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Overview

Complete information assumption implies players know others’ payoffs.

Examples:
- goal keeper may not really know how effortful it is for the penalty kicker to shoot

right instead of left;
- firms may not know other firms’ cost structure;
- voters may not know how other voters’ preferences;
- consumers may be unsure of how much they value a good;
- investors may not know what is the value of an asset;
- firm may not know how productive a given job candidate is;
- a researcher may not know how difficult a problem they’re working on is.

Today’s agenda: formalising games of incomplete information and examining
applications.
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Representing Incomplete Information

Definition

Agame is of incomplete informationwhen at least one player does not know the payoff
that some player receives from some strategy profile.

How to model uncertainty?

Harsanyi’s modelling insight:
Transform incomplete info game into complete info with Nature moving at start of
game.

Realisation of nature’s actions determines players’ payoffs.
Assumption: CK of prob. distrib. used by Nature.

Players have a belief about others’ preferences and there is common knowledge of
such beliefs.
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Representing Incomplete Information

Definition

A Bayesian game is a tuple ⟨I,A, u,Θ, ρ⟩, where
(i) Players: I;

(ii) Player i’s action space Ai; Space of action profiles a ∈ A := ×i∈IAi;

(iii) Player i’s type space Θi; Space of type profiles Θ := ×i∈IΘi;

(iv) Player i’s utility/payoff function: ui : A× Θ → R; u := (ui)i∈I; and

(v) Probability distribution over players’ type profiles: ρ ∈ ∆(Θ).
All elements are common knowledge, but each player i only knows their own type θi,
and not the other players’ types.

Players privately learn their own type. (WLOG)
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Representing Incomplete Information

Definition

• Players have private values iff ui(a, θi, θ–i) = ui(a, θi, θ′–i) ∀θ–i, θ′–i ∈ Θ–i. Other-
wise, they have interdependent values.

• Players have independent types iff types are independent across players. Other-
wise, they have correlated types.

Could also consider alternative notions of incomplete information: e.g., uncertainty over
what is the strategy set of the opponent.
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Representing Incomplete Information

Definition

A pure strategy of player i in a Bayesian game is a mapping si : Θi → Ai.

Strategy specifies action for each possible type.

Player i’s expected payoff: ũi(s) = Eθ∼ρ[ui(s1(θ1), s2(θ2), ..., sI(θI), θi, θ–i)].

Extend ũi to mixed strategies, σi ∈ Σi := ∆(Si).
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Representing Incomplete Information

Two classmates, A and B, considering whether to work together.

They work together iff both agree to do so.

If they work alone, payoffs normalised to 0.

If they work together B always gets 10 (improves their grade by 10). However, how
much A benefits from working with B depends on B’s type.

If B is collaborative (wp α), A also gets a payoff of 10. But if B is a shirker (wp 1– α), then
A gets a payoff of -6.

If α = 1 or α = 0, what are the NE?

What are the strategies of this Bayesian game?

Table: θB = C

B
W N

A W 10 , 10 0 , 0
N 0 , 0 0 , 0

Table: θB = S

B
W N

A W -6 , 10 0 , 0
N 0 , 0 0 , 0
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Universal Type Space

Are Bayesian games sufficiently rich to capture all kinds of incomplete information?

Higher-order uncertainty and belief hierarchy
- Uncertainty about others’ preferences
- Uncertainty about others’ uncertainty about one’s preferences
- Uncertainty about others’ uncertainty about one’s uncertainty about others’

preferences
- Uncertainty about ....

Type should capture the entire belief hierarchy.

Can we capture rich uncertainty just with set of types and distribution over types?

Yes, with a universal type space (Mertens & Zamir (1985); Bradenburger & Dekel (1993))

Reassuring that Bayesian games are good tool.
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Bayesian Nash Equilibrium

Definition

A Bayesian Nash Equilibrium of a Bayesian game ⟨I,A, u,Θ, ρ⟩ is a strategy profile s =
(si)i∈I such that ∀i, ∀s′i ∈ Si, ũi(si, s–i) ≥ ũi(s′i , s–i).

NB: consider Bayesian game Γ = ⟨I,A, u,Θ, ρ⟩ as standard normal-form game
Γ̃ = ⟨I,S, ũ⟩.

Set of BNE of Γ is the same as set of NE of Γ̃.

Can tweak NE existence theorems to work for BNE.

Corollary

For any Bayesian game Γ s.t. |I|, |A|, |Θ| < ∞, ∃ Bayesian Nash equilibrium (possibly in
mixed strategies).
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Ex-ante vs Interim perspective

Ex-ante Perspective:
1. players choose strategies, (distrib. over) mappings from types to actions, to

maximise ex-ante expected payoff;
2. types are drawn according to ρ;
3. players learn their own types and play according to their actions;
4. outcomes and payoffs realise.

Interim perspective:
1. types are drawn according to ρ;
2. players learn their own types, form beliefs about others’ types qi(· | θi), and play

according to their actions;
3. players choose (distrib. over) actions, to maximise (ex-interim) expected payoff,

knowing their type, but not opponents’ types;
4. outcomes and payoffs realise.

Arguably more sensible description of a game of incomplete information.
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Ex-Ante vs Interim perspective

Definition

An ex-interim Bayesian game is a tuple ⟨I,A, u,Θ, q⟩, where
(i) Players: I;

(ii) Player i’s action space Ai; Space of action profiles a ∈ A := ×i∈IAi;

(iii) Player i’s type space Θi; Space of type profiles Θ := ×i∈IΘi;

(iv) Player i’s utility/payoff function: ui : A× Θ → R; u := (ui)i∈I; and

(v) Ex-interim Belief/Prob. distrib. over opponents’ type profiles: qi : Θi → ∆(Θ–i).
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Ex-Ante vs Interim perspective

Proposition

A strategy profile σ is a BNE if and only if ∀i ∈ I and ∀θi ∈ Θi : ρ(θi) > 0,

Eθ–i [ui(σi(θi),σ–i(θ–i), θi, θ–i) | θi] ≥ Eθ–i [ui(σ
′
i (θi),σ–i(θ–i), θi, θ–i) | θi], ∀σ

′
i ∈ ∆(Ai)

Θi .

NB: Possible to find ρi ∈ ∆(Θ) : ρi(θ–i | θi) = qi(θ–i | θi) ∀θi, θ–i
(going beyond finite case introduces technical complications).

However: players may not start with common prior: ρi = ρj for all i, j.

Common prior necessary for equivalence between ex-ante BNE and interim BNE.
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Ex-Post Bayesian Nash Equilibrium

Definition

Astrategy profileσ is an ex-post BayesianNash equilibrium iff∀i, ui(σi(θi),σ–i(θ–i), θ) ≥
ui(ai,σ–i(θ–i), θ), ∀ai, θ.

Interpretation: Even if players learn others’ types, they would not like to change their
actions, given that others are following their strategies.

Note: ex-post BNE yields NE for each game indexed by θ.

True or false? There is always an ex-post BNE.

Table: θB = C

B
W N

A W 10 , 10 10 , 0
N 0 , 1 0 , 0

Table: θB = S

B
W N

A W -1 , 10 -1 , 0
N 0 , 1 0 , 0
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Strategy-Proofness

Closely related to “Very weak dominance”: si : ui(si(θi), a–i, θi, θ–i) ≥ ũi(ai, s–i, θi, θ–i),
∀ai, a–i,∀θ.
Allows for indifferences.
Also said Strategy-proofness, esp. when Ai = Θi.
You’ll hear this term a lot.
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2nd-Price Auction

2nd-Price Auction: winner pays second highest bid.

ui(ai, a–i, vi) = 1{i ∈ argmaxj aj}(vi – maxj̸=i aj)/| argmaxj aj|

When Fi is degenerate for every i, ai = vi is weakly dominant for all players (hence a NE?).

Independent private values. (What does this mean?)

vi ∼ Fi, vi independent from other types.

si : si(vi) = vi still weakly dominant for all players? Is it a BNE? What does it depend on?
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Bayesian Games

Informationally robust (although perhaps counterintuitive to people.)

Alternative: Ascending auction. People understand it better and play weakly dominant
strategy more often.

With good reasons: Obviously Strategy-Proof (Li, 2017 AER)
Roughly, worst case scenario better than best-case scenario from deviation.
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Envelope Theorem

What is the envelope theorem?
Relate effect of parameter on value function to its effect on the objective function.
Useful tool to characterise how maximisers change with parameters too!

Choice set X.

Parameter t ∈ [0, 1] (think directional derivative in normed vector space)

Objective function: f : X × [0, 1] → R.

Value function: V(t) := supx∈X f(x, t); Maximisers X∗(t) := {x ∈ X : f(x, t) = V(t)}.

Theorem 1 (Milgrom & Segal 2002 Ecta)

Take any x∗ ∈ X∗(t) and t ∈ [0, 1], and suppose f ′t (x
∗, t) exists.

(1) For t > 0, if V is left-differentiable at t, V′(t–) ≤ f ′t (x
∗, t).

(2) For t < 1, if V is right-differentiable at t, V′(t+) ≥ f ′t (x
∗, t).

(3) For t ∈ (0, 1), if V is differentiable at t, then V′(t) = f ′t (x
∗, t).
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What is the envelope theorem?
Relate effect of parameter on value function to its effect on the objective function.
Useful tool to characterise how maximisers change with parameters too!

Choice set X.

Parameter t ∈ [0, 1] (think directional derivative in normed vector space)

Objective function: f : X × [0, 1] → R.

Value function: V(t) := supx∈X f(x, t); Maximisers X∗(t) := {x ∈ X : f(x, t) = V(t)}.
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Envelope Theorem

It would be sufficient to ensure V is differentiable a.e. to get

Theorem 2 (Milgrom & Segal 2002 Ecta)

Take any x∗ ∈ X∗(t) and t ∈ [0, 1], and suppose f ′t (x
∗, t) exists.

(1) If f(x, ·) is absolutely continuous for all x ∈ X and there is an integrable function
b : [0, 1] → R+ such that |f ′t (x, t)| ≤ b(t) ∀x ∈ X and almost all t ∈ [0, 1], then V is
absolutely continuous.

(2) If, in addition, f(x, ·) is differentiable for all x ∈ X and X∗ is nonempty-valued a.e.
on [0, 1], then for any selection x∗(t) ∈ X∗(t),

V(t) = V(0) +
∫ t

0
f ′t (x

∗(s), s) ds

Note: V need not be differentiable everywhere (may have kinks).

Gonçalves (UCL) 12. Incomplete Information 17



Envelope Theorem

It would be sufficient to ensure V is differentiable a.e. to get

Theorem 2 (Milgrom & Segal 2002 Ecta)

Take any x∗ ∈ X∗(t) and t ∈ [0, 1], and suppose f ′t (x
∗, t) exists.

(1) If f(x, ·) is absolutely continuous for all x ∈ X and there is an integrable function
b : [0, 1] → R+ such that |f ′t (x, t)| ≤ b(t) ∀x ∈ X and almost all t ∈ [0, 1], then V is
absolutely continuous.

(2) If, in addition, f(x, ·) is differentiable for all x ∈ X and X∗ is nonempty-valued a.e.
on [0, 1], then for any selection x∗(t) ∈ X∗(t),

V(t) = V(0) +
∫ t

0
f ′t (x

∗(s), s) ds

Note: V need not be differentiable everywhere (may have kinks).

Gonçalves (UCL) 12. Incomplete Information 17



Envelope Theorem

It would be sufficient to ensure V is differentiable a.e. to get

Theorem 2 (Milgrom & Segal 2002 Ecta)

Take any x∗ ∈ X∗(t) and t ∈ [0, 1], and suppose f ′t (x
∗, t) exists.

(1) If f(x, ·) is absolutely continuous for all x ∈ X and there is an integrable function
b : [0, 1] → R+ such that |f ′t (x, t)| ≤ b(t) ∀x ∈ X and almost all t ∈ [0, 1], then V is
absolutely continuous.

(2) If, in addition, f(x, ·) is differentiable for all x ∈ X and X∗ is nonempty-valued a.e.
on [0, 1], then for any selection x∗(t) ∈ X∗(t),

V(t) = V(0) +
∫ t

0
f ′t (x

∗(s), s) ds

Note: V need not be differentiable everywhere (may have kinks).

Gonçalves (UCL) 12. Incomplete Information 17



1st-Price Auction

Back to auctions: 1st-Price Auction: winner pays highest bid.
I bidders with valuations 0 ≤ vi and vi ∼ F iid, F atomless and absolutely
continuous, bounded support Vi = [v, v]

Bids: ai ≥ 0.

Strategies: si : Vi → R+

Payoffs

ui(ai, a–i, vi) := 1ai∈maxj∈I{aj}
1

| argmaxj∈I{aj}|
(vi – ai)

Get zero if do not bid highest.
Get item if bid highest and pay own bid; uniform tie-breaking.

NB: si(vi) = vi is weakly dominated in 1PA!
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1st-Price Auction

Solving for a symmetric PS-BNE (s∗)j∈I

Assume: s∗ is strictly increasing, differentiable.

s∗ strictly increasing + F atomless =⇒ zero prob. of two identical bids.

Expected payoff from bidding ai given type vi and opponents bidding according to
s∗:

u(ai, vi) = P(ai > max
j̸=i

s∗(vj))(vi – ai)

= P(ai > s∗(vj))
|I|–1(vi – ai)

= F((s∗)–1(ai))
|I|–1(vi – ai).
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1st-Price Auction

Solving for a symmetric PS-BNE (s∗)j∈I

Assume: s∗ is strictly increasing, differentiable.

s∗ BR to s∗:

u(ai, vi) = F((s∗)–1(ai))
|I|–1(vi – ai).

=⇒ U(vi) := u(s∗(vi), vi) = F((s∗)–1(s∗(vi)))
|I|–1(vi – s∗(vi))

U(vi) = F(vi)
|I|–1(vi – s∗(vi)). (1)
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1st-Price Auction

Solving for a symmetric PS-BNE (s∗)j∈I

Assume: s∗ is strictly increasing, differentiable. (check later)

s∗ strictly increasing =⇒ s∗(v) wins auction wp0 =⇒ U(v) = 0.

(a) u(ai, vi) = F((s∗)–1(ai))|I|–1(vi – ai) differentiable in vi.

(b) U(vi) = F(vi)|I|–1(vi – s∗(vi)) differentiable.

Use envelope theorem:

U′(vi) = u′vi (ai, vi)|ai=s∗(vi) = F((s∗)–1(ai))
|I|–1|ai=s∗(vi) = F(vi)

|I|–1. (2)

Fundamental theorem of calculus:

U(vi) = U(v) +
∫ vi

v
U′(v) dv =

∫ vi

v
U′(v) dv = . (3)
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1st-Price Auction

Solving for a symmetric PS-BNE (s∗)j∈I
Putting it all together:

U(vi) = F(vi)
|I|–1(vi – s∗(vi)). (1)

U′(vi) = F(vi)
|I|–1. (2)

U(vi) =
∫ vi

v
U′(v) dv. (3)

=⇒
∫ vi

v
F(v)|I|–1 dv = F(vi)

|I|–1(vi – s∗(vi))

⇐⇒ s∗(vi) = vi –
∫ vi

v

(
F(v)
F(vi)

)|I|–1
dv
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1st-Price Auction

Solving for a symmetric PS-BNE (s∗)j∈I

s∗(vi) = vi –
∫ vi

v

(
F(v)
F(vi)

)|I|–1
dv

Properties of s∗

Strictly increasing

s∗(v′ + e) – s∗(v′)

= e –
∫ v′+e

v

(
F(v)

F(v′ + e)

)|I|–1
dv +

∫ v′

v

(
F(v)
F(v′)

)|I|–1
dv

=
∫ v′+e

v′
1 dv –

∫ v′+e

v

(
F(v)

F(v′ + e)

)|I|–1
dv +

∫ v′

v

(
F(v)
F(v′)

)|I|–1 (F(v′ + e)
F(v′ + e)

)|I|–1
dv

=
∫ v′+e

v′
1 dv –

∫ v′+e

v′

(
F(v)

F(v′ + e)

)|I|–1
dv +

∫ v′

v

(
F(v)
F(v′)

)|I|–1 F(v′ + e)|I|–1 – F(v′)|I|–1

F(v′ + e)|I|–1
dv

≥
∫ v′+e

v′

F(v′ + e)|I|–1 – F(v)|I|–1

F(v′ + e)|I|–1
dv +

∫ v′

v

(
F(v)
F(v′)

)|I|–1 F(v′ + e)|I|–1 – F(v′)|I|–1

F(v′ + e)|I|–1
dv > 0.
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1st-Price Auction

Solving for a symmetric PS-BNE (s∗)j∈I

s∗(vi) = vi –
∫ vi

v

(
F(v)
F(vi)

)|I|–1
dv

Properties of s∗

Strictly increasing.
Differentiable (immediate).

Bid less than value s∗(vi) < vi for vi > v. =⇒ U(vi) ≥ 0.
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1st-Price Auction

Solving for a symmetric PS-BNE (s∗)j∈I

s∗(vi) = vi –
∫ vi

v

(
F(v)
F(vi)

)|I|–1
dv

WT check s∗ is optimal.

Take any vi ∈ Vi and ai ≥ 0.
Claim: Given others play s∗, s∗(vi) does weakly better than ai ∀ai /∈ [s∗(v), s∗(v)].
If ai < v = s∗(v), then 0 = u(ai, vi) = U(v) ≤ U(vi).
If ai > s∗(v), then u(ai, vi) = vi – ai < vi – s∗(v).
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WT check s∗ is optimal.
Take any vi ∈ Vi and ai ≥ 0.
Claim: Given others play s∗, s∗(vi) does weakly better than ai ∀ai ∈ [s∗(v), s∗(v)].

NB: s∗ continuous and strictly increasing =⇒ ∃!v′i : ai = s∗(v′i ) ∀ai ∈ [s∗(v), s∗(v)].
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= U(vi) – U(v′i ) + u(s∗(v′i ), v
′
i ) – u(s∗(v′i ), vi) =

∫ vi

v′i
u′vi (s

∗(v), v) dv +
∫ v′i

vi
u′vi (s

∗(v′i ), v) dv

=
∫ vi

v′i

(
F(v)|I|–1 – F(v′i )

|I|–1) dv.

If vi > v′i , then F(v) ≥ F(v′i ) for any v ∈ [v′i , vi] =⇒ U(vi) – u(ai, vi) ≥ 0.

Gonçalves (UCL) 12. Incomplete Information 26



1st-Price Auction

Solving for a symmetric PS-BNE (s∗)j∈I

s∗(vi) = vi –
∫ vi

v

(
F(v)
F(vi)

)|I|–1
dv

WT check s∗ is optimal.
Take any vi ∈ Vi and ai ≥ 0.
Claim: Given others play s∗, s∗(vi) does weakly better than ai ∀ai ∈ [s∗(v), s∗(v)].
NB: s∗ continuous and strictly increasing =⇒ ∃!v′i : ai = s∗(v′i ) ∀ai ∈ [s∗(v), s∗(v)].

U(vi) – u(ai, vi) = U(vi) – U(v′i ) + U(v′i ) – u(s∗(v′i ), vi)

= U(vi) – U(v′i ) + u(s∗(v′i ), v
′
i ) – u(s∗(v′i ), vi) =

∫ vi

v′i
u′vi (s

∗(v), v) dv +
∫ v′i

vi
u′vi (s

∗(v′i ), v) dv

=
∫ vi

v′i

(
F(v)|I|–1 – F(v′i )

|I|–1) dv.

If vi > v′i , then F(v) ≥ F(v′i ) for any v ∈ [v′i , vi] =⇒ U(vi) – u(ai, vi) ≥ 0.

Gonçalves (UCL) 12. Incomplete Information 26



1st-Price Auction

Solving for a symmetric PS-BNE (s∗)j∈I

s∗(vi) = vi –
∫ vi

v

(
F(v)
F(vi)

)|I|–1
dv

WT check s∗ is optimal.
Take any vi ∈ Vi and ai ≥ 0.
Claim: Given others play s∗, s∗(vi) does weakly better than ai ∀ai ∈ [s∗(v), s∗(v)].
NB: s∗ continuous and strictly increasing =⇒ ∃!v′i : ai = s∗(v′i ) ∀ai ∈ [s∗(v), s∗(v)].

U(vi) – u(ai, vi) = U(vi) – U(v′i ) + U(v′i ) – u(s∗(v′i ), vi)

= U(vi) – U(v′i ) + u(s∗(v′i ), v
′
i ) – u(s∗(v′i ), vi) =

∫ vi

v′i
u′vi (s

∗(v), v) dv +
∫ v′i

vi
u′vi (s

∗(v′i ), v) dv

=
∫ vi

v′i

(
F(v)|I|–1 – F(v′i )

|I|–1) dv.

If vi > v′i , then F(v) ≥ F(v′i ) for any v ∈ [v′i , vi] =⇒ U(vi) – u(ai, vi) ≥ 0.

Gonçalves (UCL) 12. Incomplete Information 26



1st-Price Auction

Solving for a symmetric PS-BNE (s∗)j∈I

s∗(vi) = vi –
∫ vi

v

(
F(v)
F(vi)

)|I|–1
dv

WT check s∗ is optimal.
Take any vi ∈ Vi and ai ≥ 0.
Claim: Given others play s∗, s∗(vi) does weakly better than ai ∀ai ∈ [s∗(v), s∗(v)].
NB: s∗ continuous and strictly increasing =⇒ ∃!v′i : ai = s∗(v′i ) ∀ai ∈ [s∗(v), s∗(v)].

U(vi) – u(ai, vi) = U(vi) – U(v′i ) + U(v′i ) – u(s∗(v′i ), vi)

= U(vi) – U(v′i ) + u(s∗(v′i ), v
′
i ) – u(s∗(v′i ), vi) =

∫ vi

v′i
u′vi (s

∗(v), v) dv +
∫ v′i

vi
u′vi (s

∗(v′i ), v) dv

=
∫ vi

v′i

(
F(v)|I|–1 – F(v′i )

|I|–1) dv.

If vi > v′i , then F(v) ≥ F(v′i ) for any v ∈ [v′i , vi] =⇒ U(vi) – u(ai, vi) ≥ 0.

Gonçalves (UCL) 12. Incomplete Information 26



1st-Price Auction

Solving for a symmetric PS-BNE (s∗)j∈I

s∗(vi) = vi –
∫ vi

v

(
F(v)
F(vi)

)|I|–1
dv

WT check s∗ is optimal.
Take any vi ∈ Vi and ai ≥ 0.
Claim: Given others play s∗, s∗(vi) does weakly better than ai ∀ai ∈ [s∗(v), s∗(v)].
NB: s∗ continuous and strictly increasing =⇒ ∃!v′i : ai = s∗(v′i ) ∀ai ∈ [s∗(v), s∗(v)].

If vi < v′i , then

Ui(vi) – ui(ai, vi) = Ui(vi) – Ui(v
′
i ) + Ui(v

′
i ) – ui(s

∗(v′i ), vi)

=
∫ vi

v′i

(
F(v)|I|–1 – F(v′i )

|I|–1) dv

=
∫ v′i

vi

(
F(v′i )

|I|–1 – F(v)|I|–1
)

dv

and F(v′i ) ≥ F(v) for any v ∈ [vi, v′i ] =⇒ U(vi) – u(ai, vi) ≥ 0.

Gonçalves (UCL) 12. Incomplete Information 27



1st-Price Auction

Solving for a symmetric PS-BNE (s∗)j∈I

s∗(vi) = vi –
∫ vi

v

(
F(v)
F(vi)

)|I|–1
dv

WT check s∗ is optimal.
Take any vi ∈ Vi and ai ≥ 0.
Claim: Given others play s∗, s∗(vi) does weakly better than ai ∀ai ∈ [s∗(v), s∗(v)].
NB: s∗ continuous and strictly increasing =⇒ ∃!v′i : ai = s∗(v′i ) ∀ai ∈ [s∗(v), s∗(v)].

If vi < v′i , then

Ui(vi) – ui(ai, vi) = Ui(vi) – Ui(v
′
i ) + Ui(v

′
i ) – ui(s

∗(v′i ), vi)

=
∫ vi

v′i

(
F(v)|I|–1 – F(v′i )

|I|–1) dv

=
∫ v′i

vi

(
F(v′i )

|I|–1 – F(v)|I|–1
)

dv

and F(v′i ) ≥ F(v) for any v ∈ [vi, v′i ] =⇒ U(vi) – u(ai, vi) ≥ 0.

Gonçalves (UCL) 12. Incomplete Information 27



1st-Price Auction

Solving for a symmetric PS-BNE (s∗)j∈I

s∗(vi) = vi –
∫ vi

v

(
F(v)
F(vi)

)|I|–1
dv

WT check s∗ is optimal.
Take any vi ∈ Vi and ai ≥ 0.
Claim: Given others play s∗, s∗(vi) does weakly better than ai ∀ai ∈ [s∗(v), s∗(v)].
NB: s∗ continuous and strictly increasing =⇒ ∃!v′i : ai = s∗(v′i ) ∀ai ∈ [s∗(v), s∗(v)].

If vi < v′i , then

Ui(vi) – ui(ai, vi) = Ui(vi) – Ui(v
′
i ) + Ui(v

′
i ) – ui(s

∗(v′i ), vi)

=
∫ vi

v′i

(
F(v)|I|–1 – F(v′i )

|I|–1) dv

=
∫ v′i

vi

(
F(v′i )

|I|–1 – F(v)|I|–1
)

dv

and F(v′i ) ≥ F(v) for any v ∈ [vi, v′i ] =⇒ U(vi) – u(ai, vi) ≥ 0.

Gonçalves (UCL) 12. Incomplete Information 27



Revenue Equivalence

Revenue Equivalence Theorem: Any auction setting such that
(i) bidders’ types are their valuation, drawn independently from compact convex set,

(ii) the object is allocated to the bidder with the highest valuation,

(iii) a bidder with the lowest possible valuation (v) gets 0 in expected payoff in
equilibrium

generates the same expected revenue to the auctioneer as the 2PA.
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Revenue Equivalence

Vk:n: k-th highest valuation out of I bidders.

=⇒ Revenue in 2PA: V2:I.

Bids in 1PA:

s∗(v) = v –
∫ v

v

(
F(s)
F(v)

)I–1
ds = 1

F1:I–1(v)

[
F1:I–1(v)v –

∫ v

v
F1:I–1(s) ds

]

= 1
F1:I–1(v)

∫ v

v
s dF1:I–1(s) (Integration by parts)

= E[V1:I–1|V1:I–1 < v]

=⇒ Revenue in 1PA:

s∗(V1:I) = E[V1:I–1|V1:I–1 < V1:I]

Revenue Equivalence: E[V2:I] = E[E[V1:I–1|V1:I–1 < V1:I]]
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Purification Theorem

MSNE hard to justify: although player is indifferent, they need to randomise in very
particular way to make opponents indifferent as well.

Purification: Harsanyi (1973) provided a justification for MSNE of a normal-form game
Γ = ⟨I,S, u⟩ as a limit case of perturbed games.

Suppose true preference is unobserved by opponents (random) and given by

ũi(s, θi) := ui(s) + εθ
s
i

where θ
s
i are independent across players and drawn from a distribution Fi with

density fi.

Theorem

Fix a finite set of players I and strategy spacesSi. For almost all payoff vectors u = (ui)i∈I
and for all independent and twice-differentiable densities fi on [–1, 1]|S|, any mixed strat-
egy Nash equilibrium of the normal-form game Γ = ⟨I,S, u⟩ is the limite of a sequence
of pure strategy Bayesian Nash equilibria of the Bayesian game with perturbed payoffs
(ũi)i∈I.

Note the limits of the result: “for almost all payoff vectors”
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Higher-Order Beliefs

Coordination Game (bank runs, currency attacks)

Col Player
Invest Not Invest

Row Player Invest θ,θ θ – 1,0
Not Invest 0,θ – 1 0,0

Complete Information. NE?

θ < 0: Not invest is strictly dominant and (NI,NI) the unique NE.

θ > 1: Invest is strictly dominant and (I,I) the unique NE.

θ ∈ [0, 1]: (NI,NI), (I,I), and mixed is NE.
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Higher-Order Beliefs

Coordination Game (bank runs, currency attacks)

Col Player
Invest Not Invest

Row Player Invest θ,θ θ – 1,0
Not Invest 0,θ – 1 0,0

Incomplete Information

Suppose both players observe a signal about the state θ.

θi := θ + εi, εi ∼ N(0,σ2) iid.

θ | θi ∼ N(θi,σ2), because θ = θi – εi
θj | θi := θ | θi + εj | θi = θ | θi + εj ∼ N(θi, 2σ

2).

Implicitly, this is saying that players have uninformative or improper prior on θ that is
uniform over the real line.
Why improper? because there is no uniform distribution over the real line; it cannot
add-up to one if it has a constant pdf.
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Higher-Order Beliefs

Incomplete Information

θ | θi ∼ N(θi,σ2) and θj | θi ∼ N(θi, 2σ
2).

Claim: si(θi) := 1{θi > 1/2} is an equilibrium.
• Given sj = 1{θj > 1/2}, player i’s payoff to investing conditional on θi and sj is

θi – P
(
θj ≤ 1/2 | θi

)
= θi – Φ

(
1/2 – θi√

2σ

)
strictly increasing in θi and zero when θi = 1/2.

• si(θi) := 1{θi > 1/2} is the unique best response to sj.
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Higher-Order Beliefs

Incomplete Information

θ | θi ∼ N(θi,σ2) and θj | θi ∼ N(θi, 2σ
2).

WTS Proposition: In any eqm, si(θi) = 1 a.e. on (1/2,∞) and si(θi) = 0 a.e. on (–∞, 1/2).

Preliminaries: Define f(θi, θ̃) := θi – Φ

(
θ̃–θi√
2σ

)
.

Note: P(θj < θ̃ | θi) = P
(

θj–θi√
2σ

< θ̃–θi√
2σ

| θi

)
= Φ

(
θ̃–θi√
2σ

)
.

f(θi, θ̃) is continuous in (θi, θ̃), strictly increasing in θi, and strictly decreasing in θ̃.
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Higher-Order Beliefs

Incomplete Information

θ | θi ∼ N(θi,σ2) and θj | θi ∼ N(θi, 2σ
2).

WTS Proposition: In any eqm, si(θi) = 1 a.e. on (1/2,∞) and si(θi) = 0 a.e. on (–∞, 1/2).

Preliminaries: Define f(θi, θ̃) := θi – Φ

(
θ̃–θi√
2σ

)
.

Claim: ∀θi > 1, E[ui(I, sj(θj), θ)|θi] = θi – E[sj(θj)|θi] > 0.
• Note that: ∀δ > 0, f(θi, θ̃) > δ ∀θi ≥ 1 + δ and ∀θ̃.
• Then ∀θi > 1, E[ui(I, sj(θj), θ)|θi] = θi – E[sj(θj)|θi] ≥ θi = f(θi, –∞) > 0

(where f(θi, –∞) := lim
θ̃→–∞ f(θi, θ̃)).
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• True for k = 1, E[ui(I, sj(θj), θ)|θi] ≥ θi – 1 > 0 for any θi > θ
1 = 1, no matter sj.

• Then, for any s′i : s
′
i (θi) ̸= 1 for a positive measure of θi > θ

1 is strictly dominated by
si s.t. si = s′i on (–∞, θ1] and si = 1 on (θ1,∞).
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′
i (θi) ̸= 1 for a positive measure of
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• Finally, as BNE needs to survive IESDS, the claim follows.
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θ
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k = 1/2.
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2σ

)
= θ

∞ – 1/2.
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∞ ≥ 0, by monotone convergence theorem.

• 0 = limk→∞ f(θk+1, θk) = f(θ∞, θ∞) = θ
∞ – Φ

(
θ
∞–θ

∞
√

2σ

)
= θ

∞ – 1/2.
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Higher-Order Beliefs

Incomplete Information

θ | θi ∼ N(θi,σ2) and θj | θi ∼ N(θi, 2σ
2).

WTS Proposition: In any eqm, si(θi) = 1 a.e. on (1/2,∞) and si(θi) = 0 a.e. on (–∞, 1/2).

Preliminaries: Define f(θi, θ̃) := θi – Φ

(
θ̃–θi√
2σ

)
.

Fully symmetric arguments:

Claim: ∀θi < 0, E[ui(I, sj(θj), θ)|θi] = θi – E[sj(θj)|θi] < 0.

For k = 1, 2, ..., define θ
k+1 := sup{θi|f(θi, θk) < 0}, where θ

1 = 0.

Claim: θ
k < θ

k+1 ∀k.

Claim: (Induction step) If sj(θj) = 0∀θj < θ
k , then ∀θi < θ
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Higher-Order Beliefs

Incomplete Information

θ | θi ∼ N(θi,σ2) and θj | θi ∼ N(θi, 2σ
2).

Proposition: In any eqm, si(θi) = 1 a.e. on (1/2,∞) and si(θi) = 0 a.e. on (–∞, 1/2).

NB: proposition holds ∀σ. Taking σ ↓ 0 selects unique NE.

Global game approach to selection of NE.
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Higher-Order Beliefs

Why higher-order beliefs?

Player i will invest if θi is high enough, regardless of whether j invests.

Player i knows player j will also invest if θj is high enough.

That makes Player i more amenable to investing at lower threshold for θi, as j will invest
regardless of what i does for high enough θj.

Iterating the argument on players’ beliefs has higher-order beliefs working in the
background to refine what the opponent will do.

Common knowledge of rationality is doing all the heavy-lifting in determining how
players behave!
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More

The Originals: Harsanyi (1967 MnSc, 1968 MnSc, 1973 IJGT).

Auctions: Milgrom (1981 Ecta, 2003), Myerson (1981 MOR), Athey & Haile (2002 Ecta).
Auctions with budgets: e.g., Ghosh (2021 GEB).

Global Games: Morris & Shin (1998 AER, 2002 AER).

Other Topics: Voting (Feddersen & Pesendorfer, 1997 Ecta), Media Bias (Gentzkow &
Shapiro, 2006 JPE).

No-Trade Theorem: Milgrom & Stokey (1982 JET).

Experiments: Winner’s curse Charness & Levin (2009 AEJMicro), Overbidding and QRE:
Goeree, Holt, & Palfrey (2002 JET); Camerer, Nunnari, & Palfrey (2016 GEB); and
Charness, Levin, & Schmeidler (2019 JET).
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