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Overview

Fixed point theorems and comparative statics results are the bread and butter of
economic theory.

But not only theory!
Some other examples of questions addressed using these tools:

- (Macro) Comparative statics on equilibrium prices and quantities when there is a
demand shock induced by a change in consumers’ preferences (e.g., Acemoglu &
Jensen 2015 JPE).

- (Econometrics) Nonparametric partial identification of treatment response with social
interactions (e.g.Lazzati (2015 QE), with an application to studying the effect of
police per capita on crime rates).

- (Health) Empirical antitrust implications of centralized matching systems on wages of
medical residents (Agarwal 2015 AER).

- (Education) The empirical consequences of affirmative action in university admission
(Dur, Pathak, & Sonmez 2020 JET; Aygun & Bo 2021 AEJMicro).
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Overview

Agenda for today:
1. Two new fixed-point theorems based on monotonicity conditions.
2. Strong and weak monotone comparative statics of fixed points.
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Strong Set Order

(X,≥) lattice.

Recall: strong set order ≥ss, a binary relation on 2X :

Definition

S′ strong set dominates S (S′ ≥ss S) if ∀x′ ∈ S′, x ∈ S, x ∨ x′ ∈ S′ and x ∧ x′ ∈ S.

Strong set order can be too demanding (and therefore inapplicable) to many situations.

E.g., for comparative statics on equilibria (sets of fixed points) when some fundamental
changes.
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Strong Set Order

Players I and each player i can choose strategies si in Si.

Choices given by Bi : S–i × Θi ⇒ Si. Choices depend on opponents’ choices and some
parameter θi.

Fixed points (equilibria) F (B, θ), si ∈ Bi(s–i, θi) for every i ∈ I, and how they depend on θ.
Fixed point: choices of different players are consistent.

Hardly ever going to have strong-set ordered equilibria:

If s ∈ F (B, θ) and s′ ∈ F (B, θ′), quite demanding to ask that s ∨ s′ and s ∧ s′ are also
equilibria!
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Weak Set Order

A less stringent way of ordering sets: weak set order (see Che, Kim, & Kojima 2021 WP).

Definition

(i) S′ upper weak set dominates S (S′ ≥uws S) iff ∀x ∈ S, ∃x′ ∈ S′ s.t. x′ ≥ x;

(ii) S′ lower weak set dominates S (S′ ≥lws S) iff ∀x′ ∈ S′, ∃x ∈ S s.t. x′ ≥ x;

(iii) S′ weak set dominates S (S′ ≥ws S) iff S′ both upper and weak set dominates S;
i.e., ≥ws=≥uws ∩ ≥lws.
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Weak Set Order

How do strong and weak set orders compare?

Lemma

(i) ≥ss is transitive and antisymmetric on non-empty sets. It is not necessarily either
reflexive or irreflexive.

(ii) ≥ws is transitive and reflexive, but not necessarily antisymmetric.

(iii) ∀ nonempty subsets S,T ⊆ X, S ≥ss T =⇒ S ≥ws T. (i.e., ≥ss⊆≥ws.)

(iv) ≥ss is closed under intersection, i.e., ∀ non-empty S,S′,T,T′ ⊆ X s.t. S′ ≥ss S
and T′ ≥ss T, S′ ∩ T′ ≥ss S ∩ T. It is not necessarily closed under union.

(v) ≥ws is closed under union, i.e., ∀ non-empty S,S′,T,T′ ⊆ X s.t. S′ ≥ws S and
T′ ≥ws T, S′ ∪ T′ ≥ws S ∪ T. It is not necessarily closed under intersection.

Exercise
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Overview

1. Motivation

2. Ordering Sets – Again

3. Fixed-Point Theorems
– Tarski and Zhou Fixed-Point Theorems
– Li–Che–Kim–Kojima Fixed Point Theorem

4. Monotone Comparative Statics on Fixed Points

5. Games with Strategic Complementarities



Monotone Mappings

Before we do comparative statics: Tarski’s Fixed-Point Theorem.
Arguably one of the most useful fixed point theorems.

Definition

Function f : X → X is monotone iff it is order-preserving, i.e., x ≥ y =⇒ f(x) ≥ f(y).

Correspondence F : X ⇒ X is monotone if x ≥ y =⇒ F(x) ≥ss F(y).

Set of fixed points of self-correspondence F on X: F (F) := {x ∈ X | x ∈ F(x)}.

Set of fixed points of self-map f on X: F (f) := {x ∈ X | x = f(x)}.
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Tarski’s Fixed-Point Theorem

Theorem (Tarski 1955)

Let X be a complete lattice and f be a self-map on X. If f is monotone, then F (f) is a
non-empty complete lattice.

A whole new way to go about and find equilibria!
• Pause to appreciate: no constraints on what X is topologically (no metric space, no

finite dimensional restriction, no convexity requirement).
Purely order-theoretic.

• Why is this good? Because in many cases you could be working with weird spaces
(policy functions, distributions, etc).

• More: you can choose whatever adequate ≥ if you only care about the existence.

And it’s not just existence: F (f) is a non-empty complete lattice.
Tarski’s fixed-point theorem gives structure to the set of fixed points.
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Tarski’s Fixed-Point Theorem

Theorem (Tarski 1955)

Let X be a complete lattice and f be a self-map on X. If f is monotone, then F (f) is a
non-empty complete lattice.

Full-blown proof is quite challenging.
Guide to proof for Tarski’s FPThm in Appendix to lecture notes. The full proof is
quite sophisticated.

The appendices to the lecture notes are for your reference only.

We will prove a more humble statement:

Lemma (Baby Tarski)

Let X be a complete lattice and f be a self-map on X. If f is monotone, then F (f) is
nonempty and has a largest element,

∨
F (f) F (f).

Gonçalves (UCL) 13. Monotone Comparative Statics in Games 9



Tarski’s Fixed-Point Theorem

Theorem (Tarski 1955)

Let X be a complete lattice and f be a self-map on X. If f is monotone, then F (f) is a
non-empty complete lattice.

Full-blown proof is quite challenging.
Guide to proof for Tarski’s FPThm in Appendix to lecture notes. The full proof is
quite sophisticated.

The appendices to the lecture notes are for your reference only.

We will prove a more humble statement:

Lemma (Baby Tarski)

Let X be a complete lattice and f be a self-map on X. If f is monotone, then F (f) is
nonempty and has a largest element,

∨
F (f) F (f).

Gonçalves (UCL) 13. Monotone Comparative Statics in Games 9



Tarski’s Fixed-Point Theorem

Lemma (Baby Tarski)

Let X be a complete lattice and f be a self-map on X. If f is monotone, then F (f) is
nonempty and has a largest element,

∨
F (f) F (f).

Proof

Let S := {x ∈ X : f(x) ≥ x}.

X is complete lattice =⇒ f(infX X) ≥ infX X =⇒ S ̸= ∅.

X is complete lattice and S ⊆ X =⇒ y := supX S ∈ X.

Then, for any x ∈ S,

y ≥ x =⇒ f(y) ≥ f(x) ≥ x as f is monotone and x ∈ S

=⇒ f(y) ≥ y as f(y) is an upper bound of S and y = sup
X

S

=⇒ f(f(y)) ≥ f(y) as f is monotone

=⇒ f(y) ∈ S

=⇒ y := sup
X

S ≥ f(y)

=⇒ y = f(y) by antisymmetry. □
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Tarski-Zhou’s Fixed-Point Theorem

Zhou (1994 GEB) generalised Tarski’s FP theorem to monotone correspondences.
Low-hanging fruit with major significance and applications.

Theorem (Zhou 1994 GEB, Theorem 1)

Let X be a complete lattice and F : X ⇒ X be nonempty-valued. If F is monotone and,
∀x ∈ X, F(x) is a complete sublattice, then (F (F),≥) is nonempty complete lattice.

Hard to overstate the usefulness:
Think F as cartesian product of best-response mappings.
F (F) as set of Nash equilibria.
Tarski-Zhou’s FPT says that Nash equilibria form a complete lattice!
Provides clear-cut way of talking about largest/smallest equilibria.
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Weaker Monotone Mappings

Another useful fixed-point theorem based on weaker monotonicity properties.

Some preliminaries:

For S ∈ 2X , denote F(S) := ∪x∈SF(x).

A reminder:

Definition

(i) S′ ≥uws S iff ∀x ∈ S, ∃x′ ∈ S′ s.t. x′ ≥ x.

(ii) S′ ≥lws S iff ∀x′ ∈ S′, ∃x ∈ S s.t. x′ ≥ x.

(iii) S′ ≥ws S iff S′ ≥uws S and S′ ≥lws S.

Definition

(i) F is upper weak set monotone iff F(x′) ≥uws F(x) ∀x′ ≥ x.

(ii) F is lower weak set monotone iff F(x′) ≥lws F(x) ∀x′ ≥ x.

(iii) F is weak set monotone iff F(x′) ≥ws F(x) ∀x′ ≥ x.

(iv) F is strong set monotone iff F(x′) ≥ss F(x) ∀x′ ≥ x.
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Weaker Monotone Mappings

Definition

(i) F is upper weak set monotone iff F(x′) ≥uws F(x) ∀x′ ≥ x.

(ii) F is lower weak set monotone iff F(x′) ≥lws F(x) ∀x′ ≥ x.

(iii) F is weak set monotone iff F(x′) ≥ws F(x) ∀x′ ≥ x.

(iv) F is strong set monotone iff F(x′) ≥ss F(x) ∀x′ ≥ x.

Roughly put:
Upper weak set monotonicity: with larger x′ > x, for anything in F(x), can find
something larger in F(x′).

Note: If F always has a largest element, then F is uws monotone iff the largest
element is increasing in x.

Lower weak set monotonicity: with smaller x < x′, for anything in F(x′), can find
something smaller in F(x).

Note: If F always has a smallest element, then F is lws monotone iff the smallest
element is increasing in x.
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Weaker Monotone Mappings

A property of weak set monotone correspondences for later:

Lemma (Che, Kim, & Kojima 2021 WP, Lemma 2)

Let F : X ⇒ Y , where X,Y are posets. If F is weak set monotone, then for any subsets
S′,S ⊆ X such that S′ ≥ws S, F(S′) ≥ws F(S).
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Li–Che–Kim–Kojima Fixed Point Theorem

Theorem (Li 2014; Che, Kim, & Kojima 2021 WP, Theorem 6)

Let X be a compact partially ordered metric space. Let F : X ⇒ X be a nonempty- and
closed-valued correspondence on X.

(i) If F is upper ws monotone and ∃x, y ∈ X : x ≤ y ∈ F(x),
then it has a maximal fixed point.

(ii) If F is lower ws monotone and ∃x, y ∈ X : x ≥ y ∈ F(x),
then it has a minimal fixed point.

Non-nested conditions compared with Tarski-Zhou FPT. Weaker in many settings, but
also deliver less.

Topological restrictions also crept back.

Also:
maximal ≡ not dominated by anything else

̸= dominates everything else ≡ supremum.
minimal ≡ not dominating anything else

̸= dominated by everything else ≡ infimum.

Proof beyond scope of this class.
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Overview

1. Motivation

2. Ordering Sets – Again

3. Fixed-Point Theorems

4. Monotone Comparative Statics on Fixed Points
– Monotone Comparative Statics on Fixed Points of Functions
– Monotone Comparative Statics on Fixed Points of Correspondences

5. Games with Strategic Complementarities



Monotone Comparative Statics on Fixed Points

Eyes on the ball:
Before: Order-theoretic fixed points.
Now: MCS on fixed points.
Applications: MCS on equilibria.
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Monotone Comparative Statics on Fixed Points of Functions
Villas-Boas (1997 JET) provides collection of very useful MCS results for functions.

First, result for decreasing functions.

Theorem (Villas-Boas 1997 JET, Theorem 3)

Let (X,≥) be a preordered set, and f , g : X → X. If (i) f ≫ g, (ii) ∀x, y ∈ X : x ≥ y =⇒
f(y) ≥ f(x),
then ∀x ∈ F (f), y ∈ F (g), ¬(y > x).

Proof

Suppose not, i.e., ∃x ∈ F (f), y ∈ F (g) : y > x. Then
(i) f(y) > g(y) ∵ f ≫ g;

(ii) g(y) = y ∵ y ∈ F (g);

(iii) y > x, by assumption;

(iv) x = f(x) ∵ x ∈ F (f); and

(v) f(x) ≥ f(y) ∵ y > x =⇒ y ≥ x =⇒ f(x) ≥ f(y);
a contradiction.
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f(y) ≥ f(x),
then ∀x ∈ F (f), y ∈ F (g), ¬(y > x).

Proof

Suppose not, i.e., ∃x ∈ F (f), y ∈ F (g) : y > x. Then
(i) f(y) > g(y) ∵ f ≫ g;

(ii) g(y) = y ∵ y ∈ F (g);

(iii) y > x, by assumption;

(iv) x = f(x) ∵ x ∈ F (f); and

(v) f(x) ≥ f(y) ∵ y > x =⇒ y ≥ x =⇒ f(x) ≥ f(y);
a contradiction.
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Monotone Comparative Statics on Fixed Points of Functions

Theorem (Villas-Boas 1997 JET, Theorems 4 and 5)

Let X be poset, and f , g : X → X.
(1) If (i) ∀x ∈ X, X≥x is complete lattice, and (ii) f is weakly increasing,

then ∀ fixed pt of g x ∈ F (g) : f(x) ≥ (>) x, ∃ fixed pt of f y ∈ F (f) : y ≥ (>) x.

If, in addition f ≥ (≫) g, then ∀x ∈ F (g), ∃y ∈ F (f) : y ≥ (>) x.

(2) If (i) ∀x ∈ X, Xx≤ is complete lattice, and (ii) g is weakly increasing,
then for every fixed pt of f y ∈ F (f) : y ≥ (>) g(y), ∃ fixed pt of g x ∈ F (g) : y ≥
(>) x.

If in addition f ≥ (≫) g, then ∀y ∈ F (f), ∃x ∈ F (g) : y ≥ (>) x.

These are increadibly general and, therefore, increadibly useful.

We will prove (1); the proof for (2) is symmetric.
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Monotone Comparative Statics on Fixed Points of Functions

Theorem (Villas-Boas 1997 JET, Theorems 4 and 5)

Let X be poset, and f , g : X → X.
(1) If (i) ∀x ∈ X, X≥x is complete lattice, and (ii) f is weakly increasing,

then ∀ fixed pt of g x ∈ F (g) : f(x) ≥ (>) x, ∃ fixed pt of f y ∈ F (f) : y ≥ (>) x.

If, in addition f ≥ (≫) g, then ∀x ∈ F (g), ∃y ∈ F (f) : y ≥ (>) x.

Proof

• Let x∗ ∈ F (g) : f(x∗) ≥ (>) x∗.

• By monotonicity, f(x) ≥ (>) x∗ ∀x ∈ X≥x∗ .

• Let f̃ : X≥x∗ → X≥x∗ , where f̃(x) = f(x).
Now apply Tarki’s fixed point theorem (for (i) what we’ve shown is enough) and
conclude ∃y ∈ X≥x∗ : f(y) = f̃(y) = y ≥ (>) x∗.

Villas-Boas (1997 JET) also provides extensions for Banach spaces and
correspondences under very general conditions.

useful for functional optimization (e.g., solving for policy functions in macro, IO, etc.).
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Monotone Comparative Statics on Fixed Points of Correspondences

Che, Kim, & Kojima (2021 WP) provide results for correspondences that are adjusted to
the weak set order.

Theorem (Che, Kim, & Kojima 2021 WP, Theorem 7)

Let X be a compact partially ordered metric space and F,G : X ⇒ X.
(1) If (i) F (F) ̸= ∅, (ii) G is uws monotone, nonempty- and closed-valued,

and (iii) G(x) ≥uws F(x) ∀x ∈ X,
then F (G) ≥uws F (F).

(2) If (i) F (G) ̸= ∅, (ii) F is lws monotone, nonempty- and closed-valued,
and (iii) G(x) ≥lws F(x) ∀x ∈ X,
then F (G) ≥lws F (F).

Counterpart of Villas-Boas’s Theorems 4 and 5.

Focus on proof for (1); proof for (2) is symmetric.
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Monotone Comparative Statics on Fixed Points of Correspondences

Theorem (Che, Kim, & Kojima 2021 WP, Theorem 7)

Let X be a compact partially ordered metric space and F,G : X ⇒ X.
(1) If (i) F (F) ̸= ∅, (ii) G is uws monotone, nonempty- and closed-valued, and (iii)

G(x) ≥uws F(x) ∀x ∈ X, then F (G) ≥uws F (F).

Proof

Fix any x∗ ∈ F (F). ∀S ⊆ X, define (a) S≥x∗ := {x ∈ S | x ≥ x∗};

(b) S+(F) := {x ∈ S | ∃y ≥ x s.t. y ∈ F(x)}; (c) S–(F) := {x ∈ S | ∃y ≤ x s.t. y ∈ F(x)}.

Let G̃ be self-correspondence on X≥x∗ s.t. G̃(x) := G(x) ∩ X≥x∗ ∀x ∈ X≥x∗ .

Next: Show uws dominance by proving G̃ verifies conditions to have fixed point in X≥x∗ .
(X≥x∗ compact poset; G̃ nonempty- and closed-valued, and uws monotone.)

If so: ∃y ∈ G̃(y) = G(y) ∩ X≥x∗ =⇒ y ∈ F (G) and y ≥ x∗ ∈ F (F); done!
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Monotone Comparative Statics on Fixed Points of Correspondences

Proof

WTS X≥x∗ compact poset; G̃ nonempty- and closed-valued, and uws monotone.
(i) X poset =⇒ X≥x∗ poset. (immediate)

(ii) WTS X≥x∗ is compact.
∀S closed, S≥x∗ is also closed; X compact metric space, then S≥x∗ is compact.

=⇒ X≥x∗ is compact.
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Monotone Comparative Statics on Fixed Points of Correspondences

Proof

WTS X≥x∗ compact poset; G̃ nonempty- and closed-valued, and uws monotone.
(i) X poset =⇒ X≥x∗ poset.
(ii) X≥x∗ is compact.
(iii) WTS x∗ ∈ X+(G̃) ⊆ X≥x∗ .

x∗ ∈ F(x∗) ≤uws G(x∗) =⇒ ∃y ∈ G(x∗) : y ≥ x∗, i.e., y ∈ G̃(x∗) = G(x∗) ∩ X≥x∗ .
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(y′ ∈ G(x′) and y′ ≥ x∗) =⇒ y′ ∈ G(x′) ∩ X≥x∗ = G̃(x′).

(vii) ∴ satisfy conditions for (G̃) ̸= ∅ as per Theorem 6 in Che, Kim, & Kojima 2021 WP.
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Monotone Comparative Statics on Fixed Points of Correspondences

Theorem (Che, Kim, & Kojima 2021 WP, Theorem 7)

Let X be compact partially ordered metric space and F,G : X ⇒ X.
(1) If (i) F (F) ̸= ∅, (ii) G is uws monotone, nonempty- and closed-valued,

and (iii) G(x) ≥uws F(x) ∀x ∈ X,
then F (G) ≥uws F (F).

(2) If (i) F (G) ̸= ∅, (ii) F is lws monotone, nonempty- and closed-valued,
and (iii) G(x) ≥lws F(x) ∀x ∈ X,
then F (G) ≥lws F (F).

In brief: upper/lower weak set dominance of correspondences (+ other conditions)
implies upper/lower weak set dominance of their fixed points.

Corollary

Let X be a compact partially ordered metric space and F,G : X ⇒ X. If (i) F and G
are nonempty- and closed-valued, (ii) F is lws monotone, G is uws monotone, and (iii)
G(x) ≥ws F(x) ∀x ∈ X, then F (G) ≥ws F (F).
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Overview
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5. Games with Strategic Complementarities
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– Supermodular Games
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Games with Strategic Complementarities

Goal: provide general results similar to “if Bi increases, then set of equilibria increases.”

Examples:
If payoffs for player’s action increase (e.g., subsidies), player chooses it more?
It strategy space decreases (e.g., price caps, regulation, higher taxes), then affects
deviations; will equilibrium ‘decrease’?

Consider reduced-form games for more generally applicable results.
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Games with Strategic Complementarities

Reduced-form game G = ⟨I,X,B⟩:
(i) Finite set players I.
(ii) Player i’s strategy space Xi, X = ×i∈IXi.
(iii) Player i’s behaviour, Bi : X–i ⇒ Xi; B = (Bi)i∈I.

B(x) : X ⇒ X, s.t. B(x) := ×i∈IBi(x–i).

B summarises all components of reduced-form game (dfn of B depends on I and X).

Set of fixed points of G denoted by F (B): F (B) := {x ∈ X | xi ∈ Bi(x–i)}.

Bi may or may not be given as the best-response correspondence in a game,
i.e. Bi(x–i) = argmaxxi∈Xi

ui(xi, x–i).

results more general, can be applied to equilibrium models and solution concepts
other than Nash equilibrium.
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Games with Strong Strategic Complementarities

Use Tarski-Zhou’s fixed point theorem to show an equilibrium exists:

Theorem

Let Xi be a complete lattice ∀i ∈ I.
If Bi : X–i ⇒ Xi is strong set monotone and nonempty- and complete-sublattice-valued
for every i ∈ I, then F (B) is non-empty and a complete lattice.
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Games with Strong Strategic Complementarities

MCS on equilibria:

Theorem

Let Xi, X̃i be complete lattices wrt same partial order, and X̃i ≥ss Xi, ∀i ∈ I.
Let Bi : X–i ⇒ Xi and B̃i : X̃–i ⇒ X̃i be strong set monotone and nonempty- and
complete-sublattice-valued ∀i ∈ I.
If B̃i(x̃–i) ≥ss Bi(x–i) ∀i ∈ I and ∀x–i ∈ X–i, x̃–i ∈ X̃–i : x̃–i ≥ x–i,
then (1)F (B̃),F (B) are nonempty complete lattices, and (2) supF (B̃) F (B̃) ≥ supF (B) F (B)
and infF (B̃) F (B̃) ≥ infF (B) F (B).

Result implies F (B̃) ≥ws F (B).
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Games with Strong Strategic Complementarities

Proof

Know that ∀i: Xi, X̃i be complete lattices; X̃i ≥ss Xi; Bi, B̃i ss monotone, nonempty- and
complete-sublattice-valued; x̃–i ≥ x–i =⇒ B̃i(x̃–i) ≥ss Bi(x–i).

• (1) F (B̃),F (B) are nonempty complete lattices (by Zhou-Tarski FPT); admit largest and
smallest element.

• (2) WTS largest fixed pt of B̃ greater than largest fixed pt of B; proof symmetric for
smallest.

Let b∗i (x–i) := supXi
Bi(x–i) and bi∗(x–i) := infXi Bi(x–i).

Bi complete-sublattice-valued =⇒ b∗i (x–i), bi∗(x–i) ∈ Bi(x–i).

b∗(x) := supX B(x) ≡ (b∗i (x–i))i∈I; and b∗(x) := infX B(x) ≡ (bi∗(x–i))i∈I.
Define b̃∗ and b̃∗ analogously, on X̃.

Claim: Largest (smallest) fixed pt of b∗ (b∗) is the largest (smallest) fixed pt of B. (Proof
left as an exercise.)

Claim: b̃∗(x̃) ≥ b∗(x) for any x̃ ≥ x.
x̃ ≥ x =⇒ x̃–i ≥ x–i∀i =⇒ B̃i(x̃–i) ≥ss Bi(x–i)∀i =⇒ B̃(x̃) ≥ss B(x).
As Bi, B̃i ss monotone and nonempty- and complete-sublattice-valued,
then so are B, B̃ (prove it!).

Hence B̃(x̃) ≥ss B(x) =⇒ b̃∗(x̃) ≥ b∗(x).
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b∗(x) ≡ (b∗i (x–i))i∈I; and b∗(x) ≡ (bi∗(x–i))i∈I. Define b̃∗ and b̃∗ analogously, on X̃.

Claim: Largest (smallest) fixed pt of b∗ (b∗) is the largest (smallest) fixed pt of B.

Claim: b̃∗(x̃) ≥ b∗(x) for any x̃ ≥ x.

Claim: b̃∗ is monotone.

If X = X̃, as X≥x is complete lattice ∀x, use Villas-Boas (1997 JET), Theorems 4 and 5.

In general, can have X ̸= X̃; we will need an extra step.
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Claim: Largest (smallest) fixed pt of b∗ (b∗) is the largest (smallest) fixed pt of B.

Claim: b̃∗(x̃) ≥ b∗(x) for any x̃ ≥ x Claim: b̃∗ is monotone.

Claim: Let x∗ and x̃∗ be the largest fixed points of b∗ and b̃∗. Then x̃∗ ≥ x∗.

Let X̃≥x∗ := {x ∈ X̃ | x ≥ x∗}.
X̃ ≥ss X =⇒ ∀x ∈ X̃, x∗ ∈ X, x ∨ x∗ ∈ X̃; hence X̃≥x∗ ̸= ∅.
X̃ complete lattice =⇒ so is X̃≥x∗ . Define g̃∗ on X̃≥x∗ as g̃∗(x) = b̃∗(x).
As ∀x ∈ X̃≥x∗ , x ≥ x∗, then g̃∗(x) = b̃∗(x) ≥ b∗(x∗).
Hence g̃∗(x) ∈ X̃≥x∗ ∀x ∈ X̃≥x∗ , and g̃∗ is a self-map on a complete lattice.
As b̃∗ is monotone, so is g̃∗.
By Tarski’s fixed point theorem, ∃y∗ ∈ X̃≥x∗ : y∗ = g̃∗(y∗) = b̃∗(y∗) ≥ x∗ = b∗(x∗).
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Games with Strong Strategic Complementarities

Proof
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Games with Strong Strategic Complementarities

Let’s go back to normal-form games Γ = ⟨I,X, u⟩.

Define Bi as player i’s best-response correspondence: Bi(x–i) := argmaxxi∈Xi
ui(xi, x–i).

Given Γ and Γ̃, what do we need to guarantee that
(i) B̃i,Bi are ss monotone,
(ii) B̃i(x̃–i) ≥ss Bi(x–i) for every x̃ ≥ x, and
(iii) B̃i,Bi are nonempty- and complete-sublattice-valued?

We already know the answer...
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Games with Strong Strategic Complementarities

Theorem (Milgrom & Shannon 1994, Theorem 4)

Let X be a lattice and v, u be two real-valued functions on X. v and u are quasisupermod-
ular and v single-crossing dominates u if and only if, for S′ ≥ss S, X(S′; v) ≥ss X(S; u).

Corollary (Milgrom & Shannon 1994, Corollary 2)

Let X be a lattice, S a sublattice, and f : X → R. If f is quasisupermodular, then X(S; f)
is a sublattice of S.

Xi, X̃i be (i) compact, and complete sublattices of a lattice Yi, and (ii) X̃i ≥ss Xi.

ui, ũi be (i) quasisupermodular in (xi; x–i) and (x̃i; x̃–i) (resp.), (ii) continuous in xi and x̃i
(resp.); and (iii) ũi ≥sc ui.
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Supermodular Games

Existing literature focuses on changes u.

Definition

A class of games {Γ(t)}t∈T has strategic complementarities if Γ(t) = ⟨I,X, ut⟩, where I
is finite, T is a poset, and, for all i, Xi is a compact lattice, uti : X → R is continuous and
quasisupermodular in xi and satisfies the single-crossing property in (xi; x–i, t).

Can weaken continuity of uti with upper semi-continuity in xi and continuity in x–i,
separately.

These are also called supermodular games.
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Supermodular Games

Theorem (Milgrom & Roberts 1990 Ecta; Milgrom & Shannon 1994 Ecta)

Let {Γ(t)}t∈T have strategic complementarities. For any t, let XNE(t) denote the set of
pure Nash equilibria of Γ(t).
XNE(t) is a complete lattice, monotone wrt t in the strong set order.
Furthermore, for any t, the largest and and smallest Nash equilibria are the largest and
smallest outcomes (resp.) survives IESDS.

Corollary

(a) A supermodular game has a pure strategy Nash equilibrium

(b) The greatest and least strategy profiles in the sets of (i) strategy profiles surviving
IESDS, (ii) rationalisable strategy profiles, (iii) correlated equilibria, and (iv) Nash
equilibria exist and are all the same.

(c) If a supermodular game has a unique Nash equilibrium, it is dominance solvable.

Not only of theoretical but also of practical interest.

Obtain the greatest and smallest PSNE via simple iterative operator.

Renders computation of relevant Nash equilibria particularly simple.
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Games with Weak Strategic Complementarities
We conclude, briefly, by provide weak set order counterparts to our previous results.

Definition

A reduced-form normal-form game G has upper (resp. lower) weak strategic comple-
mentarities if
(i) ∃x ∈ X : yi ∈ Bi(x–i) and ∃yi ∈ Xi s.t. yi ≥ xi (resp. ≤) ∀i;

(ii) Bi is uws (resp. lws) monotone;

(iii) Bi : X–i ⇒ Xi nonempty- and compact-valued, ∀i; and

(iv) Xi is a compact partially ordered metric space.

Theorem (Che, Kim, & Kojima 2021 WP, Theorem 9(i))

Let G be a reduced-form normal-form game.
If G has upper or lower weak strategic complementarities, then the set of fixed points
of B, F (B), is nonempty.

Proof

Follows from Li–Che–Kim–Kojima Fixed Point Theorem.
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Games with Weak Strategic Complementarities

Theorem (Che, Kim, & Kojima 2021 WP, Theorem 9(ii))

Let G, G̃ be two reduced-form normal-form games.

If F (B) ̸= ∅, G̃ has upper weak strategic complementarities, and B̃i(s–i) ≥uws Bi(s–i)
∀s–i,∀i, then F (B̃) ≥uws F (B).

If F (B̃) ̸= ∅, G has lower weak strategic complementarities, and B̃i(s–i) ≥lws Bi(s–i)
∀s–i,∀i, then F (B̃) ≥lws F (B).

Proof

Follows from weak MCS results.
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