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Learning in Games

How do people get to play equilibrium?
Main question of interest in ‘learning in games’ (̸= games with learning)

Goals
Provide foundations for existing equilibrium concepts.
Capture lab behaviour.
Predict adjustment dynamics transitioning to new equilibrium.
(akin to ‘impulse response’ in macro; uncommon but definitely worth
investigating)

Select equilibria.
Algorithm to solve for equilibria.
Explain persistence of heuristics/nonequilibrium behaviour.
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MSZ Ch. 14
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Calibrated learning procedure: learning procedure such that in the long run each action is
a best response to the frequency distribution of opponents’ choices in all periods in
which that action was played
Foster Vohra 1997 GEB, Calibrated Learning and Correlated Equilibrium
Foster Hart 2018 GEB, Smooth calibration, leaky forecasts, finite recall, and Nash
dynamics
Foster Hart 2021 JPE, Forecast Hedging and Calibration
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Papers: Hart Mas-Colell 2003 AER, Uncoupled Dynamics Do Not Lead to Nash
Equilibrium
*Hart 2005 Ecta, Adaptive Heuristics
Papers on reinforcement learning and Q-learning
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Sophisticated Learning

What is players are Bayesian wrt gameplay and engage in sophisticated learning?

Two papers:
Kalai and Lehrer (1993 Ecta) “Rational Learning Leads to Nash Equilibria”
Kalai and Lehrer (1993 Ecta) “Subjective Equilibrium in Repeated Games”

(Will favour Fudenberg and Levine’s “sophisticated learning” terminology.)
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Stage Game and Repeated Interaction

Players i ∈ I = {1, . . . , n}; actions Ai (finite). Profile A = ×iAi.

Payoffs ui : A → R. One-period outcome at = (ati )i ∈ A.

Repeated game: infinite horizon, perfect monitoring, discounts δi ∈ (0, 1).

Histories ht = (a0, . . . , at–1) ∈ Ht := At; H = ∪t≥0Ht; ∅ at t = 0.

Behavioural strategies σi = (σi,t)t≥0, with σi,t : Ht → ∆(Ai).

Strategy profile σ = (σi)i. Outcome law µ
σ on Ω := AN (product σ-algebra).

History concatenation: hh′ ∈ Ht+r : h ∈ Ht, h′ ∈ Hr .

Continuation histories starting from ht: C(ht) := {h′ ∈ H∞ | (hth′) ∈ H∞}.

Filtration (Ft), Ft := σ({ht}).

Normalised expected discounted payoff:

Ui(σ) = (1 – δi)Eµσ

[∑
t≥0

δ
t
i ui(a

t)
]
.
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Beliefs, Absolute Continuity, and Payoffs

Player i’s conjectures/degenerate beliefs about opponents’ strategies σ
i
–i.

Induces belief µi = µ
σ
i
–i on Ω.

Player i’s prior νi on opponents’ strategies σ–i (Actual uncertainty).
Induces belief µi on Ω via σ̃–i 7→ µ

(σi ,σ̃–i).

For νi, expected conjecture: σ
i
–i(h)(a–i) = Eσ̃–i∼νi [σ̃–i(h)(a–i)].

Player i’s Subjective joint strategy: σ
i = (σi,σi

–i).

Truth-compatibility (absolute continuity): µ
σ ≪ µi for all i.

(i.e., µ
σ(E) > 0 =⇒ µi(E) > 0 for any µi-measurable E.)

Posteriors: after ht, update µi(· | ht) by Bayes (well-defined by abs. cont.).

Rationality path: each period t, σi,t is a best response to µi(· | ht).

Induced strategy: for histories h, h′ ∈ H, denote σh(h
′) := σ(hh′) (strategy following h for

h′).
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Closeness and “Plays ε-Like”

Definition (ε-close measures)

For ε > 0, µ is ε-close to µ̃ if ∃Q with µ(Q), µ̃(Q) ≥ 1 – ε s.t. ∀ measurable A ⊆ Q,

(1 – ε)µ̃(A) ≤ µ(A) ≤ (1 + ε)µ̃(A).

Definition (plays ε-like)

A profile σ plays ε-like σ
′ if µ

σ is ε-close to µ
σ
′
; equivalently, after any ht, the conditional

laws are ε-close on a large-probability subset.

Controls conditional probabilities on tails; prevents cumulative small-error blowup
across time.
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Learning to Predict Future Play

Theorem 1 (Learning to predict)

Fix actual strategy σ and player i’s subjective joint strategy σ
i := (σi,σi

–i). If µ
σ ≪ µ

σ
i
,

then for every ε > 0 and for µ
σ-a.e. path h ∈ H∞, ∃T s.t. ∀t ≥ T, continuation σht plays

ε-like σ
i
ht
.

Posterior forecasts of future play (conditional on realised history) merge with truth.

No optimality required here; this is a property of Bayesian updating under abs. cont.
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Merging via Likelihood Ratios

Theorem 3 (Blackwell and Dubins, 1962)

If µ ≪ µ̃, then with µ-probability 1, for every ε > 0 there exists random time τ(ε) such
that for all t ≥ τ(ε) the posteriors µ(· | Ft) and µ̃(· | Ft) are ε-close.

If people start off with compatible priors, posteriors become arbitrarily close after
exposed to enough information.

Proof Idea

Radon-Nikodym derivative φ = dµ

dµ̃
exists; set Mt = Eµ̃[φ | Ft].

(Mt) is a nonnegative µ̃-martingale; Mt → M∞ a.s.

Control likelihood ratios on Q with µ(Q), µ̃(Q) ≈ 1.

Translate bounds to conditionals on continuation historiesC(ht); conclude ε-closeness.
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Subjective ε-Equilibrium

Definition (Subjective ε-equilibrium)

A profile σ = (σi)i is a subjective ε-equilibrium if there exist beliefs σ
i = (σi,σi

–i) with:

σi is a best response to σ
i
–i, for every i;

σ plays ε-like σ
i, for every i.

Corollary 1

If each σi best responds to σ
i
–i and σ ≪ σ

i for all i, then for a.e. path h ∃T s.t. ∀t ≥ T,
the continuation σht is a subjective ε-equilibrium.

Proof Idea

Fix ε > 0; for µ
σ-a.e. h ∃T s.t. ∀t ≥ T, σht plays ε-like σ

i
ht

for each i (Theorem 1).

By rationality, at every t player i plays a best response to µi(· | ht).

Merging =⇒ those best responses are ε-best responses to true continuation µ
σ(· | ht).

Both (supporting beliefs & closeness) =⇒ subjective ε-equilibrium from time T.
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From Subjective to (Approximate) Nash

Proposition 1

For every ε > 0, ∃η > 0 : if σ is a subjective η-equilibrium then ∃σ
∗ s.t.

(i) σ plays ε-like σ
∗;

(ii) σ
∗ is an ε-Nash equilibrium of the repeated game.

Idea: under perfect monitoring and known own payoffs, adjust off-path prescriptions to
align incentives while preserving realisations up to ε.

Proof Idea

Fix η > 0 small. Given subjective η-equilibrium σ, modify off-path prescriptions s.t.
unilateral deviations trigger responses that keep the deviator’s continuation payoff
within ε of best-reply payoff.

Perfect monitoring =⇒ changes leave realisations ε-close.

Resulting σ
∗ is an ε-best reply for each player: σ

∗ is an ε-Nash equilibrium; and σ plays
ε-like σ

∗.
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Main Theorem: Rational Learning =⇒ Nash Play

Theorem 2 (Kalai and Lehrer 1993)

Suppose each σi best responds to σ
i
–i and µ

σ ≪ µ
σ
i
for all i. Then for every ε > 0 and

for µ
σ-a.e. path h, ∃T s.t. ∀t ≥ T there is an ε-Nash equilibrium σ

ε of the repeated game
with σht playing ε-like σ

ε.

Proof Idea

1) Theorem 1 =⇒ eventually correct forecasts (merging).

2) Best responses to beliefs =⇒ ε-best responses to truth (large t).

3) Proposition 1 =⇒ approximate Nash play along the realised path.
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Absolute Continuity and Bayesian Nash Equilibrium

Bayesian Nash equilibrium (BNE): in incomplete information (finite type space), each
σi maximises expected utility given beliefs over types and strategies.

At a BNE of the repeated game, priors give a grain of truth: realised play has positive
probability under beliefs =⇒ absolute continuity holds.

Application: starting from a BNE, players eventually play (approximately) a Nash
equilibrium of the realised complete-information repeated game.
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Meaning and Interpretation

What converges? Not actions each period, but forecasts of future play; behaviour is
best response to (nearly) correct forecasts.

Why it matters: ensures long-run play consistent with Nash discipline without common
knowledge of rationality or equilibrium selection.

Learning vs commitment: players learn the environment they face (others’ strategies),
not a fixed state of nature.

Role of absolute continuity: bans dogmatic zero-probability beliefs about realised
events; makes Bayes informative.

Learning: with merging, each player’s beliefs about future play match the truth;
subjective ε-equilibrium obtains on-path.
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Incomplete Information on Payoffs

Bayesian Nash starting point

In a repeated game with finitely many payoff types, if play starts at a Bayesian Nash
equilibrium, then eventually players play (approximately) a Nash equilibrium of the re-
alised complete-information repeated game.

Grain of truth at BNE =⇒ abs. cont.; merging =⇒ correct forecasts; best responses
=⇒ near-NE of realised environment.
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Fudenberg and Levine (1998; 2009 ARE): Main Critique

Endogeneity of absolute continuity: abs. cont. must hold for the realised path under
the true play; ensuring this is itself an equilibrium-like fixed-point problem.

Grain of truth: wanting priors that always put positive mass on the truth is impossible
in rich (uncountable) environments; workable classes may be very restrictive.

Interpretation caution: Kalai and Lehrer (1993 Ecta) shows a consistency result
conditional on abs. cont.; not a general path-to-equilibrium selection theory.

Comparative statics: results sensitive to prior support assumptions; small changes
can break abs. cont. and merging conclusion.

Bottom line: powerful when abs. cont. holds (e.g., BNE start with finite types), but
limited as a general behavioural foundation without specifying priors.

“Our interest here, however, is in “learning models,” by which we mean that the allowed
priors are exogenously specified, without reference to a fixed point problem.”
Fudenberg and Levine (1998)
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Takeaways

Under absolute continuity, Bayesian learning merges beliefs with the truth along
realised play.

Rational (best-reply) control with merged beliefs =⇒ eventual (approximate) Nash
play.

At BNE with finite types, eventual play tracks an NE of the realised
complete-information game.

Abs. cont. is strong and endogenous; use with care as general foundation for learning
in games.
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