and for all x1 ∈ A1 and histories (A0, x0) ∈ H0(A1),

ρ1(x1,A1|h0) = P [C (x1,A1)|C (x0,A0)]

where C (xt ,At) := {ω ∈ Ω : Ũt,ω(xt) = maxyt∈At Ũt,ω(yt)}

• for technical reasons allow for ties and use tie-breaking



History Independence

General idea:

• Agent’s choice history h0 = (A0, x0) reveals something about his
period-0 private information, so expect ρ1(·|h0) to depend on h0

• But dependence cannot be arbitrary: some histories are equivalent as
far as the private information they reveal

• The axioms of Frick, Iijima, and Strzalecki (2019)

– Identify two types of equivalence classes of histories

– Impose history independence of ρ1 within these classes



Contraction History Independence

Axiom (Contraction History Independence): If

(i) A0 ⊆ B0

(ii) ρ0(x0,A0) = ρ0(x0,B0),

then
ρ1(·, ·|A0, x0) = ρ1(·, ·|B0, x0)



Example

x(80%)

y(20%)

x(90%)

y(10%)

x(60%)

y(40%)

x(8
0%

)

y(15%)

z(5%
)

x(90%)

y(10%)

x(65%)

y(35%)

x(45%)

y(55%)

• z does not steal any customers from x in period t = 0

• so what people do in t = 1 after choosing x should be the same

• (note that z steals from y , so we have a mixture)



Adding Lotteries
Add lotteries: Xt = ∆(Z ×At+1), assume each utility function is vNM

• Denote lotteries by pt ∈ Xt

• Helps formulate the second kind of history-independence

• Makes it easy to build on the REU axiomatization

• Helps overcome the limited observability problem

– not all menus observed after a given history; how to impose axioms?

• Helps distinguish choice-dependence from consumption-dependence

h0 = (A0, x0) vs h0 = (A0, p0, z0)



Consumption History Independence

For now, assume away consumption dependence and allow only for choice
dependence

Axiom (Consumption Independence): For any p0 ∈ A0 with
p0(z0), p0(z ′0) > 0

ρ1(·|(A0, p0, z0)) = ρ1(·|(A0, p0, z
′
0))



Weak Linear History Independence

Idea: Under EU-maximization, choosing p0 from A0 reveals the same
information as choosing option λp0 + (1− λ)q0 from menu
λA0 + (1− λ){q0}.

Axiom (Weak Linear History Independence)

ρ1(·, ·|A0, p0) = ρ1

(
·, ·|λA0 + (1− λ)q0, λp0 + (1− λ)q0

)
.



Example

school 2

school 1

H (80% )

P (20%)

H
(10%)

P (30%)

S (60%)

school 2

lottery (1− λ) school 2

(λ) school 1

H

P

H

P

H

P

S

• school 2 offers two after-school programs, school 1 offers three

• different parents self-select to different schools

• how would school-1 parents choose between {H,P}?
• lottery to get in to the school

• Axiom says choice between {H,P} independent of λ



Linear History Independence

Axiom (Weak Linear History Independence)

ρ1(·, ·|A0, p0) = ρ1

(
·, ·|λA0 + (1− λ)q0, λp0 + (1− λ)q0

)
.

Idea was to mix-in a lottery q0. Next we mix-in a set of lotteries B0

Axiom (Linear History Independence)

ρ1(·,·|A0, p0)ρ0(p0,A0)

=
∑
q0∈B0

ρ1

(
·,·|λA0+(1−λ)B0,λp0+(1−λ)q0

)
·ρ0

(
λp0+(1−λ)q0,λA0+(1−λ)B0

)



Dynamic Random Expected Utility

Theorem 1: ρ has a DREU representation if and only it satisfies

– Contraction History Independence

– Consumption History Independence

– Linear History Independence

– REU axioms in each period†

– History-Continuity†

Remark: For REU axioms we use the approach of Gul and Pesendorfer
(2006); Ahn and Sarver (2013). We need to extend their result to infinite
spaces because X1 is infinite (our Theorem 0).



Consumption Persistence

x(80%)

y(20%)

x(90%)

y(10%)

x(60%)

y(40%)

• ρ1(x |x) > ρ1(x |y)

• again, there is no habit here

• but serially correlated utility

• widely studied in marketing
literature

• Frick, Iijima, and Strzalecki
(2019) formulate behavioral
notions of persistence and
relate them to the serial
correlation of utility
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How to incorporate Dynamic Optimality?

• In the definition above, no structure on the family (Ũt)

• But typically Ũt satisfies the Bellman equation

Definition: ρ has an Evolving Utility representation if it has a DREU
representation where the process (Ũt) satisfies the Bellman equation

Ũt(zt ,At+1) = ũt(zt) + δE
[

max
pt+1∈At+1

Ũt+1(pt+1)|Ft

]

for δ > 0 and a Ft-adapted process of vNM utilities ũt : Ω→ RZ

Question: What are the additional assumptions?

Answer:

• Option value calculation (Preference for Flexibility)

• Rational Expectations (Sophistication)



Simplifying assumption: No selection

Simplifying Assumption:

1. The payoff in t = 0 is fixed

2. There is no private information in t = 0

What this means:

• Choices in t = 0:

– are deterministic

– can be represented by a preference A1 %0 B1

• Choices in t = 1:

– are random, represented by ρ1

– are history-independent

– t = 0 choices do not reveal any information



Preference for Flexibility

Suppose that there are no lotteries, so X1 = Z1 is finite and X0 = M(X1).

Definition: %0 has an option-value representation if there exists a random
u1 : Ω→ RZ such that

U0(A1) = E0

[
max
z1∈A1

ũ1(z1)

]

Axiom (Preference for Flexibility): If A ⊇ B, then A %0 B

Theorem† (Kreps, 1979): Preference %0 has an option-value
representation iff it satisfies Completeness, Transitivity, Preference for
Flexibility, and Modularity†



Preference for Flexibility

Comments:

• This representation has very weak uniqueness properties

• To improve uniqueness, Dekel, Lipman, and Rustichini (2001); Dekel,
Lipman, Rustichini, and Sarver (2007) specialize to choice between
lotteries, X1 = ∆(Z1)

• In econometrics U0 is called the consumer surplus or inclusive value



Rational Expectations

Specify to X1 = ∆(Z1) and suppose that

• %0 has an option-value representation (Ω,F ,P0, u1)

• ρ1 has a REU representation with (Ω,F ,P1, u1)

Definition: (%0, ρ1) has Rational Expectations iff P0 = P1

Axiom (Sophistication)†: For any menu without ties† A ∪ {p}

A ∪ {p} �0 A⇐⇒ ρ1(x ,A ∪ {p}) > 0

Theorem‡ (Ahn and Sarver, 2013): (%0, ρ1) has Rational Expectations iff
it satisfies Sophistication.

Comment: Relaxed Sophistication (⇒ or ⇐) pins down either an
unforeseen contingencies model or a pure freedom of choice model



Identification of Beliefs

Theorem‡ (Ahn and Sarver, 2013): If (%0, ρ1) has Rational Expectations,
then the distribution over cardinal utilities u1 is uniquely identified.

Comments:

• Just looking at ρ1 only identifies the distribution over ordinal risk
preferences (Gul and Pesendorfer, 2006)

• Just looking at %0 identifies even less (Dekel, Lipman, and Rustichini,
2001)

• But jointly looking at the evaluation of a menu and the choice from
the menu helps with the identification



Analogues in econometrics

• Analogue of Sophistication is the Williams-Daly-Zachary theorem

– ρ1 is the gradient of U0 (in the space of utilities)

– see, e.g., Koning and Ridder (2003); Chiong, Galichon, and Shum
(2016)

• Hotz and Miller (1993) and the literature that follows exploits this
relationship

• Sophistication is in a sense a “test” of this property



Putting Selection Back In

• In general, want to relax the simplifying assumption

– in reality there are intermediate payoffs

– and informational asymmetry in each period

– choice is stochastic in each period

– and there is history dependence

• To characterize BEU need to add Preference for Flexibility and
Sophistication

– but those are expressed in terms of %0

– when the simplifying assumption is violated we only have access to ρ0

– Frick, Iijima, and Strzalecki (2019) find a way to extract %0 from ρ0

– Impose stochastic versions of time-separability, DLR, and Sophistication



Passive and Active Learning

• BEU: randomness in choice comes from changing tastes

• Passive Learning: randomness in choice comes from random signals

– tastes are time-invariant, but unknown ũt = E[ũ|Gt ] for some
time-invariant vNM utility ũ : Ω→ RZ

• To characterize the passive learning model, need to add a
“martingale” axiom

• Uniqueness of the utility process, discount factor, and information

• Frick, Iijima, and Strzalecki (2019) relax consumption-independence
and characterize habit-formation and active learning
(experimentation) models

– parametric models of active learning used by, e.g., Erdem and Keane
(1996), Crawford and Shum (2005)



Related Work

• The Bayesian probit model of Natenzon (2018) can be viewed as a
model of a sequence of static choice problems where choice
probabilities are time dependent

• Cerreia-Vioglio, Maccheroni, Marinacci, and Rustichini (2017) also
study a sequence of static choice problems using a Luce-like model

• Gabaix and Laibson (2017) use a model of gradual learning to
microfound “as-if” discounting and present bias

• Lu and Saito (2018) study t = 0 choices between consumption stream

• Krishna and Sadowski (2012, 2016) characterize a class of models
similar to Evolving Utility by looking at menu-preferences



Related Work

• Lu and Saito (2019)

– study a random utility model where separability is violated, as in
Epstein and Zin (1989)

– show that even on simple domains where the continuation menu is fixed
the analysts estimates of the function u are biased because they are
contaminated by the nonlinear continuation utility.

• Duraj (2018) adds an objective state space to DREU and studies
dynamic stochastic choice between Anscombe–Aumann acts

– new primitive: augmented stochastic choice function

– direct test of whether the agent’s beliefs reflect the true data
generating process



Preference for making choices late

• Suppose you got admitted to PhD programs at Harvard and MIT

• Do you make your decision before the visit days or after?

A
before

1

A after1

{y}

{z}

{y , z}

y

z

y

z



Preference for making choices late

Theorem†: If ρ has a BEU representation, then absent ties†

ρ0(Aafter
1 , {Abefore

1 ,Aafter
1 }) = 1

Comments:

• BEU has positive value of information: desire to delay the choice as
late as possible to capitalize on incoming information (unless there is
a cost)

• Here delaying decision does not delay consumption. The situation is
different in optimal stopping models  later today
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DDC model

Definition: The DDC model is a restriction of DREU to deterministic
decision trees that additionally satisfies the Bellman equation

Ũt(zt ,At+1) = vt(zt) + δE
[

max
yt+1∈At+1

Ũt+1(yt+1)|Ft

]
+ ε̃

(zt ,At+1)
t ,

with deterministic utility functions vt : Ω→ RZ ; discount factor δ ∈ (0, 1);
and Ft-adapted zero-mean payoff shocks ε̃t : Ω→ RYt .



Special cases of DDC

• BEU is a special case, which can be written by setting

ε̃
(zt ,At+1)
t = ε̃

(zt ,Bt+1)
t

– shocks to consumption

• i.i.d. DDC where ε̃
(zt ,At+1)
t and ε̃

(yt ,Bt+1)
τ are i.i.d.

– shocks to actions

Remarks:

• i.i.d. DDC displays history-independence because Ũt are independent

• BEU can also be history-independent

• but these two models are different



Other special cases of DDC

• permanent unobserved heterogeneity: ε̃
(zt ,At+1)
t = π̃ztt + θ̃

(zt ,At+1)
t ,

where

– π̃zt
t is a “permanent” shock that is measurable with respect to F0

– θ̃
(zt ,At+1)
t is a “transitory” shock, i.i.d. conditional on F0

– Kasahara and Shimotsu (2009)

• transitory but correlated shocks to actions: ε̃
(zt ,At+1)
t and ε̃

(xτ ,Bτ+1)
τ

are i.i.d. whenever t 6= τ , but might be correlated within any fixed
period t = τ

• unobservable serially correlated state variables: almost no
structure on ε

– Norets (2009); Hu and Shum (2012)



Dynamic logit

• A special case of i.i.d. DDC where ε̃t are distributed extreme value

• Dynamic logit is a workhorse for estimation

– e.g., Miller (1984), Rust (1989), Hendel and Nevo (2006),
Gowrisankaran and Rysman (2012)

• Very tractable due to the “log-sum” expression for “consumer surplus”

Vt(At+1) = log

 ∑
xt+1∈At+1

evt+1(xt+1)


(This formula is also the reason why nested logit is so tractable)



Axiomatization (Fudenberg and Strzalecki, 2015)

Notation: x %s
t y iff ρt(x ,A) ≥ ρt(y ,A) for A = {x , y}

Axiom (Recursivity):

(zt ,At+1) %s
t (zt ,Bt+1)

m
ρt+1(At+1,At+1 ∪ Bt+1) ≥ ρt+1(Bt+1,At+1 ∪ Bt+1)

Axiom (Weak Preference for Flexibility): If At+1 ⊇ Bt+1, then

(zt ,At+1) %s
t (zt ,Bt+1)

Comments:

• Recursivity leverages the “log-sum” expression

• Preference for flexibility is weak because support of ε̃t is unbounded

• Also, identification results, including uniqueness of δ



Models that build on Dynamic Logit

• View ε̃t as errors, not utility shocks

– Fudenberg and Strzalecki (2015): errors lead to “choice aversion” (each
menu is penalized by a function of its size)

– Ke (2016): a dynamic model of mistakes (agent evaluates each menu by
the expectation of the utility under her own stochastic choice function)

• Dynamic attribute rule

– Gul, Natenzon, and Pesendorfer (2014)



Questions about DDC

• Characterization of the general i.i.d. DDC model? General DDC?

– In general, no formula for the “consumer surplus”, but the
Williams-Daly-Zachary theorem may be useful here?

• There is a vast DDC literature on identification (Manski, 1993; Rust,
1994; Magnac and Thesmar, 2002; Norets and Tang, 2013)

– δ not identified unless make assumptions about “observable attributes”

– How does this compare to the “menu variation” approach



Understanding the role of i.i.d. ε

Key Assumption: Shocks to actions, ε
(zt ,At+1)
t and ε

(zt ,Bt+1)
t are i.i.d.

regardless of the nature of the menus At+1 and Bt+1

Let A0 := {(z0,A
small
1 ), (z0,A

big
1 )} where Asmall

1 = {z1} and Abig
1 = {z1, z

′
1}.

Proposition (Frick, Iijima, and Strzalecki, 2019): If ρ has a i.i.d. DDC
representation, then

0 < ρ0

(
(z0,A

small
1 ),A0

)
< 0.5.

Moreover, if the ε shocks are scaled by λ > 0, then this probability is
strictly increasing in λ whenever v1(z ′1) > v1(z1).



Understanding the role of i.i.d. ε

A
before

1

A after1

{y}

{z}

{y , z}

y

z

y

z

Proposition (Fudenberg and Strzalecki, 2015; Frick, Iijima, and Strzalecki,
2019): If ρ has a i.i.d. DDC representation with δ < 1, then

0.5 < ρ0

(
(x ,Aearly

1 ),A0

)
< 1.

Moreover, if ε is scaled by λ > 0, then ρ0((x ,Aearly
1 ),A0) is strictly

increasing in λ (modulo ties).

Intuition:
• The agent gets the ε not at the time of consumption but at the time

of decision (even if the decision has only delayed consequences)
• So making decisions early allows him to get the max ε earlier



Beyond i.i.d. DDC

• This result extends in a straightforward way to DDC with permanent
unobserved heterogeneity

– this is just a mixture of i.i.d DDC models, so inherits this property

• Also to DDC with transitory but correlated shocks to actions

• serially correlated unobservable heterogeneity:

– the result may not hold in general

– example: in the mixture model of i.i.d. DDC with BEU there is a horse
race between the two effects



Other Decision Problems

• So far, looked at pure manifestations of option value

– direct choice between nested menus

– costless option to defer choice

• DDC models typically not applied to those

• But these forces exist in “nearby” choice problems

• So specification of shocks matters more generally



Modeling Choices

• BEU: so far few convenient parametrization (Pakes, 1986) but

– bigger menus w/prob. 1
– late decisions w/prob. 1

• i.i.d. DDC: widely used because of statistical tractability, but

– smaller menus w/prob. ∈ (0, 1
2 )

– early decisions w/prob. ∈ ( 1
2 , 1)

Comments:

• i.i.d. DDC violates a key feature of Bayesian rationality: positive
option value

• Biased Parameter Estimates

• Model Misspecification

– Maybe a fine model of (behavioral) consumers
– But what about profit maximizing firms?



Modeling Choices

Comments:

• Note that in the static setting i.i.d. DC is a special case of RU

– though it has its own problems (blue bus/red bus)

• But in the dynamic setting, i.i.d. DDC is outside of BEU!

• Negative option value is not a consequence of history independence

– e.g., no such problem in the i.i.d. BEU

• It is a consequence of shocks to actions vs shocks to payoffs
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Decision Times

New Variable: How long does the agent take to decide?

Time: T = [0,∞) or T = {0, 1, 2, . . .}

Observe: Joint distribution ρ ∈ ∆(A× T )

Question:

• Are fast decisions “better” or “worse” than slow ones?



Are quick decisions better than slow ones?

Informational Effect:

• More time ⇒ more information ⇒ better decisions

– if forced to stop at time t, make better choices for higher t
– seeing more signals leads to more informed choices

Selection Effect:

• Time is costly, so you decide to stop depending on how much you
expect to learn (option value of waiting)

– Want to stop early if get an informative signal
– Want to continue if get a noisy signal

• This creates dynamic selection

– stop early after informative signals
– informative signals more likely when the problem is easy



Decreasing accuracy

The two effects push in opposite directions. Which one wins?

Stylized fact: Decreasing accuracy: fast decisions are “better”

• Well established in perceptual tasks (dots moving on the screen),
where “better” is objective

• Also in experiments where subjects choose between consumption items



When are decisions “more accurate?”

In cognitive tasks, accurate = correct

In choice tasks, accurate = preferred

p(t) := probability of making the correct/preferred choicce conditional
conditional on deciding at t

Definition:

P displays


increasing

decreasing

constant

 accuracy iff p(t) is


increasing

decreasing

constant





Experiment of Krajbich, Armel, and Rangel (2010)

• X : 70 different food items

• Step 1: Rate each x ∈ X on the scale -10, . . . , 10

• Step 2: Choose from A = {`, r} (100 different pairs)

– record choice and decision time

• Step 3: Draw a random pair and get your choice

Remark: Here we are using the ratings as a proxy for true preferences. Of
course, this is imperfect, as the ratings themselves are probably stochastic
as well, so this approach should be treated only as the first step.



Decreasing Accuracy

(based on data from Krajbich, Armel, and Rangel, 2010)



Domain

continue

choose r

choose
`continue

choose r

choose
`



Models

There are two kinds of models:

1. Optimal stopping models: The agent is optimally choosing when to
stop (and what to choose). The benefit of waiting is that it gives
more information. But there is a cost of waiting too, so the optimal
decision balances the two.

– Wald’s model (with a binary prior)

– Chernoff’s model (with a Gaussian prior)

2. Hitting-time models: The agent stops when some accumulation
process hits a certain boundary. This is a heuristic model, there is no
optimization here.

– Drift-Diffusion models

Under certain conditions, 2 is a solution to 1.



Optimal Stopping Model

• S · · · set of unknown states

• p ∈ ∆(S) · · · prior belief

• v : S → RX · · · state-dependent utility function

• (Gt) · · · information of the agent (filtration)

• τ · · · stopping time, {τ ≤ t} ∈ Gt

• Conditional on stopping, the agent maximizes expected utility

choiceτ = argmaxx∈A E[v(x)|Gτ ]

• So the only problem is to choose the stopping time



Interpretation of the Signal Process

• recognition of the objects on the screen

• retrieving pleasant or unpleasant memories

• coming up with reasons pro and con

• introspection

• signal strength depends on the utility difference or on the ease of the
perceptual task

In animal experiments, some neuroscientists record neural firing and relate
it to these signals

We don’t do this, treat signals as unobserved by the analyst



Exogenous vs Endogenous Stopping

Example: If stopping is exogenous (τ is independent of signal Gt), and
prior is symmetric, there is increasing accuracy: waiting longer gives
better information so generates better decisions

• Key assumption above: stopping independent of signal

• If stopping is conditional on the signal, this could get reversed

• Intuition: with endogenous stopping you

#1 stop early after informative signals (and make the right choice); wait
longer after noisy signals (and possibly make a mistake)

#2 probably faced an easier problem if you decided quickly



Optimal Stopping Problem

The agent chooses the stopping time optimally

max
τ

E[v(choiceτ )]− C (τ)

Comments:

• Assume first that cost is linear C (t) = ct

• (Gt) and τ generate a joint distribution of choices and times

– conditional on the state ρs ∈ ∆(A× T )

– unconditional (averaged out according to p) ρ ∈ ∆(A× T )

• Even though (Gt) is fixed, there is an element of optimal attention

– Waiting longer gives more information at a cost

– Choosing τ is like choosing the distribution over posteriors µ

– How close is this to the static model of optimal attention?  later



Further Assumptions

• Binary choice A = {x , y}

• s =
(
u`, ur

)
∈ R2; utility function is identity

• Continuous time

• Signal: Gt is generated by (G `
t ,G

r
t ) where

G i
t = t · ui + B i

t

and B`
t ,B

r
t are Brownian motions; often look at Gt := G `

t − G r
t



Examples of Prior/Posterior Families

• “certain difference” (Wald’s model)

– binomial prior: either s = (1, 0) or s = (0, 1)

– binomial posterior: either s = (1, 0) or s = (0, 1)

• “uncertain difference” (Chernoff’s model)

– Gaussian prior: ui ∼ N(X i
0, σ

2
0), independent

– Gaussian posterior: ui ∼ N(X i
t , σ

2
t ), independent



The “certain difference” model

* Assumptions:

– binomial prior: either s = (1, 0) or s = (0, 1)
– binomial posterior: either s = (1, 0) or s = (0, 1)

* Key intuition: stationarity

– suppose that you observe G `
t ≈ G r

t after a long t
– you think to yourself: “the signal must have been noisy”
– so you don’t learn anything ⇒ you continue

* Formally, the option value is constant in time



The “certain difference” model

Theorem (Wald, 1945): With binary prior the optimal strategy in the
stopping model takes a boundary-hitting form: there exists b ≥ 0 such that

τ := inf{t ≥ 0 : |Gt | ≥ b} choiceτ :=

{
` if Gτ = b

r if Gτ = −b



The “certain difference” model

Theorem (Wald, 1945): With binary prior the optimal strategy in the
stopping model takes a boundary-hitting form: there exists b ≥ 0 such that

τ := inf{t ≥ 0 : |Gt | ≥ b} choiceτ :=

{
` if Gτ = b

r if Gτ = −b



The “certain difference” model

Theorem (Wald, 1945): With binary prior the optimal strategy in the
stopping model takes a boundary-hitting form: there exists b ≥ 0 such that

τ := inf{t ≥ 0 : |Gt | ≥ b} choiceτ :=

{
` if Gτ = b

r if Gτ = −b



Comments

• The solution to the optimal stopping problem is a hitting-time model

• Can use this as a reduced-form model to generate ρ ∈ ∆(A× T )

– No optimization problem, just a boundary-hitting exercise

• Brought to the psychology literature by Stone (1960) and Edwards
(1965) to study perception; memory retrieval (Ratcliff, 1978)

• Used extensively for perception tasks since the 70’s; pretty well
established in psych and neuroscience

• Closed-form solutions for choice probabilities (logit) and expected
decision time



Comments

• More recently used to study choice tasks by a number of teams of
authors including Colin Camerer and Antonio Rangel

• Many versions of the model

• ad-hoc tweaks (not worrying about optimality)

– assumptions about the process Gt

– functional forms for the time-dependent boundary

• much less often, optimization used:

– time-varying costs (Drugowitsch, Moreno-Bote, Churchland, Shadlen,
and Pouget, 2012)

– endogenous attention (Woodford, 2014)



Hitting Time Models

Definition:

• Stochastic “stimulus process” Gt starts at 0

• Time-dependent boundary b : R+ → R+

• Hitting time τ = inf{t ≥ 0 : |Gt | ≥ b(t)}

• Choice =

{
` if Gτ = +b(τ)

r if Gτ = −b(τ)



Anything Goes

Proposition (Fudenberg, Strack, and Strzalecki, 2018): Any Borel
ρ ∈ ∆(A× T ) has a hitting time representation where the stochastic
process Gt is a time-inhomogeneous Markov process and the barrier is
constant

Remarks:

• This means that the general model is without loss of generality

– for a fixed binary menu (but maybe not across menus?)

• In particular, it is without loss of content to assume that b is
independent of time

• However, in the general model the process Gt may have jumps

• From now on we focus on the DDM special cases



Drift Diffusion Model (DDM)

Special case where the stimulus process Gt is a diffusion with constant
drift and volatility

Gt = δt + Bt

Definition: ρ has a DDM representation if it can be represented by a
stimulus process Gt = δt + Bt and a time-dependent boundary b. We
write this as ρ = DDM(δ, b)

Remarks:

• The optimal solution to the certain difference model is a DDM with
δ = u` − ur and constant b.

• The Brownian assumption has bite. A partial axiomatization was
obtained by Baldassi, Cerreia-Vioglio, Maccheroni, and Marinacci
(2018) but they only look at expected decision times, so ignore the
issue of correlation of times and decisions



Average DDM

Definition: ρ has an average DDM representation DDM(µ, b) with
µ ∈ ∆(R) if ρ =

∫
ρ(δ, b)dµ(δ).

• In an average DDM model the analyst does not know δ, but has a
correct prior

• Intuitively, it is unknown to the analyst how hard the problem is for
the agent

• This is the unconditional choice function ρ (the average of ρs)



Accuracy

Definition: Accuracy is the probability of making the correct choice

α(t) := P [choice(τ) = argmaxx∈A v(x)|τ = t]

Problem: In DDM α(t) is constant in t, so the model does not explain
the stylized fact

Intuition:

• Unconditional on stopping:

– higher t ⇒ more information ⇒ better accuracy

• But t is not chosen at random: it depends on information

– stop early after informative signals

• The two effects balance each other out perfectly!



Accuracy in DDM

Theorem (Fudenberg, Strack, and Strzalecki, 2018): Suppose that
ρ = DDM(δ, b).

accuracy α is


increasing

decreasing

constant

 iff boundary b is


increasing

decreasing

constant


Intuition for decreasing accuracy: this is our selection effect #1

• higher bar to clear for small t, so if the agent stopped early, G must
have been very high, so higher likelihood of making the correct choice



Accuracy in DDM models

Theorem (Fudenberg, Strack, and Strzalecki, 2018): Suppose that
ρ = DDM(µ, b), with µ = N (0, σ0)

accuracy α is


increasing

decreasing

constant

 iff b(t) · σt is


increasing

decreasing

constant


where σ2

t := 1
σ−2

0 +t

Intuition for decreasing accuracy: this is our selection effect #2

• σt is a decreasing function; this makes it an easier bar to pass



selection effect #2

Proposition (Fudenberg, Strack, and Strzalecki, 2018): Suppose that
µ = N (0, σ0), and b(t) · σt non-increasing. Then |δ| decreases in τ in the
sense of FOSD, i.e. for all d > 0 and 0 < t < t ′

P [ |δ| ≥ d | τ = t] > P
[
|δ| ≥ d | τ = t ′

]
.

• larger values of |δ| more likely when the agent decides quicker

• problem more likely to be ”easy” when a quick decision is observed

• this is a selection coming from the analyst not knowing how hard the
problem is



Extended DDM

• Constant DDM cannot explain decreasing accuracy

• Extended DDM adds more parameters to match the data better:

– random starting point of Zt

– random drift δ

– random initial latency T

• Sometimes this is also called full DDM

• See, e.g., Ratcliff and McKoon (2008); Bogacz, Brown, Moehlis,
Holmes, and Cohen (2006); Ratcliff and Smith (2004)



Example: random starting point

• random starting point may seem ad-hoc, but it sometimes makes
sense:

– example: there is a window of time in which the agent gathers
information but cannot act yet

• Let T0 be the length of this window and the drift be λ(u` − ur )

• Then the starting point of Z will be distributed N(T0λ(u` − ur ),T0)

• Chiong, Shum, Webb, and Chen (2018) study non-skippable video ads
in apps (estimate the model and simulate skippable counterfactual)



Microfounding the Boundary

* So far, only the constant boundary b was microfounded

* Do any other boundaries come from optimization?

* Which boundaries should we use?

* We now derive the optimal boundary



The “uncertain difference” model

* Assumptions:

– Gaussian prior: ui ∼ N(X i
0, σ

2
0)

– Gaussian posterior: ui ∼ N(X i
t , σ

2
t )

* Key intuition: nonstationarity

– suppose that you observe G l
t ≈ G r

t after a long t
– you think to yourself: “I must be indifferent”
– so you have learned a lot ⇒ you stop

* Formally σ2
t = 1

σ−2
0 +t

so option value is decreasing in time

* Intuition for the difference between the two models:

– interpretation of signal depends on the prior



The “uncertain difference” model

Theorem (Fudenberg, Strack, and Strzalecki, 2018): In the uncertain
difference model the optimal behavior has a DDM representation.
Moreover, unconditional on the state, accuracy is decreasing.



Other Boundaries

Question: How to microfound other non-constant boundaries? Do they
correspond to any particular optimization problem?

Theorem‡ (Fudenberg, Strack, and Strzalecki, 2018): For any b there
exists a (nonlinear) cost function C such that b is the optimal solution to
the stopping problem



Optimal Attention

• Pure optimal stopping problem (given a fixed (Gt), choose τ):

max
τ

E
[

max
x∈A

E[ũ(x)|Gτ ]

]
− C (τ)

• Pure optimal attention (given a fixed τ , choose (Gt))

max
(Gt)

E
[

max
x∈A

E[ũ(x)|Gτ ]

]
− C (Gt)

• Joint optimization

max
τ,(Gt)

E
[

max
x∈A

E[ũ(x)|Gτ ]

]
− C (τ,Gt)



Optimal Attention

• In the pure optimal attention problem information choice is more
flexible than in the pure stopping problem

– The agent can focus on one item, depending on what she learned so far

• Woodford (2014) solves a pure optimal attention problem

– with a constant boundary

– shows that optimal behavior leads to a decreasing choice accuracy

• Joint optimization puts the two effects together

• In experiments eye movements are often recorded (Krajbich, Armel,
and Rangel, 2010; Krajbich and Rangel, 2011; Krajbich, Lu, Camerer,
and Rangel, 2012)

– Do the optimal attention models predict them?



Optimal Attention

• Fudenberg, Strack, and Strzalecki (2018) show that in their model it
is always optimal to pay equal attention to both alternatives

• Liang, Mu, and Syrgkanis (2017) study the pure attention as well as
joint optimization models

– Find conditions under which the dynamically optimal strategy is close
to the myopic strategy

• Che and Mierendorff (2016) study the joint optimization problem in a
Poisson environment with two states; find that coexistence of two
strategies is optimal:

– Contradictory strategy that seeks to challenge the prior

– Confirmatory strategy that seeks to confirm the prior

• Zhong (2018) shows that in a broad class of models Poisson signals
are optimal.



Other Models

• Ke and Villas-Boas (2016) joint optimization with two states per
alternative in the diffusion environment

• Steiner, Stewart, and Matějka (2017) optimal attention with the
mutual information cost and evolving (finite) state

• Branco, Sun, and Villas-Boas (2012); Ke, Shen, and Villas-Boas
(2016) application to consumers searching for products

• Epstein and Ji (2017): ambiguity averse agents may never learn

• Gabaix and Laibson (2005): a model of bounded rationality

• Duraj and Lin (2019b): decision-theoretic foundations for optimal
sampling



Optimal Stopping vs Optimal Attention

• In the pure optimal stopping problem (Gt) is fixed like in the passive
learning model

• But there is an element of optimal attention

– Waiting longer gives more information at a cost
– Choosing τ is like choosing the distribution over posteriors µ
– Morris and Strack (2017) show all µ can be obtained this way if |S | = 2

• So in a sense this boils down to a static optimal attention problem

– With a specific cost function: Morris and Strack (2017) show that the
class of such cost functions is equal to separable cost functions as long
as the flow cost depends only on the current posterior

• Hébert and Woodford (2017) show a similar reduction to a static
separable problem in the joint optimization problem

– Converse to their theorem?



Other Questions

Question:

• Are “close” decisions faster or slower?

Intuitions:

• People “overthink” decision problems which don’t matter,
“underthink” those with big consequences

• But it is optimal to think more when options are closer

– The option value of thinking is higher

– Would you like to spend more time thinking about the choice “Harvard
vs MIT” or “Harvard vs Alabama State”?

Experiment: Oud, Krajbich, Miller, Cheong, Botvinick, and Fehr (2014)



Other questions

Question: Are fast decisions impulsive/instinctive and slow
deliberate/cognitive?

• Kahneman (2011); Rubinstein (2007); Rand, Greene, and Nowak
(2012); Krajbich, Bartling, Hare, and Fehr (2015); Caplin and Martin
(2016)

Question: How does the decision time depend on the menu size?

• “Hick–Hyman Law:” the decision time increases logarithmically in the
menu size (at least for perceptual tasks Luce, 1986)

Question: Use reaction times to understand how people play games?

• Costa-Gomes, Crawford, and Broseta (2001); Johnson, Camerer, Sen,
and Rymon (2002); Brocas, Carrillo, Wang, and Camerer (2014)



Thank you!
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