
11. Nash Equilibrium

Duarte Gonçalves
University College London

MRes Microconomics



Overview

Before: Setting up the stage, general (but not sharp) predictions.

Col Player
A B

Row Player A 1, 0 0, 1
B 0, 1 1, 0

Please predict choice frequencies.

Now indicate strategies surviving IESDS? And rationalisable strategies?

Now: Sharpening prediction, bridging the disconnect.

Goal: Nash equilibrium, GT’s gold standard.

Used everywhere. (Not just economics or even social sciences.)
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Nash Equilibrium

Definition

s ∈ S is a pure strategy Nash equilibrium iff ∀i, ui(si, s–i) ≥ ui(s′i , s–i) ∀s
′
i ∈ Si (si is BR

to s–i).

σ ∈ Σ is a Nash equilibrium if ∀i, ui(σi,σ–i) ≥ ui(σ′
i ,σ–i) ∀σ

′
i ∈ Σi (σi is BR to σ–i).

Note the difference: equilibrium, equilibrium payoff, equilibrium outcome.

Pure strategy ≡ degenerate mixed strategies.

Non-degenerate mixed strategies ̸= totally mixed strategies.
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Nash Equilibrium

Definition

Player i’s best-response correspondence is given by bi : Σ–i ⇒ Σi s.t. bi(σ–i) :=
argmaxσi∈Σi

ui(σi,σ–i).

b : Σ ⇒ Σ s.t. b(σ) := ×i∈Ibi(σ–i) denotes players’ best-response correspondence.

Remark

σ is a Nash equilibrium iff σ ∈ b(σ).
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Nash Equilibrium: Interpretation

(1) Resulting from introspection.
Everyone is BR to everyone else. If not, they’d prefer to do something else.
NE is rationalisable. All rationalisable strategy profiles are NE?

No: NE ⊂
Rationalisable.

Epistemic Foundations: Aumann & Brandenburger (1995 Ecta)
Requires conjecture about what opponents are playing and conjecture being right.
We all do the best given what the other is doing; no one has an incentive to deviate.
Example: You can pick 0 or 1. You win if you get the closest to 3/2 of the class
average. Write down a number.

What is your prediction?
Generally: What do to when there are multiple equilibria?
How does one decide which one is to be played?
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Nash Equilibrium: Interpretation

(1) Resulting from introspection.

(2) An outcome of learning, a steady state of a long-run adjustment process.
Can help in selection of an equilibrium.
Fudenberg & Levine (1998); see also Fudenberg & Levine (2016) and Fudenberg
(2022) for surveys.

Learning and dynamic adjustment: in next year’s theory topics course!
Growing literature on estimating equilibria in games; what about dynamic adjust
toward equilibrium? (workshop on GT & metrics sponsored by cemmap)
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Existence of a Nash Equilibrium

Who cares about existence? You do!
You want your model to make predictions, to explain something about the world.
Equilibrium here means that everyone’s actions are consistent / your model makes
sense / the system is consistent.

Existence of a solution simply means the model has something to say about a
given situation (under a set of assumptions).

Write down assumptions formally, but there is no equilibrium; your model is unable
to make predictions!

Not a good model of the agents’ behaviour.

Existence results ensure that, under a given set of assumptions, your model works
(whether it makes good predictions or not it is another matter)
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Existence of a Nash Equilibrium

Kakutani’s Fixed-Point Theorem

Let X ⊂ Rn be nonempty, compact, and convex. If F : X ⇒ X is nonempty-valued,
compact-valued, convex-valued, and uhc, then ∃x ∈ X : x ∈ F(x), i.e., there is a fixed
point of F.

Gonçalves (UCL) 11. Nash Equilibrium 7



Existence of a Nash Equilibrium

Theorem

Let Γ = ⟨I,S, u⟩ be a normal-form game s.t. |I| < ∞, and, ∀i ∈ I, Si is a nonempty,
compact, and convex subset of Rn. If ui : S → R is continuous in S and quasiconcave
in si, then, there is a PSNE.

Proof

Let b : S ⇒ S be s.t. b(s) = ×i∈Ibi(s–i), where bi(s–i) := argmaxsi∈Si
ui(si, s–i).

(i) b is nonempty-, compact-valued, and UHC.
ui continuous, Si is compact =⇒ bi nonempty-value, compact-valued and UHC
∀i ∈ I (by Berge’s maximum theorem).

Immediately =⇒ b nonempty-value, compact-valued, and UHC (finite Cartesian
product of nonempty and compact sets is nonempty and compactwrt to product
metric; for UHC use definition to verify).

(ii) b is convex-valued.
ui is quasiconcave in si =⇒ bi(s–i) is convex ∀s–i ∈ S–i, ∀i ∈ I =⇒ b convex-
valued.

By Kakutani’s fixed-point theorem, ∃s ∈ b(s). □
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Existence of a Nash Equilibrium

Theorem

Let Γ = ⟨I,S, u⟩ be a normal-form game s.t. |I| < ∞, and, ∀i ∈ I, Si is a nonempty,
compact, and convex subset of Rn. If ui : S → R is continuous in S and quasiconcave
in si, then, there is a PSNE.

What about ∃ in finite games?

A special case...

Corollary

Let Γ = ⟨I,S, u⟩ be a normal-form game s.t. |I|, |S| < ∞. Then, there is a NE, possibly in
mixed-strategies.

Proof

- Game in mixed-strategies as a different game, Γ̃ = ⟨I,Σ, ũ⟩, with ũi(σ) = Eσ[ui].

- Σi as a nonempty, compact, and convex subset of [0, 1]|Si |

- ũi continuous in σ and linear (hence quasiconcave) in σi.

- Conditions of theorem met, hence ∃ PSNE σ of Γ̃, which is NE (possibly mixed) of Γ. □
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Existence of a Nash Equilibrium

Nash provided a different proof, based on Brouwer’s fixed point theorem:

Brouwer’s Fixed-Point Theorem

Let X be a nonempty, compact, and convex subset of Rn. If f : X → X is continuous,
then f admits a fixed-point x = f(x).

Instructive proof by Geneakoplos.

Theorem

Let Γ = ⟨I,S, u⟩ be a normal-form game s.t. |I| < ∞, and, ∀i ∈ I, Si is a nonempty,
compact, and convex subset of Rn. If ui : S → R is continuous in S and concave in si,
then there is a PSNE.
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Existence of a Nash Equilibrium

Proof

• Let φi : S → Si be s.t. φi(s) := argmaxs′i ∈Si ui(s
′
i , s–i) – ||si – s′i ||

2.

• ui(s′i , s–i) is concave in s′i and –||si – s′i ||
2 is strictly concave

=⇒ ui(s′i , s–i) – ||si – s′i ||
2 strictly concave and continuous in s′i .

• Si convex and compact, ui(s′i , s–i)– ||si – s′i ||
2 strictly concave and continuous in s′i

=⇒ φi is well-defined (singleton maximiser).

• Berge’s maximum theorem =⇒ φi UHC + singleton-valued =⇒ φi continuous.

• Let φ(s) := (φi(s))i∈I. φ : S ⇒ S continuous, S ⊂ Rn convex, compact =⇒ φ has
fixed point s = φ(s) (by Brouwer’s fixed-point theorem).

• WTS si ∈ argmaxsi∈Si
ui(si, s–i).
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Existence of a Nash Equilibrium
Proof

• φi(s) := argmaxs′i ∈Si ui(s
′
i , s–i) – ||si – s′i ||

2. φ(s) := (φi(s))i∈I. ∃s ∈ S : s = φ(s).

• WTS si ∈ argmaxsi∈Si
ui(si, s–i).

– Suppose not, i.e., ∃s′i ∈ Si : ui(s′i , s–i) > ui(s) for some i.

– ui concave =⇒ ui(αs′i + (1 – α)si, s–i) – ui(s) ≥ α(ui(s′i , s–i) – ui(s)) ∀α ∈ (0, 1).

– NB: ||si – (αs′i + (1 – α)si)||
2 = α

2||si – s′i ||
2.

– As φi(s) = si =⇒ ∀α ∈ (0, 1)

0 ≥ui((αs′i + (1 – α)si), s–i) – ||si – (αs′i + (1 – α)si)||
2

–

(
max
s′′i ∈Si

ui(s
′′
i , s–i) – ||si – s′′i ||

2
)

=ui((αs′i + (1 – α)si), s–i) – ||si – (αs′i + (1 – α)si)||
2 – ui(s)

≥α(ui(s
′
i , s–i) – ui(s)) – α

2||si – s′i ||
2

– Choosing α s.t. α < (ui(s′i , s–i) – ui(s))/||si – s′i ||
2 delivers

0 ≥ α(ui(s′i , s–i) – ui(s)) – α
2||si – s′i ||

2 > α
2 – α

2 = 0. a contradiction. □
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Symmetric Nash Equilibria

Definition

Let Γ = ⟨I,S, u⟩ be a normal-form game. Γ is symmetric iff ∀i, j ∈ I, Sj = Si, and
ui(si, s–i) = uj(sj, s–j) for si = sj and s–i = s–j.

Proposition

Let Γ = ⟨I,S, u⟩ be a symmetric normal-form game s.t. |I| < ∞, and, ∀i ∈ I, Si is a
nonempty, compact, and convex subset of Rn. If ui : S → R is continuous in S and
quasiconcave in si, then there is a PSNE s s.t. si = sj ∈ Si∀i, j ∈ I.

Proof

Define b : Si ⇒ Si s.t. b̃(si) = bi(s–i) for s–i = (si)j∈–i; bi is player i’s best-response
correspondence.

b̃ nonempty-, compact-, and convex-valued, and UHC
=⇒ Kakutani’s fixed-point theorem applies. □
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Existence of a Nash Equilibrium

If strategy space not finite, can we do better?

Continuity is enough:

Theorem

Let Γ = ⟨I,S, u⟩ be a normal-form game s.t. |I| < ∞, and, ∀i ∈ I, Si is a nonempty,
compact, and convex subset of Rn. If ui : S → R is continuous, then there is a NE,
possibly in mixed strategies.

Relies on the following generalisation of Kakutani’s fixed-point theorem:

Theorem

Let X be a nonempty, compact, convex subset of a locally convex Hausdorff (e.g., vec-
tor) space and that f : X ⇒ X is nonempty- and convex-value correspondence with a
closed graph. Then ∃x ∈ X : x ∈ f(x).

Does 2PA have continuous payoffs? What to do then? See Reny (1999 Ecta) “On the
Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games”
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Relation to Dominance

(i) If game is dominance solvable, then dominance solution is the unique NE of the
game.

(ii) Any Nash equilibrium strategy must be rationalizable (and thus survive IESDS).

(iii) Any pure strategy in the support of a Nash equilibrium is also rationalisable.

(iv) However... weakly dominated strategies can be played with positive probability at a
Nash equilibrium.
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Relation to Dominance

Col Player
A B

Row Player A 1,1 0,0
B 0,0 0,0

NE: (A,A) and (B,B)
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Characterising Equilibria

Col Player
A B

Row Player A 1,1 2,3
B 3,2 0,0

PSNE: (A,B) and (B,A)

Gonçalves (UCL) 11. Nash Equilibrium 17



Characterising Equilibria

Remark

σ is a Nash equilibrium if and only if ∀i ∈ I, (i) ui(si,σ–i) ≥ ui(s′i ,σ–i) ∀si ∈ supp(σi), s′i ∈
Si, and (ii) ui(si,σ–i) = ui(s′i ,σ–i) ∀si, s′i ∈ supp(σi).

Best response condition: any pure strategy in the support must be best response to σ–i,
ui(si,σ–i) ≥ ui(s′i ,σ–i) for any si ∈ supp(σi) and s′i ∈ Si.

MSNE indifference condition: must get same payoff ui(si,σ–i) = ui(s′i ,σ–i) for any pure
strategy in the support, si, s′i ∈ supp(σi).
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Best response condition: any pure strategy in the support must be best response to σ–i,
ui(si,σ–i) ≥ ui(s′i ,σ–i) for any si ∈ supp(σi) and s′i ∈ Si.

MSNE indifference condition: must get same payoff ui(si,σ–i) = ui(s′i ,σ–i) for any pure
strategy in the support, si, s′i ∈ supp(σi).
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Characterising Equilibria

Col Player
A B

Row Player A 1,1 2,3
B 3,2 0,0

PSNE: (A,B) and (B,A)

Given σC,

uR(A,σC) ≥ uR(B,σC) =⇒ σC(A)1 + (1 – σC(A))2 ≥ σC(A)3 + (1 – σC(A))0

σC(A) ≤
1
2
.

NE: (A,B), (B,A), and (σR,σC) : σR(A) = σC(A) = 1/2.
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Issues with MSNE

Players don’t willingly randomize; they are indifferent. How to interpret MSNE?

As an equilibrium in beliefs (Aumann & Brandenburger 1995 Ecta).

As outcome of long-run learning/adjustment process.

As stochastic choice: players look like they are randomizing, but could be random utility
players (‘purification’ e.g. Harsanyi 1973 IJGT – more later), unobserved information
acquisition (Gonçalves 2024 WP), etc.

MSNE can be rationalized as the limit outcome of one such situation.
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Robustness

Will limit of equilibria be an equilibrium of the limit game? (is set of NE UHC?)
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Robustness

Proposition

Let S := ×i∈ISi be such that Si is nonempty, compact, and convex subset of Rni , T ⊆ Rm,
ui : S×T → R. Let SNE(t) :=

{
s ∈ S | si ∈ argmaxs′i ∈Si ui(s

′
i , s–i, t)

}
be set of NE of the

game Γt := ⟨I,S, ut⟩, where ut := (ui(·, t))i∈I.
If (i) ui is continuous in (s, t), and (ii) SNE(t′) is nonempty for any t′ in a neighborhood of
t, then SNE is UHC at t.

Proof

• Take (sn, tn) → (s, t), where sn ∈ SNE(tn) for all n.
• Then ui(sni , s

n
–i, t

n) = maxs′i ∈Si ui(s
′
i , s

n
–i, t

n).
• By Berge’s maximum theorem, maxs′i ∈Si ui(s

′
i , s–i, t) is continuous in (s–i, t).

• Then

ui(si, s–i, t) = lim
n→∞

ui(s
n
i , s

n
–i, t

n) = lim
n→∞

max
s′i ∈Si

ui(s
′
i , s

n
–i, t

n) = max
s′i ∈Si

ui(s
′
i , s–i, t).

• Hence, s ∈ SNE(t) and SNE is uhc (and compact-valued) at t. □
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Robustness

Will limit of equilibria be an equilibrium of the limit game? (is set of NE UHC?) Yes

Will equilibrium of a game be similar to equilibria of nearby games? (is set of NE LHC?)

Col Player
A B

Row Player A 1,1 0,0
B 0,0 0,0

(B,B) is NE.
Look at nearby games:

Col Player
A B

Row Player A 1,1 1/n,1/n
B 1/n,1/n –1/n,–1/n

For any n > 1, unique equilibrium is (A,A). In the limit, n → ∞, (B,B) also NE.
=⇒ Set of NE not LHC.

Issue: not all NE are robust; small mistakes may ‘kill fragile equilibria’. More later.
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Common Value All-Pay Auction

I bidders, all value object at v > 0. Bids si ≥ 0.

Payoffs: always pay bid; win if bid highest; ties broken uniformly at random.

ui(si, s–i) = 1{si = max
j

sj} ·
1

|{j ∈ I | sj = maxℓ sℓ}|
v – si

Claim 1: No one bids above v: strictly dominated.

Claim 2: No PSNE in this game.
Suppose s is PSNE.

(a) If maxj sj < v =⇒ ∀i /∈ argmaxj sj =⇒ i wants to deviate to s′i = maxj sj + ε.
(b) i = argmaxj sj, then i wants to deviate to s′i = si – ε for small enough ε > 0.
(c) If maxj sj = v, i, ℓ ∈ argmaxj sj with i ̸= ℓ, then i wants to deviate to s′i = 0.
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Common Value All-Pay Auction

Is there NE?

Let’s try to construct a symmetric MSNE σi = σj (CDF):
• NB: σi ∈ ∆([0, v]); (why?)

As ∀si > v, si is strictly dominated by s′i = 0 =⇒ bids > v occur wp 0 at any NE.
=⇒ σj(v) = 1.

• Assume has no atoms. (We’ll verify later.)
• Player i needs to be indifferent over all bids in support:

if si ∈ supp(σi), then

u = ui(si,σ–i) = P(si > max
j̸=i

sj)v – si = P(si > sj)
I–1v – si = σj(si)

I–1v – si

⇐⇒ σj(si) =
(
u + si

v

) 1
I–1

• As σj(v) = 1 ⇐⇒ u = 0.
• No atoms: σj(sj) = 0 =⇒ sj = 0.
• By construction, ∀si ∈ [0, v], ui(si,σ–i) = u = 0. (Indifference).
• Conclusion: Competition left bidders with 0 expected surplus from the auction.
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Model of Sales (Varian 1980 AER)

Two firms sell a good to a unit mass of consumers with reservation price of £1 (WTP).

Firms set prices simultaneously.

Each firm has loyal consumers (insofar as price doesn’t exceed reservation price):
1/4 of consumers always buy from firm 1 and 1/4 from firm 2.
Remaining 1/2 are “active shoppers” and buy from the lower-price firm.

Construct a PSNE. Ideas?

Claim: There is no PSNE in this game.
Any pi > 1 or pi = 0 is strictly dominated by p′i = 1.
For p : pi, pj : pi = pj > 0, strictly profitable for i to deviate to p′i = pj – ε for small ε.
For p : pi, pj : 1 = pi > pj, strictly profitable for j to deviate to p′j = 1 – (1 – pj)/2.
For p : pi, pj : 1 > pi > pj > 1/3, strictly profitable for i to deviate to p′i = pj – ε for
small ε and get 3

4 (pj – ε) > 1
4 ≥ 1

4pi.
For p : pi, pj : 1 > pi > pj and 1/3 ≥ pi, strictly profitable for i to deviate to p′i = 1 and
get 1

4 ≥ 1
4pi.
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1/4 of consumers always buy from firm 1 and 1/4 from firm 2.
Remaining 1/2 are “active shoppers” and buy from the lower-price firm.

Claim: There is no PSNE in this game.

Construct a MSNE.
(i) Assume no atoms, symmetric NE. Support [p, p] ⊆ (0, 1].

(ii) Indifference: 1
4pi +

1
2 (1 – σj(pi))pi = π ⇐⇒ σj(pi) = 3

2 – 2 π

pi
.

(iii) No firm prices above £1 (strictly dominated)
1 = σj(1) = 3/2 – 2π ⇐⇒ π = 1

4 .
(iv) No firm prices below £1/3: ∀pi > 0, 0 = σj(pi) = 3

2 – 1
2pi

⇐⇒ pi = 1
3 .

(Note this is same as extracting all surplus out of the loyal consumers.)
(v) Pricing below 1/3 yields 3

4pi <
1
4 .

(i.e., in expectation worse than pricing at pi ∈ [1/3, 1].)
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A Silly Story

A group of friends is going to the movies and they are deciding which movie to watch.

The options are Heretic and Megalopolis and they’ll watch the most voted movie.

They have all watched Megalopolis (hate-watching) and so no one really wants to watch
it again (once is more than enough). Everyone prefers to watch Heretic.

But there is a NE in which everyone votes to watch Megalopolis again!

This is very silly and we want to rule out silly predictions in our model.
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Trembling-Hand Perfection

Idea: non-zero probabilities on each pure strategy capture the notion of unavoidable
mistakes.

Define ∆ε(Si) := {σi ∈ Σi | σi(si) ≥ ε(si), ∀si ∈ Si} for ε : ∪i∈ISi → (0, 1).

∆ε(Si): a restricted strategy space for player i, with fully mixed strategies.

Definition

An ε-constrained Nash equilibrium of game Γ = ⟨I,S, u⟩ is a pure strategy Nash equilib-
rium of the perturbed game ⟨I,×i∆ε(Si), u⟩.

Remark

For any ε, ∆ε(Si) is compact. Hence, insofar as ∆ε(Si) is nonempty for all i, there is an
ε-constrained NE.
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Trembling-Hand Perfection

Definition

A NE σ of game Γ is trembling-hand perfect if ∃(εn)n s.t. ε
n : ∪i∈ISi → (0, 1) with

ε
n(si) → 0 ∀si ∈ Si, and an associated sequence of ε

n-constrained NE σ
n : σ

n → σ.

Theorem

Every finite game has a THPE.

Proof

Let ε̃
n := maxsi∈∪i∈I ε

n(si).

By convergence of ε̃
n → 0, ∃N : ∀n > N, ∆εn (Si) ̸= ∅∀i ∈ I.

Then, ∀n > N ∃ε
n-constrained equilibrium.

Take any sequence of ε
n-constrained equilibrium for n > N; as it lives in a compact set,

it admits a convergent subsequence.

As ui : Σ → R is continuous ∀i, subsequence converges to a NE of original game.
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Trembling-Hand Perfection

Proposition

A NE σ of game Γ is THPE iff ∃ sequence of fully mixed strategy profiles σ
n → σ : ∀i

and n, σi is a best response to σ
n
–i.

Proof: =⇒

If σ is THPE =⇒ ∃ε
n : σ is limit of ε

n-constrained NE σ
n.

WTS ∃ subsequence σ
m of σ

n s.t. σi is a best response to σ
m
–i.

• Suppose not. Then ∃si ∈ supp(σi) and some further subsequence σ
k s.t. ∀k,

ui(si,σk
–i) < ui(ski ,σ

k
–i) for some ski ∈ Si.

• Let ε̃
n := maxsi∈∪i∈I ε

n(si). We must have σ
k
i (si) ≤ ε̃

k. Supposing otherwise yields:

ui(σ
k
i ,σ

k
–i) = σ

k
i (si)ui(si,σ

k
–i) + σ

k
i (s

k
i )ui(s

k
i ,σ

k
–i) +

∑
s′i ̸=si ,s

k
i

σi(s
′
i )ui(s

′
i ,σ

k
–i)

< ε̃
kui(si,σ

k
–i) + (σk

i (s
k
i ) + σ

k
i (si) – ε

k)ui(s
k
i ,σ

k
–i) +

∑
s′i ̸=si ,s

k
i

σi(s
′
i )ui(s

′
i ,σ

k
–i).

• But then σ
k
i (si) → 0, which contradicts the fact that σ

k
i (si) → σi(si) > 0.
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Trembling-Hand Perfection

Proof: ⇐=

- Let ε
n(si) = σ

n
i (si) if σi(si) = 0 and ε

n(si) = σi(si)/n if σi(si) > 0.

- As σi is BR to σ
n
–i =⇒ ∀si ∈ supp(σi) =: A is BR to σ

n
–i.

- Let un := ui(si,σn
–i) ≥ ui(s′i ,σ

n
–i) ∀s

′
i ∈ Si. Let A := supp(σi) and B := Si \ A.

- Then, ∀σ
′
i ∈ ∆εn (Si),

ui(σ
′
i ,σ

n
–i) =

∑
si∈A

σ
′
i (si)ui(si,σ

n
–i) +

∑
si∈B

σ
′
i (si)ui(si,σ

n
–i)

=
∑
si∈A

σ
′
i (si)u

n +
∑
si∈B

(
σ
′
i (si) – σ

n
i (si)

)
ui(si,σ

n
–i) +

∑
si∈B

σ
n
i (si)ui(si,σ

n
–i)

≤
∑
si∈A

σ
′
i (si)u

n +
∑
si∈B

(
σ
′
i (si) – σ

n
i (si)

)
un +

∑
si∈B

σ
n
i (si)ui(si,σ

n
–i)

=
∑
si∈A

σ
n
i (si)u

n +
∑
si∈B

σ
n
i (si)ui(si,σ

n
–i)

= ui(σ
n
i ,σ

n
–i)

and therefore σ
n
i is ε

n-constrained BR to σ
n
–i. (Feasible ∀n > 2|S|.) □
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Trembling-Hand Perfection

Proposition

(i) If σ is fully mixed NE, then it is THPE.

• Take itself as a sequence of fully mixed.

(ii) If σ is THPE, then no strategy assigns positive probability to weakly dominated
strategies.
• Suppose it does, then it cannot be a best response to any fully mixed pertur-
bation of the opponents’ strategy.

(iii) In 2-player games, NE assigns prob zero to weakly dominated strategies iff it is
THPE. • Exercise.

(iv) Any NE σ such that ui(σi,σ–i) > ui(σ′
i ,σ–i) for any σi ̸= σ

′
i is THPE.

• This is strict NE. NB: any strict NE must be in pure strategies (degenerate
mixed strategies).
Continuity implies strict NE is strict BR to any small enough trembles of the
opponents’ strategy (including fully mixed).

Other notions: strong or strict equilibrium
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Correlated Equilibrium

And Now for Something Completely Different...

Definition

A probability distribution p ∈ ∆(S) is a correlated equilibrium of a normal-form game
Γ = ⟨I,S, u⟩ if ∀i and ∀si : p(si) > 0∑

s–i∈S–i

p(s–i|si)ui(si, s–i) ≥
∑

s–i∈S–i

p(s–i|si)ui(s
′
i , s–i), ∀s′i ∈ Si.

p as correlated recommendations to the agents s.t. everyone wants to follow a the
recommendations.

Proposition

Every Nash equilibrium is a correlated equilibrium

Corollary

CE exists in finite games
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Correlated Equilibrium

Definition

A probability distribution p ∈ ∆(S) is a correlated equilibrium of a normal-form game
Γ = ⟨I,S, u⟩ if ∀i and ∀si : p(si) > 0∑

s–i∈S–i

p(s–i|si)ui(si, s–i) ≥
∑

s–i∈S–i

p(s–i|si)ui(s
′
i , s–i), ∀s′i ∈ Si.

Usefulness: Easily computable. Mediator trying to get an outcome to emerge.
(Example: advertising a mega party.)

Convex hull of set of NE is subset of set of CE (also convex).

=⇒ Can attain any convex combination of NE payoffs. That’s it?
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Correlated Equilibrium: An Example
Coordination Game

Col Player
A B

Row Player A 5,1 0,0
B 4,4 1,5

• NE?

(A,A), (B,B), and (1/2 A + 1/2 B, 1/2 A + 1/2 B).

Expected payoffs: (5,1), (1,5), (1/4 5 + 1/4 4 + 1/4 0 + 1/4 1 = 10/4 = 5/2,5/2).

• Suppose the players seek a mediator to help them. The mediator proposes the
following:
I’m going to toss a die. If it turns up either 1 or 2, will tell the Row player to play A,
and otherwise I will tell them to play B. If it turns up either 5 or 6, will tell the
Column player to play B, and otherwise I will tell them to play A.

Do the players want to follow the advice?
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Correlated Equilibrium: An Example
Coordination Game

Col Player
A B

Row Player A 5,1 0,0
B 4,4 1,5

• NE? (A,A), (B,B), and (1/2 A + 1/2 B, 1/2 A + 1/2 B).

Expected payoffs: (5,1), (1,5), (1/4 5 + 1/4 4 + 1/4 0 + 1/4 1 = 10/4 = 5/2,5/2).
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Correlated Equilibrium: An Example
Coordination Game

Col Player
A B

Row Player A 5,1 0,0
B 4,4 1,5

The mediator’s proposal:
I’m going to toss a die. If it turns up either 1 or 2, will tell Row to play A, and
otherwise I will tell them to play B. If it turns up either 5 or 6, will tell Column to
play B, and otherwise I will tell them to play A.

• If Row is told to play A, they know die turned up {1, 2}. =⇒ they also know Column will
be told to play A half the times and B the remainder.

• Expected payoff: 1/2 · 5 + 1/2 · 0.

If they didn’t follow the recommendation, then they’d get 1/2 · 4 + 1/2 · 1; cannot do any
better.
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Correlated Equilibrium: An Example
Coordination Game

Col Player
A B

Row Player A 5,1 0,0
B 4,4 1,5

The mediator’s proposal:
I’m going to toss a die. If it turns up either 1 or 2, will tell Row to play A, and
otherwise I will tell them to play B. If it turns up either 5 or 6, will tell Column to
play B, and otherwise I will tell them to play A.

• If Row is told to play B, they know die turned up {3, 4, 5, 6}. =⇒ they also know Column
will be told to play A half the times and B the remainder.

• Expected payoff: 1/2 · 5 + 1/2 · 0.

If they didn’t follow the recommendation, then they’d get 1/2 · 4 + 1/2 · 1; cannot do any
better.

• Symmetric game: symmetric arguments apply for Column.

• Note: Row gets 1/3 · [uR(A,A) + uR(B,A) + uR(B,B)] = 1/310; outside convex hull of NE
payoffs.

Moral of the story: correlated eqm allows you to do more!
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More

The originals: NE (Nash, 1950 PNAS, 1951), CE (Aumann, 1974 JMathEcon, 1987 Ecta),
THPE (Selten, 1975 IJGT; Myerson, 1978 IJGT).

Beliefs and Epistemics: for NE Aumann & Brandenburger (1995 Ecta), for CE
Brandenburger & Dekel (1987 Ecta).

Data-based and Belief Formation: CBDT (Gilboa, 1995 QJE).

MSNE in sports: (Walker & Wooders, 2001 AER; Palacios-Huerta, 2003 RES).

Experiments: BR to beliefs and incentives (Rey-Biel, 2009 GEB; Costa-Gomes &
Weizsacker 2008 RES; Esteban-Casanelles & Gonçalves 2022 WP; Friedman & Ward
2024 WP)

Psychological Games: The role of emotions and intentions (Battigalli & Dufwenberg,
2019 JEL)

Payoffs and Social Preferences: Preferences over others’ preferences (Ray & Vohra,
2019 AER); Inequality aversion (Fehr & Schmidt, 1999 QJE; Bolton & Ockenfels 2000
AER)
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Level-k

WT incorporate reasoning mistakes.

Level-k

Cognitive Hierarchies

Endogenous Depth of Reasoning

Issues
(i) as if people have very unrealistic beliefs.
(ii) not well defined for arbitrary games.
(iii) “level” unstable even across dominance-solvable games.
(iv) individual’s reasoning seems to depend on payoffs: take “more steps” of IESDS the

higher the stakes.
(v) individual’s reasoning seems to react to relative incentives smoothly.

Possible ways forward:
pure stochastic choice as Quantal Response Equilibrium (McKelvey & Palfrey,
1995 GEB);

model steps of reasoning via sampling (Sequential) Sampling Equilibrium
(Osborne & Rubinstein 1998 AER, 2003 GEB; Gonçalves 2023 WP).
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