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Normal-Form Games and Extensive-Form Games

Limitations of Normal-Form Representations
Normal-form representation of games: simple, useful, but lacks notion of time.
Some players may be able to observe opponents’ choices before making their own.
Examples:
- Employers may known which courses students chose to take.
- Banks observe central bank’s monetary policy before deciding on loans.
- Firms may observe their competitors’ pricing decisions before making theirs.
- Employers and employees 1st sign contracts, 2nd employees decide how

much effort to exert, and 3rd firms decide on bonuses/promotions.
- Firms make choices about which technologies to invest in prior to start

producing.
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Normal-Form Games and Extensive-Form Games

Information Matters

Not only that actions may be dynamic, but how dynamics interacts with information
Two competing firms set prices for the following day.
If neither can observe competitor’s price in advance, then exact time price gets set
is of no consequence.

But if firm learns its competitor’s pricing decision in advance, then it can condition
its own price on opponent’s price.

Crucial to capture what players know when making decisions;
otherwise model predictions could be very much at odds with the data.

Need a different way to model games to account for the fact that:
(1) strategic interaction unfolds over time, and
(2) what players know when they make their choices matters.
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Extensive-Form Games

Definition

An extensive-form game is given by a tuple Γ = ⟨I,A,H,H, ρ, u⟩ where
(1) I: set of players; nature or chance is represented by 0 /∈ I.

(2) A: overall set of actions.

(3) H: set of histories.

(4) H := {Hi}i∈I∪{0}, where Hi is player i’s information sets or information partition.

(5) ρ: function that associates each of nature’s information setsH0 ∈ H0 with proba-
bilitymeasure over feasible actions after any history h ∈ H0, ρ(H0) ∈ ∆(A(H0)).

(6) u := (ui)i∈I, where each ui represents player i’s payoff function, ui : T → R.

Gonçalves (UCL) 14. Extensive-Form Games and Equilibrium Refinements 3



Extensive-Form Games

Definition

Extensive-form game: Γ = ⟨I,A,H,H, ρ, u⟩ where
I players; A actions; H histories; Hi i’s info sets; ρ nature’s move; ui payoffs

I denotes a set of players; nature or chance is represented by 0 /∈ I
As before, I is the set of players.
Nature to represent randomness (whether or not nature ∈ I is just convention).
E.g. Firms decide on investment decisions; with some prob. a pandemic will start.

A denotes the overall set of actions.
All the actions that some player or nature can take at some point.
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Extensive-Form Games

Definition

Extensive-form game: Γ = ⟨I,A,H,H, ρ, u⟩ where
I players; A actions; H histories; Hi i’s info sets; ρ nature’s move; ui payoffs

H denotes the set of histories , satisfying the following properties
(i) The empty history ∅ is a member of H

(the ‘starting point’ of the game).
(ii) A nonempty history h∈ H consists of a (possibly infinite) sequence of actions,

h = (a1, ..., at) ∈ At for some t ∈ N ∪ {∞}.
(what has happened thus far)
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Extensive-Form Games

Definition

Extensive-form game: Γ = ⟨I,A,H,H, ρ, u⟩ where
I players; A actions; H histories; Hi i’s info sets; ρ nature’s move; ui payoffs

H denotes the set of histories , satisfying the following properties
(iii) If, for n ∈ N ∪ {∞}, (aℓ)

n
ℓ=1 ∈ H, then, for any positive integer m < n, (aℓ)

m
ℓ=1 ∈ H.

A (proper) subhistory h′ of history h = (a1, ..., at) is a sequence of actions
h′ = (a′1, ..., a′s) such that s ≤ (<)t and an = a′n for n = 1, ..., s
(if a given seq of n actions is a feasible history, then so are its subhistories).

(iv) If (aℓ)
∞
ℓ=1 is such that, for every n ∈ N, (aℓ)

n
ℓ=1 ∈ H, then (aℓ)

∞
ℓ=1 ∈ H

(if all finite subhistories are feasible histories, then so is the history).
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Extensive-Form Games

Definition

Extensive-form game: Γ = ⟨I,A,H,H, ρ, u⟩ where
I players; A actions; H histories; Hi i’s info sets; ρ nature’s move; ui payoffs

H denotes the set of histories
A history h ∈ H is said to be a terminal history if (a) (h, a) /∈ H for any a ∈ A;
or (b) it is an infinite sequence of actions.

The set of terminal histories is denoted by T ⊂ H. Terminal history ≡ Outcome.
A history which is not terminal (h ∈ H \ T) is called a nonterminal history.
(Q: why don’t we just do H = all possible sequences of actions from A?)
The set of feasible actions following nonterminal history h is defined as
A(h) := {a ∈ A | (h, a) ∈ H}.

Gonçalves (UCL) 14. Extensive-Form Games and Equilibrium Refinements 7



Extensive-Form Games

Definition

Extensive-form game: Γ = ⟨I,A,H,H, ρ, u⟩ where
I players; A actions; H histories; Hi i’s info sets; ρ nature’s move; ui payoffs

H := {Hi}i∈I∪{0}, where Hi denotes player i’s information sets or information partition
(including nature) , satisfying the following properties:

(i) Hi ∈ Hi is an information set; consists of a subset of nonterminal histories,
Hi ⊆ H \ T.

(ii) The set of all players information sets (including nature) ∪i∈I∪{0}Hi determines a
partition over the set of all nonterminal histories i.e.,
(a) any two information sets are disjoint (H̃ ∩ Ĥ = ∅, ∀H̃, Ĥ ∈ ∪i∈I∪{0}Hi); and
(b) the union of all information sets of all players (including nature) corresponds
to the set of nonterminal histories (H \ T = ∪i∈I{H̃i ∈ Hi}).
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Extensive-Form Games

Definition

Extensive-form game: Γ = ⟨I,A,H,H, ρ, u⟩ where
I players; A actions; H histories; Hi i’s info sets; ρ nature’s move; ui payoffs

H := {Hi}i∈I∪{0}, where Hi denotes player i’s information sets or information partition
(including nature) , satisfying the following properties:

(i) Hi ∈ Hi is an information set; consists of a subset of nonterminal histories,
Hi ⊆ H \ T.

(ii) The set of all players information sets (including nature) ∪i∈I∪{0}Hi determines a
partition over set of all nonterminal histories.
In general, nature’s information sets are singletons, corresponding to a single
history.

(iii) For any two histories belonging to the same information set, h, h′ ∈ Hi ∈ Hi, the
set of feasible actions is the same, A(h) = A(h′) =: A(Hi).
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Extensive-Form Games

Definition

Extensive-form game: Γ = ⟨I,A,H,H, ρ, u⟩ where
I players; A actions; H histories; Hi i’s info sets; ρ nature’s move; ui payoffs

H := {Hi}i∈I∪{0}, where Hi denotes player i’s information sets or information partition
(including nature)
Idea: Hi represents what player i knows.
Two histories are in same info set = player i cannot distinguish between them.
After sequence of actions h = (a1, a2, ..., at) ∈ Hi, player i knows some history in Hi
was played, but cannot observe which.

That is why player i has to choose the same action following all histories in the
same info set h ∈ Hi.

When does each player move?: Player i moves following each history h that
belongs to some information set Hi ∈ Hi.
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Extensive-Form Games

Definition

Extensive-form game: Γ = ⟨I,A,H,H, ρ, u⟩ where
I players; A actions; H histories; Hi i’s info sets; ρ nature’s move; ui payoffs

H := {Hi}i∈I∪{0}, where Hi denotes player i’s information sets or information partition
(including nature)
A(Hi) := A(h); denote set of feasible actions after any history in information set Hi.
If, following two different histories belonging to the same information set, player i
had different actions available, then would be able to distinguish between the
histories.
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Extensive-Form Games

Definition

Extensive-form game: Γ = ⟨I,A,H,H, ρ, u⟩ where
I players; A actions; H histories; Hi i’s info sets; ρ nature’s move; ui payoffs

H := {Hi}i∈I∪{0}, where Hi denotes player i’s information sets or information partition
(including nature)

Game is of (im)perfect information if (not) all information sets are singletons.

Game is of perfect recall if players don’t forget (i) what they know nor (ii) which actions
they take. Formally,

(1) If h ∈ Hi, then for any proper subhistory h′ of h, h′ /∈ Hi.
(2) Let h, h′ ∈ Hi, and take any h̃, h̃′ ∈ H̃i that are subhistories of h and h′, resp.,

belonging to the same information set of player i.
Then (h̃, a) is a subhistory of h if and only if (h̃′, a) is a subhistory of h′.
(Player must remember action taken at info set H̃i.)
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Extensive-Form Games

Definition

Extensive-form game: Γ = ⟨I,A,H,H, ρ, u⟩ where
I players; A actions; H histories; Hi i’s info sets; ρ nature’s move; ui payoffs

ρ: function that associates each of nature’s info sets H0 ∈ H0 with a prob. measure
over set of feasible actions following any history h ∈ H0, ρ(H0) ∈ ∆(A(H0)).
Nature moves after any h that belongs to some information set H0 ∈ H0.
ρ determines what nature does at each information set.
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Extensive-Form Games

Definition

Extensive-form game: Γ = ⟨I,A,H,H, ρ, u⟩ where
I players; A actions; H histories; Hi i’s info sets; ρ nature’s move; ui payoffs

u := (ui)i∈I, where each ui represents player i’s payoff function, ui : T → R

Payoffs realise after terminal histories.
We will assume that ui corresponds to a von-Neumann–Morgenstern utility
function (Bernoulli index) representing preferences of player i over terminal
histories.
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Representing Extensive-Form Games

Game tree: nodes, edges, and information sets
Nodes: each node corresponds to a different history
Root: empty history, ‘starting point’ of the game
Terminal nodes: terminal histories; typically labeled with players’ payoffs
Non-Terminal nodes: correspond to non-terminal histories; nodes/histories at
which a player makes a choice
Only one player makes a choice at any given node/following any given history

Edges: correspond to different actions the player choosing may take; typically
labeled with the name of the corresponding actions

Information sets: correspond to histories a given player is unable to distinguish
between; typically labeled with the name of the player that is choosing/active
Represented by grouping of non-terminal nodes (circling them, dashed lines)
The same player choosing at any node/history in the same information set

Definition in MGW and notes: literal definition of a game tree representation of a finite
extensive-form game. Equivalent for finite games.
History-based definition in Osborne & Rubinstein (1) more meaningful, (2) more
versatile (easy to accommodate infinitely repeated games)
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Perfect Information
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Imperfect Information
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Extensive-Form Games

Strategies in Extensive-form Games
At each Hi ∈ Hi, player i’s feasible actions are A(Hi).
(Pure) Strategy for player i: si : Hi → A such that si(Hi) ∈ A(Hi)
A (pure) strategy of player i specifies a full contingent plan: which feasible action
player i chooses at each information set.

Think about it as delegating decision to a representative
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What are the histories/info sets/strategies/actions?
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What are the histories/info sets/strategies/actions?
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Extensive-Form Games

Strategies in Extensive-form Games
At each Hi ∈ Hi, player i’s feasible actions are A(Hi).
(Pure) Strategy for player i: si : Hi → A such that si(Hi) ∈ A(Hi)
A (pure) strategy of player i specifies a full contingent plan: which feasible action
player i chooses at each information set.

Think about it as delegating decision to a representative
In games without nature moves,
a pure strategy profile (si)i∈I induces a unique terminal history
(multiple pure strategy profiles may induce the same terminal history).

In general (with nature moves, randomness),
a pure strategy profile induces a distribution over terminal histories.
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What are the histories/info sets/strategies/actions?

A

B

B

(2, 2)

(1, 3)
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H

h

l
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h

l

Strategies: SA = {H, L}, SB = { (h|H, h|L) , (l|H, h|L) , (l|H, h|L) , (l|H, l|L) }

Both (H, (h|H, h|L)) and (H, (h|H, l|L)) induce terminal history Hh
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Extensive-Form Games

Strategies in Extensive-form Games
Mixed Strategy for player i: distribution over pure strategies, σi ∈ ∆(Si) =: Σi.
Behavioural Strategy for player i: distribution over actions at each information set,

λi : Hi → ∆(A) such that λi(Hi)(a) = 0 ∀a /∈ A(Hi).
(Can only randomise over strategies that are feasible at Hi).

Both mixed and behavioural strategies induce distributions over terminal histories.

Terminology
Degenerate mixed strategy: ∃si : σi(si) = 1; mixed strategies subsume pure.
Non-Degenerate mixed strategy: ∄si : σi(si) = 1; same as pure strategy; mixed
subsume pure.

Fully mixed strategy: ∀si : σi(si) > 0.
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What are the histories/info sets/strategies/actions?
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Strategies: SA = {H, L}, SB = {(h|H, h|L), (l|H, h|L), (h|H, l|L), (l|H, l|L)}.

σA(H) = 1/3, σB((h|H, h|L)) = 1/4, σB((l|H, h|L)) = 3/4.
Pσ(Hh) = σA(H)(σB((h|H, h|L)) + σB((h|H, l|L))) = 1/3(1/4 + 0) = 1/12.
Pσ(Hl) = σA(H)(σB((l|H, h|L)) + σB((l|H, l|L))) = 1/3(0 + 3/4) = 3/12.
Pσ(Lh) = σA(L)(σB((h|H, h|L)) + σB((l|H, h|L))) = 2/3(1/4 + 3/4) = 2/3.
Pσ(Ll) = σA(L)(σB((h|H, l|L)) + σB((l|H, l|L))) = 2/3(0 + 0) = 0.

λA(∅)(H) = 1/3, λB(H)(h) = 1/4, λB(L)(h) = 1.
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Extensive-Form Games

Strategies in Extensive-form Games
Mixed Strategy for player i: distribution over pure strategies, σi ∈ ∆(Si).
Behavioural Strategy for player i: distribution over actions at each information set,

λi : Hi → ∆(A) such that λi(Hi)(a) = 0 ∀a /∈ A(Hi).
(Can only randomise over strategies that are feasible at Hi.)

Both mixed and behavioural strategies induce distributions over terminal histories

Theorem (Kuhn’s Theorem)

For finite extensive-form gameswith perfect recall, everymixed strategy of a player has
an outcome-equivalent behavioural strategy and vice-versa.

To an extent, can use mixed and behavioural strategies interchangeably.

Note: What OR call Kuhn’s theorem (Prop 99.2) is known as Zermelo’s theorem (later).
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Nash Equilibria in Extensive-Form Games

A strategy profile σ = (σi)i∈I maps to a distribution over terminal histories h ∈ T.

Although ui : T → R, we can unambiguously write ui : S → R

(just as in normal-form games).

We also extend payoffs to mixed strategy profiles as before,
ui(σ) :=

∑
s∈S(

∏
j∈I σj(sj))ui(s).

Definition

A Nash equilibrium of an extensive-form game Γ = ⟨I,A,H,H, ρ, u⟩ is a strategy profile
σ ∈ Σ such that for every player i ∈ I

ui(σi,σ–i) ≥ ui(σ
′
i ,σ–i) ∀σ

′
i ∈ Σi.

Leverage already known existence results:

Proposition

Every finite (|H| < ∞) extensive-form game has a Nash equilibrium, possibly in mixed
strategies.
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From Extensive- to Normal-form

A

B

B

(2, 2)

(1, 3)
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H
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h
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Player B
h|H, h|L l|H, h|L h|H, l|L l|H, l|L

Player A H 2,2 1,3 2,2 1,3
L 3,1 3,1 0,0 0,0
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The Problem of Credibility

E

I

(–3, –1)

(2, 1)

(0, 2)

e

f

a

x

Figure: Entry Game in Extensive-form

Incumbent
fight accommodate

Entrant enter -3,-1 2,1
x enter 0,2 0,2

Figure: Entry Game in Normal-form
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The Problem of Credibility

Incumbent
fight accommodate

Entrant enter -3,-1 2,1
x enter 0,2 0,2

Figure: Entry Game in Normal-form

PSNE: (x, f) and (e, a).

NE? (σE(e),σI(a)) {(0, p), p ∈ [0, 3/5]} ∪ {(1, 1)}.
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The Problem of Credibility

E

I

(–3, –1)

(2, 1)

(0, 2)

e

f

a

x

Figure: Entry Game in Extensive-form

PSNE: (x, f) and (e, a).

But... (x, f) supported by I’s threat of figthing if E enters
Is this really credible? Not really.
Conditional on the entrant having entered, the incumbent is strictly better off
accommodating.

Foreseeing this, entrant would choose to enter.
Incumbent is threatening to play f , but threat not credible.
(Note importance of having specified a full contingent plan!)
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Subgames

Definition

A subgame of an extensive-form game Γ = ⟨I,A,H,H, ρ, u⟩ is another extensive-form
game Γ(h) = ⟨I,A,Hh,H(h), ρh, uh⟩ such that

(i) ∃Hi = {h} ∈ Hi s.t. Hh = {h′ | h is subhistory of h′ ∈ H}; (ii) Hh
i ⊆ Hi ∀i ∈ I;

(iii) ρ
h(H0) = ρ(H0) for all H0 ∈ H0; and (iv) uhi (h

′) = ui(h′) for all h ∈ Th.

For simplicity, write Γ(h) for subgame starting following history h.

(i) states that we start a subgame starts at a singleton information set of the game and
includes all histories ‘starting from there’; this implies that Th = T ∩ Hh;

(subgame includes all its successors and nothing more)

(ii) implies subgames don’t ‘cut across’ information sets
(players know they are playing the subgame);

(iii) says nature moves the same way in the subgame as in the original game; and

(iv) means that payoffs over the subgame’s terminal histories are the same as in the
original game.
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Subgames

Definition

A subgame of an extensive-form game Γ = ⟨I,A,H,H, ρ, u⟩ is another extensive-form
game Γ(h) = ⟨I,A,Hh,H(h), ρh, uh⟩ such that

(i) ∃Hi = {h} ∈ Hi s.t. Hh = {h′ | h is subhistory of h′ ∈ H}; (ii) Hh
i ⊆ Hi ∀i ∈ I;

(iii) ρ
h(H0) = ρ(H0) for all H0 ∈ H0; and (iv) uhi (h

′) = ui(h′) for all h ∈ Th.

Remark

Let Γ be an extensive-form game.
(1) Γ = Γ(∅).

(2) Γ is a subgame of itself.

(3) Any subgame of Γ is an extensive-form game.

(4) If Γ is finite (|H| < ∞), then it has finitely many subgames.
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How Many Subgames?
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How Many Subgames?
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How Many Subgames?

P1

(2, 0, 0)b

P2
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Gonçalves (UCL) 14. Extensive-Form Games and Equilibrium Refinements 35



How Many Subgames?
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How Many Subgames?
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Subgames

Definition

A subgame of an extensive-form game Γ = ⟨I,A,H,H, ρ, u⟩ is another extensive-form
game Γ(h) = ⟨I,A,Hh,H(h), ρh, uh⟩ such that

(i) ∃Hi = {h} ∈ Hi s.t. Hh = {h′ | h is subhistory of h′ ∈ H}; (ii) Hh
i ⊆ Hi ∀i ∈ I;

(iii) ρ
h(H0) = ρ(H0) for all H0 ∈ H0; and (iv) uhi (h

′) = ui(h′) for all h ∈ Th.

Remark

Let G be the set of all subgames of Γ and let ≥g⊆ G2 :
Γ(h) ≥g Γ(h′) iff Γ(h′) is a subgame of Γ(h).

(1) G is nonempty for any Γ.

(2) ≥g is a partial order (reflexive, transitive, antisymmetric).

(Is (G,≥g) a lattice?)

(2) ∀Γ(h),Γ(h′) ∈ G : Γ(h) ∨g Γ(h′) exists and is in G.

Also: Γ(h) ∧g Γ(h′) exists iff Γ(h) ≥g Γ(h′) or vice-versa.
(G,≥g) is not a lattice.
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Refining Nash Equilibria in Extensive-Form Games: Subgame Perfection

Definition

A subgame-perfect Nash equilibrium (SPNE) of an extensive-formgameΓ is a strategy
profile σ that induces a Nash equilibrium in every subgame of Γ.

The whole game is a subgame of itself =⇒ an SPNE is an NE.
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Backward Induction

A

B

B

(2, 2)

(1, 3)

(3, 1)

(0, 0)

H

h

l

L
h

l

Backward Induction:
Main gist: start with terminal nodes/histories, pick payoff-maximising actions, and
work your way backward

PSNE: {(H, (l|H, l|L)), (L, (h|H, h|L)), (L, (l|H, h|L))}
PSNE of subgame starting at H: l; PSNE of subgame starting at L: h
PS-SPNE: {(L, (l|H, h|L))}
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Backward Induction

Definition (Backward Induction)

Let G0 := ∅, G0 := ∅, and G1 := argmin≥g
G \ G0.

∀k ∈ N

– Define Gk := Gk–1 ∪ Gk–1 and Gk := argmin≥g
G \ Gk.

– ∀Γ
′ ∈ Gk , pick a PSNE s′ such that its implied behavioural strategies λ

′ are, at
any information set, consistent with those fixed at any Γ

′′ ∈ Gℓ ∀ℓ < k where
Γ
′′ is a subgame of Γ

′.

s is obtained by backward induction if it results from the above procedure.

For any finite extensive-form game of perfect information, there is a strategy profile
obtained by generalised backward induction.
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Nash Equilibria in Extensive-Form Games

Theorem (Zermelo’s Theorem)

Let Γ be a finite (|H| < ∞) extensive-form game of perfect information.
(1) Any s obtained by backward induction is a PSNE.

(2) ∃ PSNE s that can be obtained by backward induction.

(3) If no player has the same payoffs at any two terminal histories, then backward
induction results in a unique strategy profile s.
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Generalised Backward Induction

P1

(2, 0, 0)b

P2
t

P3
u

P3
d

(1, 2, –1)
l

(3, 3, 3)r

(0, 1, 2)l

(0, 1, 1)
r

Generalised Backward Induction:
Main gist: start with subgames ‘closest’ to terminal nodes/histories, pick a NE in
the subgame, and work your way backward

In this case, (u, r) is the unique NE of the only proper subgame
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Generalised Backward Induction

Definition (Generalised Backward Induction)

Let G0 := ∅, G0 := ∅, and G1 := argmin≥g
G \ G0.

∀k ∈ N

– Define Gk := Gk–1 ∪ Gk–1 and Gk := argmin≥g
G \ Gk.

– ∀Γ
′ ∈ Gk , pick a PSNE σ

′ such that its implied behavioural strategies λ
′ are, at

any information set, consistent with those fixed at any Γ
′′ ∈ Gℓ ∀ℓ < k where

Γ
′′ is a subgame of Γ

′.

σ is obtained by backward induction if it results from the above procedure.

For any finite extensive-form game of perfect information, there is a strategy profile
obtained by generalised backward induction.
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Refining Nash Equilibria in Extensive-Form Games: Subgame Perfection

Definition

A subgame-perfect Nash equilibrium (SPNE) of an extensive-formgameΓ is a strategy
profile σ that induces a Nash equilibrium in every subgame of Γ.

Theorem

Let Γ be a finite (|H| < ∞) extensive-form game.
(1) s is PS-SPNE if and only if it can be obtained by backward induction.

(2) σ is SPNE if and only if it can be obtained by generalised backward induction.

Corollary

Let Γ be a finite (|H| < ∞) extensive-form game.
(1) Γ has an SPNE.

(2) If Γ is of perfect information, then Γ has PS-SPNE.

(3) If Γ is of perfect information and no player has the same payoffs at any two ter-
minal histories, then ∃! SPNE. Furthermore, it is in pure strategies.
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Overview

1. Why Extensive-Form Games?

2. Extensive-Form Games

3. Nash Equilibrium in Extensive-Form Games

4. Subgame-Perfect Nash Equilibrium

5. Applications
– Alternating Bargaining
– Centipede

6. Beliefs and Sequential Rationality

7. Weak Perfect Bayesian Equilibrium

8. Sequential Equilibrium

9. More



Alternating Bargaining

How to divide surplus?
Surplus generated by work, investment, trade, etc.
Nash (1950 Ecta) bargaining solution: outcome of axiomatic characterisation of
desirable properties is simply to split it in half.
Can accommodate varying bargaining power, multiple players, etc.

Rubinstein (1982 Ecta): provide noncooperative foundation to Nash (1950 Ecta)
bargaining solution.
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Alternating Bargaining

Setup
- Two players, 1 and 2, bargain over the split of £v > 0.
- Up to T (odd) periods of bargaining.
- Both players discount payoffs at a rate δ ∈ (0, 1) per period.
- Conditional on bargaining continuing up to period t, Player i gets to propose a split

bt ∈ [0, v], which the opponent can accept or reject, where i = 1 if t is odd and
i = 2 if otherwise.

- If the opponent accepts, the game ends; proposer gets δ
t–1(v – bt), and the

opponent δ
t–1bt.

- If the opponent rejects, the game moves on to the next period t + 1 if t < T, or it
ends if t = T, in which case both players get zero.

- Strategies are complicated, as they can depend on the whole observed history.
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Alternating Bargaining

Backward Induction
- If T = 1, this is just an ultimatum game; same for t = T.
- At period T, Player 2 accepts if bT > 0; if bT = 0, Player 2 is indifferent.
- The unique SPNE in any subgame that reached period T is to have Player 1

proposing bT = 0 and Player 2 accepting iff bT ≥ 0.
- ∀bT > 0, Player 2 strictly prefers accepting over rejecting; hence Player 1 strictly

prefers proposing 1
2bT to get a higher share.

- Players accrue payoffs δ
T–1(v,0).
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Alternating Bargaining

Backward Induction
- At any subgame starting at period T – 1, Player 1 is willing to accept bT–1 iff

δ
T–2bT–1 ≥ δ

T–1v ⇐⇒ bT–1 ≥ δv.
Otherwise, would prefer to reject and move to the next period and get the chance
to propose.

- By similar argument, the unique SPNE in this subgame is to have Player 2 offering
exactly

bT–1 = δv.
(This is but a sketch of the argument; requires a proper proof.)

- Payoffs are

(δT–1v, δT–2(1 – δ)v).
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Alternating Bargaining

Backward Induction
- At any subgame starting at period T – 2, the unique SPNE in the subgame has

Player 1 proposing a split that Player 2 accepts while indifferent between
accepting and rejecting.

δ
T–3bT–2 = δ

T–2(1 – δ)v ⇐⇒ bT–2 = δ(1 – δ)v.

- Payoffs are

δ
T–3((1 – δ + δ

2)v, (δ – δ
2)v).
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Alternating Bargaining

Backward Induction
- Iterating backward (via induction argument), at any t ∈ [T – 1], the proposer

suggests a split

bT–t =
t∑

ℓ=1
(–1)ℓ–1δℓv = δ

1 – (–1)tδt

1 + δ
v

and, opponent accepts iff

bT–t ≥ vδ
1 – (–1)tδt

1 + δ
.

- SPNE payoffs for the whole game are then

(v – b1, b1) = v

(
1 – δ + (–1)Tδ

T

1 + δ
, δ + (–1)Tδ

T

1 + δ

)
= v

(
1 + δ

T

1 + δ
, δ – δ

T

1 + δ

)
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Alternating Bargaining

Insights
1. Unique SPNE!
2. No delay: a solution is reached immediately.
3. First and last propose confers advantage: Player 1 gets larger share of fixed

resource.
As T → ∞, equilibrium payoffs are given by

(
v 1
1+δ

, v δ

1+δ

)
.

4. Patience pushes in favor of the last proposer; impatience, of the first.

Significance
Bread-and-butter of IO, macro-labour, etc.
Nash-in-Nash bargaining (when there are many parties negotiating at once); see
Horn & Wolinsky (1988 RAND).

E.g., vertical integration health care market: Grennan 2013 AER; Ho & Lee 2017
Ecta.

Recent innovations: Noncooperation foundation by Collard-Wexler, Gowrisankaran,
& Lee (2019 JPE).
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Centipede Game

1) 2) 1) 2) 1) 2)

1,1" 0,3" 2,2" 97,100" 99,99" 98,101"

100,100"

s$

w$

s$

w$

s$

w$

s$

w$

s$

w$

s$

w$

Setup
- Two players 1 and 2 take turns in choosing whether to continue or to stop
- Player 1 moves first; Player 2 moves after Player 1 provided Player 1 decided to

continue, and vice-versa
- The game reaches a terminal node if either player decides to stop, or after each

player decided to continue T times
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Centipede Game

1) 2) 1) 2) 1) 2)

1,1" 0,3" 2,2" 97,100" 99,99" 98,101"

100,100"

s$

w$

s$

w$

s$

w$

s$

w$

s$

w$

s$

w$

Setup. Payoffs are given as follows:
- Each player start with £1 in their pile
- Every time each player decides to continue, £1 is deducted from their pile and £2

are added to their opponents
- Their payoff equals the amount of money they have in their pile at the time they

reach a terminal node
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Centipede Game

1) 2) 1) 2) 1) 2)

1,1" 0,3" 2,2" 97,100" 99,99" 98,101"

100,100"

s$

w$

s$

w$

s$

w$

s$

w$

s$

w$

s$

w$

Setup
Ai := {0, 1}, Si := AT

i , si = (ai,t)t∈[T]
Writing payoffs formally is cumbersome... Let a1,0 = a2,0 = 1.

u1(s1, s2) := 1 + 2
∑
t∈[T]

∏
ℓ∈[t]

a1,ℓa2,ℓ

 –
∑
t∈[T]

∏
ℓ∈[t]

a1,ℓa2,ℓ–1

 .

u2(s1, s2) := 1 + 2
∑
t∈[T]

∏
ℓ∈[t]

a1,ℓa2,ℓ–1

 –
∑
t∈[T]

∏
ℓ∈[t]

a1,ℓa2,ℓ

 .
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Centipede Game

Analysis
- The last subgame has Player 2 can either decides between continuing and getting

£1 + T – 1 and stopping and getting £1 + T; then, by backward induction, a2,T = 0.
- Then, as Player 2 stops in the last subgame, Player 1 prefers to stop and get

£1 + T – 1, rather then continuing and get £1 + T – 1 – 1.
- Iterating backward, we’ll find that the unique subgame perfect equilibrium has both

players always stopping and getting £1!

Zermelo’s theorem: no two terminal histories with the same payoff, hence unique SPNE,
obtained by backward induction
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Centipede Game

1) 2) 1) 2) 1) 2)

.4,.1" .2,.8" 1.6,.4" .8,3.2" 6.4,1.6" 3.2,12.8"

25.6,6.4"

s$

c$

s$

c$

s$

c$

s$

c$

s$

c$

s$

c$

according to the SPE), we will observe only the Örst move by player 1.
But this is not what is observed in an experiment. (And the question
needs addressing even if one doesnít care about real choices, because
even the theory needs to be consistent with o§-equilibrium beliefs.) The
following Ögure shows the implementation of the centipede game as an
experiment (McKelvey and Palfrey, 1992), and the subsequent Ögure
shows the histogram of periods where the experimental subjects stopped
the game. As the Ögure shows, the empirical distribution of stopping
periods is far away from the theoretical prediction, that everyone stops.

Experimental implementation of the centipede game

Experimental results (McKelvey and Palfrey, 1992)

We see that at least in this example, backward induction generates
a wrong prediction. Two approaches can be cited that address this

40

Payoff frequencies (McKelvey & Palfrey 92 Ecta)
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Centipede Game

Why?
- Monetary payoffs don’t capture how players evaluate the outcome

This doesn’t dent at the theory then: we just have the wrong payoff function.
- People may have limited foresight (inability to reason many steps ahead) and rely

on heuristics.
Forward-looking behaviour often requires considering many contigencies,
making issues fairly complicated.
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Centipede Game SEPTEMBER 20091620 THE AMERICAN ECONOMIC REVIEW

It actually turns out that it is not rationality, nor even mutual knowledge of rationality, but com-
mon knowledge of rationality that implies the backward induction outcome. Indeed, Aumann 
(1995) formalizes a notion of rationality in perfect information games that allows him to make 
this statement precise.3 However, he also concedes that common knowledge of rationality “is an 
ideal condition that is rarely met in practice” (18), and further contends that if this condition is 
absent, the backward induction outcome need not emerge. In particular, he stresses that in the 
centipede game even the smallest departure from common knowledge of rationality may induce 
rational players to depart significantly from equilibrium play.

In the next section we review the empirical evidence in this game. Consistent with intuition, 
a number of experimental studies conducted with college students have documented systematic 
departures from the backward induction outcome, typically finding that almost no subjects stop 
at the first opportunity, even after they have played several repetitions of the game. Further, these 
studies often conjecture that various forms of social preferences, limited cognition, or failures of 
backward induction reasoning play an important role in explaining why the equilibrium outcome 
is rarely observed in the lab.

In this paper we depart from previous experimental studies in the subject pool we consider. We 
first identify subjects who are very likely characterized by a high degree of rationality, namely 
expert chess players. These players devote a large part of their life to finding optimal strategies 
for innumerable chess positions using backward induction reasoning. More important, one can 
safely say that it is common knowledge among most humans that chess players are highly famil-
iar with backward induction reasoning. Our purpose is to use these subjects to study the extent 
to which knowledge of an opponent’s rationality is a key determinant of the predictive power 
of subgame-perfect equilibrium in this game. By varying the “closeness” to common knowl-
edge of rationality across different experimental treatments, we design a test that can separate 
the hypothesis of the epistemic literature on rationality from that of social preferences. More 
precisely, social preferences would imply that the results are roughly the same across different 
treatments, while the epistemic approach would suggest the results to be closer to equilibrium 
the “closer” we are to common knowledge of rationality. We investigate this question both in a 
field and in a lab experiment.

Our first experiment takes place in the field, where chess players were matched with each other 
at various chess tournaments. Each chess player participated in the experiment only once, play-
ing only one round of the centipede game. Our second and main experiment takes place in a lab 

3 Using a different formalization, Reny (1993) shows that the backward induction outcome may fail to occur even if 
there is common knowledge of rationality at the beginning of the game. See also Ben-Porath (1997) and Asheim and 
Dufwenberg (2003).

	 Continue	 Continue	 Continue	 Continue	 Continue	 Continue	

	 Stop	 Stop	 Stop	 Stop	 Stop	 Stop

a  ​​ 
4   
1
 ​​  b a  ​​ 

2   
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 ​​  b a  ​​ 

16   
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 ​​  b a  ​​ 

8   
32​​  b a  ​​ 

64   
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 ​​  b a  ​​ 
32   

128​​  b

a​​
 256   
64

 
​
​ b

Figure 1. A Centipede Game

(Palacios-Huerta & Volij 09 AER)
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choice. For the participants holding no chess titles, the proportion is 61 percent. For Federation 
Masters and International Masters the proportions are 73 percent and 76 percent, respectively. 
If we restrict our attention to Grandmasters, the proportion is a remarkable 100 percent. It is 
interesting to note that these proportions increase with the Elo rating of the players. A possible 
interpretation of this pattern is that the ideal condition of common knowledge of rationality is 
more closely approximated as the quality of the chess players increases.

An increase in the implied stop probabilities pi with the rating of the players is also found for 
those Players 2 for whom we observe their behavior. There are 48 players with no title, 3 FMs, 
10 IMs, and 5 GMs who were given the chance to take an action in node 2. Table 3 shows that 
the proportion that stop immediately (that is, in node 2) is 58.3 percent, 66.6 percent, 90 percent, 
and 100 percent, respectively.
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(Palacios-Huerta & Volij 09 AER)
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Centipede Game

VOL. 99 NO. 4 1627Palacios-Huerta and Volij: Field Centipedes

choice. For the participants holding no chess titles, the proportion is 61 percent. For Federation 
Masters and International Masters the proportions are 73 percent and 76 percent, respectively. 
If we restrict our attention to Grandmasters, the proportion is a remarkable 100 percent. It is 
interesting to note that these proportions increase with the Elo rating of the players. A possible 
interpretation of this pattern is that the ideal condition of common knowledge of rationality is 
more closely approximated as the quality of the chess players increases.

An increase in the implied stop probabilities pi with the rating of the players is also found for 
those Players 2 for whom we observe their behavior. There are 48 players with no title, 3 FMs, 
10 IMs, and 5 GMs who were given the chance to take an action in node 2. Table 3 shows that 
the proportion that stop immediately (that is, in node 2) is 58.3 percent, 66.6 percent, 90 percent, 
and 100 percent, respectively.
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Chess players stop earlier, and the earlier the higher their ranking.

(Palacios-Huerta & Volij 09 AER)
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Centipede Game
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The main conclusions that we can draw from our field experiments are that (i) chess players 
tend to play very differently from college students, and that (ii) a significant majority of chess 
players chose the only action that is consistent with equilibrium.13 These results are consistent 
with the idea that chess players represent a unique subject pool with many levels of mutual 
knowledge of rationality. Further, the fact that their initial responses are so close to equilibrium 
certainly boosts our confidence in a theory that gives a central role to the principles of self-
interested rational economic agents and to their assessments of the rationality of their opponents. 
Motivated by these findings, we turn next to our main experiment.

III. The Laboratory Experiment

The objective of this experiment is to study whether players’ assessments of their opponents’ 
rationality is a key determinant of whether the subgame-perfect equilibrium is a good predic-
tor of behavior. The experiment takes place in a laboratory setting where we match both chess 
players and students with either chess players or students in four different treatments, depending 
on the order of play. The treatment where we match students with students is useful simply to 
replicate the main results obtained in previous experiments. The treatment where we have chess 
players facing chess players is a complement of the initial field experiment studied earlier since, 
by allowing learning and experimentation, one can observe whether chess players converge to 
the equilibrium outcome. The two treatments where we have students face chess players are the 
most important ones. The fact that most people should not be surprised that chess players are 
good at backward induction and that, indeed, as evidenced by the previous section, they tend to 
play according to it, is what renders the matching between students and chess players a powerful 
tool. If knowledge of an opponent’s rationality is an important determinant of one’s behavior, 
then students should alter their behavior compared to the situation where they face another stu-
dent. Likewise, to the extent that chess players may be less confident on the rationality of students 
than on the one displayed by other chess players, they should also alter their behavior relative to 
the situation where they face another chess player.14

13 Equilibrium predictions are about stationary situations, and not about initial responses. Thus, not surprisingly, 
the equilibrium strategies are not best responses to the observed behavior. Player 1’s best response to the population 
frequencies is to continue in the first two nodes, and Player 2’s best response is to continue in his first node and to stop 
in his second node.

14 Although chess players conform rather closely to the equilibrium predictions in the field experiment, it is certainly 
possible that they were playing a different game than the one the experimenter has created. Perhaps they do not intend 
so much to maximize their monetary reward as to “beat” their opponent. That is, chess players may like to win, and 

Table 3—Chess Players: Implied Stop Probabilities at Each Terminal Node

 p1 p2 p3 p4  p5 p6 p7

Grandmasters 1.00 1.00 — — — — —
(26) (5)

International Masters 0.76 0.90 1.00 — — — —
(29) (10) (2) 

Federation Masters 0.73 0.66 1.00 — — — —
(15) (3) (1)

Other chess players 0.61 0.58 0.73 0.80 1.00 — —
(141) (48) (19) (5)  (1)

Note: The number of players observed making a decision (stop or continue) at each node is in parentheses.

(Palacios-Huerta & Volij 09 AER)
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Centipede Game

Why?
- Monetary payoffs don’t capture how players evaluate the outcome

This doesn’t dent at the theory then: we just have the wrong payoff function.
- People may have limited foresight (inability to reason many steps ahead) and rely

on heuristics.
Forward-looking behaviour often requires considering many contigencies,
making issues fairly complicated.

- How soon they stop depends on their beliefs on their opponent’s strategic
sophistication.
Stop later the less strategically sophisticated they perceive their opponent.
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Very few subjects (3 percent) stop immediately, and over 60 percent stop at nodes 3 or 4.17 The 
way that students play, however, drastically changes when they are informed that they are play-
ing against chess players. When they take up the role of Player 1 (Treatment II), the proportion 
of observations ending in terminal node 1 (30 percent) is ten times greater than when they play 
against a student, and even after two moves the implied stop probability, 0.61, is 50 percent 
greater than when they play against students, 0.42. Likewise, when they take up the role of 
Player 2 (Treatment III) the distribution of games across the resulting terminal nodes is stochasti-
cally dominated by the distribution corresponding to the first treatment.

The main observation one can infer from these results is that college students’ behavior depends 
on whether they face a highly rational opponent or a fellow student. This dependence raises the 
question of whether students are unaware of backward induction reasoning. It seems that they 
may or may not subscribe to such reasoning depending on their beliefs about the assessed sophis-
tication and experience of their opponent.

We now turn our attention to the chess players. First, we find that when they play against other 
chess players the aggregate distribution of observations is not much different from what we found 
in the field: about 70 percent of the games end immediately. Yet, chess players, like the students, 
play drastically differently when told that they are playing against a student. The proportion of 
observations ending in the first node in Treatment IV is almost twice that observed in Treatment 
III, and the implied stop probabilities are greater in every node in Treatment IV relative to the 
case when they play against a student (nodes 1 and 3 in Treatment III, and nodes 2 and 4 in 
Treatment II).

The differences in stop probabilities are such that the distributions of the proportion of obser-
vations in both Treatments II and III are stochastically dominated by that in Treatment I, while 
the distribution in Treatment IV is dominated by those in Treatments II and III. Comparing the 
latter two treatments, chess players have a greater implied stop probability than students in three 
of the first four nodes, and the implied stop probabilities tend to increase monotonically with 
the stage of the game in every treatment and, for Treatments II and III, also for a given type of 
player.18 

Table 6 disaggregates the data into “early” plays (games 1–5) and “late” plays (games 6–10).
Consistent with past experiments, we find that for each treatment the distribution of obser-

vations in the early plays stochastically dominates that in the late plays. As in the aggregate 
data, implied stop probabilities tend to increase as we get closer to the last move in each of the 

17 Perhaps not surprisingly, as we use much greater payoffs than in past experiments, the distribution is slightly to 
the left of the corresponding McKelvey-Palfrey (1992) distribution.

18 The one possible exception to this pattern is the second node in the treatment IV, although as it will be noted later 
this is actually the result of aggregating across rounds with very different stop probabilities.

Table 4—Experimental Design for Laboratory Experiment

Subject pool Subject pool Games per Total
Treatment Player 1 (white) Player 2 (black) Session Subjects subject games

I Students Students 1 20 10 100
2 20 10 100

II Students Chess players 3 20 10 100
    4 20 10 100

III Chess players Students 5 20 10 100
6 20 10 100

IV Chess players Chess players 7 20 10 100
8 20 10 100

(Palacios-Huerta & Volij 09 AER)
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number of repetitions to learn to predict other chess players’ behavior correctly and to converge 
to equilibrium. Their behavior, therefore, is not inconsistent with the hypothesis that they satisfy 
the condition of common knowledge of rationality.

Finally, Figure 4 reports the proportion of games that ended in the first node at each round 
and for each treatment. Panel A represents the behavior of students and panel B the behavior of 
chess players.
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Figure 4. Percentage of “Stop” in Node 1 per Round

Students learn to stop earlier when playing with chess players.

(Palacios-Huerta & Volij 09 AER)
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number of repetitions to learn to predict other chess players’ behavior correctly and to converge 
to equilibrium. Their behavior, therefore, is not inconsistent with the hypothesis that they satisfy 
the condition of common knowledge of rationality.

Finally, Figure 4 reports the proportion of games that ended in the first node at each round 
and for each treatment. Panel A represents the behavior of students and panel B the behavior of 
chess players.
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Figure 4. Percentage of “Stop” in Node 1 per Round

Chess players stop earlier when playing other chess players (and the earlier the higher
their opponent’s ranking).

Also learn faster to stop earlier.

(Palacios-Huerta & Volij 09 AER)
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Credibility, Part 2

P1

P2
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P2
(–1, –1)
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e1

f
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e2 f

ax

Only one subgame: the whole game! SPNE = NE.

(x, f) SPNE, but, in a sense, it’s non-credible threat:
If incumbent is called to move, it would not be payoff maximising to choose to fight.

Want to have a way to rule out such equilibria.
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Beliefs

Definition

A belief system (or system of beliefs) in an extensive-form game Γ = ⟨I,A,H,H, ρ, u⟩
specifies, for each information set of each player,Hi ∈ Hi, a probability distribution over
the histories in that information set, µ(Hi) ∈ ∆(Hi).

E.g., for h ∈ Hi, µ(Hi)(h) determines belief that player i holds upon being called to play at
information set Hi that history h has occurred, conditional on information set Hi
having been reached (i.e. player i having been called to play at information set Hi).

When Hi = {h} contains only one history, µ(Hi)(h) = 1
(no uncertainty on what happened before)
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Sequential Rationality

Sequential rationality is a simple concept: each player, when called upon to play,
chooses best behavioural strategy given their beliefs about what has happened and
given what opponents are doing henceforth.

• µ(Hi): distribution over histories h in Hi.
• σ: induce distribution over terminal histories T.
• T |Hi : terminal histories h ∈ T s.t. ∃ history h′ ∈ Hi that is proper subhistory of h.

(i.e., terminal histories that follow from some history in Hi)
• σ |Hi : distribution over terminal histories T |Hi .
• ui |Hi : payoff function of player i restricted to T |Hi .
• E[ui(σi,σ–i) | Hi,µ]: player i’s expected payoff at information set Hi given belief

system µ and strategy profile σ.
(more properly, E[ui |Hi (σ |Hi ) | µ(Hi)], but too cumbersome to carry around Hi)
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Sequential Rationality

Definition

Strategy profile σ is sequentially rational at information set Hi given a belief system µ

if
E[ui(σi,σ–i) | Hi,µ] ≥ E[ui(σ

′
i ,σ–i) | Hi,µ]

for all σ
′
i ∈ Σi.

Strategy profile is sequentially rational given a belief system if it is sequentially rational
at all information sets given that belief system.

Beliefs matter! Different µ can lead to different strategy sequentially rational strategies
It is sequentially rational given a belief system
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Credibility, Part 2
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(x, f) SPNE, but, in a sense, it’s non-credible threat:
No belief that incumbent (P2) may hold at H2 = {e1, e2} would justify choosing to
fight if called upon to move.

Given they are at H2, a is strictly better than f for any beliefs about whether the entrant
(P1) chose e1 (µ(H2)(e1)) or e2 (µ(H2)(e2) = 1 – µ(H2)(e1)).

Never sequentially rational at H2 to choose f with positive probability.
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Credibility, Part 2
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Now (x, f) may be sequentially rational at H2 given µ, but only if

E[u2(f , x) | H2,µ] ≥ E[u2(a, x) | H2,µ] ⇐⇒ p2 + (1 – p)(–1) ≥ p0 + (1 – p)1 ⇐⇒ p ∈
[1/2, 1]
where p = µ(H2)(e1) = 1 – µ(H2)(e2).
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Restrictions on Beliefs

For simplicity, focus on case where H is finite.

Recall σ determines prob. history h (a sequence of actions) is played.

Definition

An information set Hi is reached given σ if there is a positive probability that some
history h ∈ Hi is played with strictly positive probability, P(Hi | σ) > 0

‘Off-path’: info set that is not reached according to σ.

‘On-path’: info set that is reached according to σ.
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Restrictions on Beliefs

Definition

Belief system is derived through Bayes rule whenever possible given σ if, for any
information set Hi that is reached given σ, beliefs µ(Hi) over histories in Hi equal the
distribution over histories in Hi conditional on Hi, as induced by σ.

If H is finite, belief system is derived through Bayes rule whenever possible given σ if,
whenever P(Hi | σ) > 0,

µ(Hi)(h) =
P(h | σ)
P(Hi | σ)

.

To be able to use Bayes rule, we need that, according to σ,
[prob. history h being played given some history in Hi was played] is well-defined.

With finitely many histories, amounts to some h ∈ Hi being played wp >0 given σ

(P(Hi | σ) > 0), otherwise denominator on RHS = 0 and Bayes rule is not well-defined.
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Credibility, Part 2
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Suppose σ1(e1) = 1/6, σ1(e2) = 1/3, σ1(x) = 1/2.

For µ(H2) to be derived by Bayes’ rule:

µ(H2)(e1) =
P(e1 | σ)
P(H2 | σ)

= σ1(e1)
σ1(e1) + σ1(e2)

= 1/6
1/6 + 1/3

= 1/3

and then µ(H2)(e2) = 1 – µ(H2)(e1) = 2/3.
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Credibility, Part 2
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Suppose σ1(e1) = 0, σ1(e2) = 0, σ1(x) = 1.

Then, µ(H2) cannot be derived by Bayes’ rule from σ as P(H2 | σ) = 0: H2 is never
reached given σ.
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Refining Nash Equilibrium by Sequential Rationality

Definition

Strategy profile σ and belief system µ form aweak perfect Bayesian Nash equilibrium
(wPBE) (σ,µ) of an extensive-form game Γ if

(i) σ is sequential rational given the belief sytem µ; and

(ii) the belief system µ is derived through Bayes rule whenever possible given σ.

wPBE: need to define both the strategy profile and the belief system.

Beliefs are required to be correct on-path.

Care is needed in defining mixed strategies when there a given node has uncountably
many successors; see Aumman (1964) ‘Mixed and Extensive Strategies in Infinite
Extensive Games’
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Reinterpreting Nash Equilibrium

How does wPNE relate to NE?

Proposition

σ is NE of extensive-form game Γ if and only if there is a belief system µ s.t.

(i) σ is sequential rational given the system of belief µ at all information sets that are
reached given σ; and

(ii) the belief system µ is derived through Bayes rule whenever possible given σ.

Note: (i) only require sequential rationality at information sets that are reached
(on-path), and
(ii) beliefs at information sets that are reached are correct (coincide with prob. of
history being played given σ).

To rule out non-credible threats, we strengthened (i): in wPBE sequential rationality is
required at all information sets.
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Reinterpreting Nash Equilibrium

Corollary

If (σ,µ) is wPBE of an extensive-form game Γ, then σ is NE of that same game.

wPBE’s strategy profile is NE.

Not all NE can be supported (with some belief system) as a wPBE.
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Credibility, Part 2
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(x, f) is SPNE, but, in a sense, it’s a non-credible threat:
Sequential rationality requires P2 to choose a wp1 at H2 = {e1, e2} for any belief
system µ.

Then, sequential rationality requires P1 to choose e1 wp1.
Finally, as P(H2 | (e1, a)) = 1 > 0, we have µ(H2)(e1) =

P(e1 |(e1 ,a))
P(H2 |(e1 ,a))

= 1.

Unique wPBE is ((e1, a),µ) where µ(H2)(e1) = 1.
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Credibility, Part 2
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If µ(H2)(e1) ≥ 1/2.
f is sequentially rational =⇒ P1 chooses x.
((x, f),µ) is wPBE for µ : µ(H2)(e1) ≥ 1/2.

If µ(H2)(e1) ≤ 1/2.
a is sequentially rational =⇒ P1 chooses e1.
By Bayes’ rule, µ(H2)(e1) = 1 > 1/2, contradiction!
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Credibility, Part 2
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If µ(H2)(e1) = 1/2.
P2 indifferent between f and a.
P1 chooses x if 0 ≥ max{σ2(a)3 + (1 – σ2(a))(–1),σ2(a)2 + (1 – σ2(a))(–1)}
=⇒ σ2(a) ∈ [0, 1/4].

For any σ2 : σ2(a) ∈ [0, 1/4], ((x,σ2),µ) is wPBE for µ : µ(H2)(e1) = 1/2.
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Credibility, Part 2
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If µ(H2)(e1) = 1/2.
P2 indifferent between f and a.
P1 never chooses e2 as if e2 is preferred to x: σ2(a)2 + (1 – σ2(a))(–1) ≥ 0,
then e1 is strictly preferred to both e2 and x:
σ2(a)3 + (1 – σ2(a))(–1) > σ2(a)2 + (1 – σ2(a))(–1) ≥ 0

If P1 chooses e1 with positive probability, then by Bayes’ rule µ(H2)(e1) = 1 a
contradiction!
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Credibility, Part 2
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Conclusion: wPBE are ((σ1,σ2),µ) s.t.
(i) σ1(x) = 1, σ2(a) = 0, and µ(H2)(e1) ∈ [1/2, 1];
or (ii) σ1(x) = 1, σ2(a) ∈ [0, 1/4], and µ(H2)(e1) = 1/2.
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Comparing wPBE and SPNE

We already saw a case s.t. σ is SPNE but there is no µ such that (σ,µ) is wPBE.

It is also the case that there wPBE (σ,µ) s.t. σ is not SPNE.

In general:

Remark

Strategy profile that is part of a wPBE need not be an SPNE and a SPNE need not be
part of any wPBE.
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Comparing wPBE and SPNE

P1
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l

(3, 3, 3)r

(0, 1, 2)l

(0, 1, 1)
r

(t, u, r) is unique SPNE but... (b, u, l) can be supported as wPBE.
p := µ({tu, td})(tu); P3 would choose l over r given p only if
p(–1) + (1 – p)2 ≥ p3 + (1 – p)1 ⇐⇒ 1/5 ≥ p.
Sequential rationality: P3 chooses l given p; P2 chooses u (by sequential rationality,
never chooses d); P1 chooses b.
So ∀µ({tu, td})(tu) ∈ [0, 1/5], ((b, u, l),µ) is wPBE.
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Comparing wPBE and SPNE

We already saw a case s.t. σ is SPNE but there is no µ such that (σ,µ) is wPBE.

It is also the case that there wPBE (σ,µ) s.t. σ is not SPNE.

In general:

Remark

Strategy profile that is part of a wPBE need not be an SPNE and a SPNE need be part
of any wPBE.

Proposition

In finite extensive-form games of perfect information, set of SPNE is the same as the
set of strategy profiles that can be supported as a wPBE (with some belief system).

wPBE strategy profiles and SPNE strategy profiles coincide on games of perfect
information, but not necessarily on games of imperfect information
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Perfect Bayesian Equilibrium

Why the ‘weak’ in wPBE? Because wPBE places no restrictions on beliefs in subgames
that are not reached given the equilibrium strategy profile.

We here diverge from OR in favor of a more natural definition akin to ‘subgame
perfection’.

Definition

A strategy profile σ and a belief system µ is a perfect Bayesian Nash equilibrium (PBE)
(σ,µ) of an extensive-form game Γ if it induces a wPBE in every subgame.

As a wPBE induces a NE, a PBE induces a SPNE.
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Not so Perfect PBE

N
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∀µ : µ({he, le})(he) ∈ [0, 1], ((x, x),µ) is PBE.

However, any reasonable belief would have µ({he, le})(he) = 1/2.

Problem: can get unreasonable beliefs off-path.
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Sequential Equilibrium

Definition

Strategy profileσ andbelief systemµ is sequential equilibrium (SE) (σ,µ) of an extensive-
form game Γ if

(i) σ is sequentially rational given µ;

(ii) ∃ a sequence of fully mixed strategy profiles {σn}n inducing a sequence of belief
systems µ

n derived through Bayes rule from σ
n s.t. σ

n → σ and µ
n → µ.

Differently from wPBE, SE imposes restrictions on “off-path” beliefs.

Requires beliefs be obtained as a limit of fully mixed beliefs in a way that these beliefs
are in the limit consistent with equilibrium play.
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Sequential Equilibrium

Theorem

For any finite extensive-form game there is a sequential equilibrium exists.

Proposition

A sequential equilibrium of a finite extensive-form game is also a PBE.

(σ,µ) SE =⇒ (σ,µ) PBE =⇒ (σ,µ) wPBE and σ SPNE =⇒ σ NE
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Sequential Equilibrium and Trembling-Hand Perfection

A related notion is that of extensive-form trembling-hand perfect Nash equilibrium
(ETHPE).

Interpret player choosing at any given information set as a different player.

Define normal-form game of such auxiliary game (the agent normal form of the
extensive-form game).

Solve for trembling-hand perfect Nash equilibrium of the auxiliary game.
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Sequential Equilibrium and Trembling-Hand Perfection

Proposition

Any extensive-form trembling-hand perfect Nash equilibrium can be supported as a
sequential equilibrium by some system of beliefs.

σ ETHPE =⇒ ∃µ s.t. (σ,µ) SE

If the extensive-form game is finite, then an ETHPE exists.

Note: A THPE of an extensive-form game need not be subgame perfect.
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Off-Path Behaviour and Sequential Rationality

Deviations from sequential equilibria (off-path play) may lead players to question if
opponents are sequentially rational.

Reny’s (1992 Ecta) Critique of Sequential Equilibrium: SE can rely on “unbelievable”
off-path beliefs, as players may hold beliefs that contradict reasonable inferences
about past actions.

SE may require beliefs assigning zero prob. to events that seem likely given observed
deviations.

Weak Sequential Rationality: Relaxes SE’s requirements and tries to address limitations
of SE by allowing more plausible off-path beliefs without sacrificing on-path
rationality.
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Off-Path Behaviour and Sequential Rationality

Deviations from Nash equilibrium (off-path play) may (should?) lead players to question
their model of their opponents’ behaviour.

Off-path information set could indicate an opponent’s mistake.
If an opponent made one mistake, why believe they won’t make more?

Unclear how to model this in disciplined manner.

Something to be done here!
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More

The originals: Kreps & Wilson (1982 Ecta); Reny (1992 Ecta).

Strategic Stability and Forward Induction: Fudenberg & Tirole (1991 Book, ch. 11.3);
Kohlberg & Mertens (1986 Ecta); Govindan & Wilson (2009 Ecta).

Reputation and Bargaining: Rubinstein (1982 Ecta); Kreps (1982 JET); Abreu & Gul
(2000 Ecta); Fudenberg & Tirole (1991 Book, ch. 9).

Limited Foresight: Jehiel & Samet (2007 TE); Ke (2019 TE).

Experiments: McKelvey & Palfrey (1992 Ecta), Brandts, Cabrales & Charness (2008 ET);
Cooper & Van Huyck (2003 JET).
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