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Overview

1. Learning in Games



Learning in Games

How do people get to play equilibrium?
Main question of interest in ‘learning in games’ (7 games with learning)
Goals
Provide foundations for existing equilibrium concepts.
Capture lab behaviour.
Predict adjustment dynamics transitioning to new equilibrium.
(akin to ‘impulse response’ in macro; uncommon but definitely worth
investigating)
Select equilibria.
Algorithm to solve for equilibria.
Explain persistence of heuristics/nonequilibrium behaviour.
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Overview

2. Approachability
— Multi-Utility Representation
— Approachability
— Application: Picking Experts
— Universal Consistency



Approachability

Setup:
Two players face repeated game. m-dimensional goal/multi-utility representation.

Goal of each player: control average vector of attributes s.t. approaches/excludes
(keeps away) target set S ¢ R™.

Brief detour: rationalising multi-utility.
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Overview

2. Approachability
— Multi-Utility Representation



Multi-Utility Representation

=C X2: preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.
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Multi-Utility Representation

=C X2: preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Definition

For any binary relation = on X with symmetric part ~, for any x € X, x's equivalence
class is [x] := {y € X|x ~ y} and the set of equivalence classes X = {Ix],x € X}.
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Multi-Utility Representation

=C X2: preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

{ Definition

For any binary relation = on X with symmetric part ~, for any x € X, x's equivalence
class is [x] := {y € X|x ~ y} and the set of equivalence classes X = {Ix],x € X}.

Remark

For any preorder =~ on X, let = on X : x,y € X : [XI=[y] if x == y. Then, & is partial order.
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Multi-Utility Representation

=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
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=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.
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Multi-Utility Representation

=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Set of all linear extensions of = on X: £(X, Z).

Szpilrajn's Theorem: any partial order can be extended to a linear order.
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Multi-Utility Representation

=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Set of all linear extensions of = on X: £(X, Z).

Szpilrajn's Theorem: any partial order can be extended to a linear order.
Remark 1: = £(X, %) 70.

S o A
Remark 2: - mzeﬁ(X,i)Z'
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Multi-Utility Representation

=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Set of all linear extensions of = on X: £(X, Z).

Szpilrajn's Theorem: any partial order can be extended to a linear order.
Remark 1: = £(X, %) 70.

S o A
Remark 2: - mzeﬁ(X,i)Z'

Order dimension: dim(X, =) := min{k € N| >j€ £(X,%),i=1,.,k: = = ﬂfi1 >
dim(X, =): min number of linear extensions of = whose intersection yields =.
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Multi-Utility Representation

=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Set of all linear extensions of = on X: £(X, Z).

Szpilrajn's Theorem: any partial order can be extended to a linear order.
Remark 1: = £(X, %) 70.

S o A
Remark 2: - mzeﬁ(X,i)Z'

Order dimension: dim(X, =) := mintk € N| > £(X,5),i =1, k: ==k, >}
dim(X, =): min number of linear extensions of = whose intersection yields =.
Examples:
= is linear order on X iff dim(X, =) = 1.
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Multi-Utility Representation

=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Set of all linear extensions of = on X: £(X, Z).

Szpilrajn's Theorem: any partial order can be extended to a linear order.
Remark 1: = £(X, %) 70.
Remark 2: = = méeﬁ(fci)é'

Order dimension: dim(X, =) := mintk € N| > £(X,5),i =1, k: ==k, >}
dim(X, =): min number of linear extensions of = whose intersection yields =.

Examples:

= is linear order on X iff dim(X, =) = 1.

If no distinct x, y are comparable (= is antichain) and dim(X, =) = 2 since
Z=>n<.
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Multi-Utility Representation

=C X2 preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ~(x >~ y or y = x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Set of all linear extensions of = on X: £(X, Z).

Szpilrajn's Theorem: any partial order can be extended to a linear order.
Remark 1: = £(X, %) 70.
Remark 2: = = méeﬁ(fci)é'

Order dimension: dim(X, =) := mintk € N| > £(X,5),i =1, k: ==k, >}
dim(X, =): min number of linear extensions of = whose intersection yields =.

Examples:
= is linear order on X iff dim(X, =) = 1.
If no distinct x, y are comparable (= is antichain) and dim(X, =) = 2 since
f=>n<

If X = 2% and |A| = oo, then dim(X, €) = cc.
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Multi-Utility Representation

Definition

=C X? admits a multi-utility representation u : X — R™ with m € Niff vx,y € X, x =
y = ul) > uy).
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Multi-Utility Representation

( Definition

=C X? admits a multi-utility representation u : X — R™ with m € Niff vx,y € X, x =
y = ul) > uy).

Proposition 1 (Ok 2002 JET)

Let - be preorder on X.
(1) = admits a multi-utility representation u only if dim(X, z) < co.
(2) If X countable, = admits a multi-utility representation u if and only if dim(X, =) < co.
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Multi-Utility Representation

( Definition

=C X? admits a multi-utility representation u : X — R™ with m € Niff vx,y € X, x =
y = ul) > uy).

Proposition 1 (Ok 2002 JET)

Let - be preorder on X.
(1) = admits a multi-utility representation u only if dim(X, z) < co.
(2) If X countable, = admits a multi-utility representation u if and only if dim(X, =) < co.

Alternative (social) interpretation: 3U c R suchthatx = y <= u(x) > u(y)vu € U.
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Multi-Utility Representation

{ Definition
=C X? admits a multi-utility representation u : X — R™ with m € Niff vx,y € X, x =
y = ul) > uy).

Proposition 1 (Ok 2002 JET)

Let - be preorder on X.
(1) = admits a multi-utility representation u only if dim(X, z) < co.
(2) If X countable, = admits a multi-utility representation u if and only if dim(X, =) < co.

Alternative (social) interpretation: 3U c R suchthatx = y <= u(x) > u(y)vu € U.

Proof Idea

Take X finite. Let ux(y) = Tyxy- u(y) = (ux(¥))yex-

Letxzy @VzeX:(Uz(x)=0) = @Z2zZx) = (2Zy) < (uy)=0)
B)vzeX: (Uz(y)=1) <= (Y22 = (X2 <= (ux)=1).

@+ () = ul) = uy).

Gongalves (UCL)

Approachability, Calibration, Adaptive Algorithms, and
Sophisticated Learning




Multi-Utility Representation

{ Definition

=C X? admits a multi-utility representation u : X — R™ with m € Niff vx,y € X, x =
y = ul) > uy).

Proposition 1 (Ok 2002 JET)

Let - be preorder on X.
(1) = admits multi-utility representation u only if dim(X, =) < cc.
(2) If X countable, = admits a multi-utility representation u if and only if dim(X, =) < co.

[ Proposition 2 (Ok 2002 JET)

(@) Xq = ><,-k:1X,-, with X; be metric space and ; be preorders on X;, i = 0,1, ..., k;

(b) Each X;iss.t. {y; | y; =; x;} is open for every x; € X;and i = 1,..., k; and

(©) Xmoy < X ZiyiVi=1.,k

If Xo admits a countable = g-dense subset, then =g admits a multi-utility representation
u which is continuous in the product topology.
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Overview

2. Approachability

— Approachability



Approachability

Setup:
Two players face repeated game. m-dimensional goal/multi-utility representation.
Goal of each player: control average vector of attributes s.t. approaches/excludes
(keeps away) target set S ¢ R™.
Back to approachability... Blackwell (1956). Good reference: Maschler, Solan, Zamir
(2013 Book, Ch. 14).
Actions: A;; Stage-Game Payoffs: u; : Ay x A, — R™ uy = —uq; (endowed with
dix.y) = Ix = yll2);
Histories: H; := A\, H := U;H;; Strategies: 6, H — A(A); A € A(A).
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Approachability

Setup:
Two players face repeated game. m-dimensional goal/multi-utility representation.

Goal of each player: control average vector of attributes s.t. approaches/excludes
(keeps away) target set S ¢ R™.

Back to approachability... Blackwell (1956). Good reference: Maschler, Solan, Zamir
(2013 Book, Ch. 14).

Actions: A;; Stage-Game Payoffs: u; : Ay x A, — R™ uy = —uq; (endowed with
dix.y) = lIx = yll2);

Histories: H; := A\, H := U;H;; Strategies: 6, H — A(A); A € A(A).

Expected Payoffs: u;(A,A-) = >, >, Mi(a)ui(a,a-)r-i(@-;) € R™.
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Approachability

Setup:
Two players face repeated game. m-dimensional goal/multi-utility representation.

Goal of each player: control average vector of attributes s.t. approaches/excludes
(keeps away) target set S ¢ R™.

Back to approachability... Blackwell (1956). Good reference: Maschler, Solan, Zamir
(2013 Book, Ch. 14).

Actions: A;; Stage-Game Payoffs: u; : Ay x A, — R™ uy = —uq; (endowed with
dix.y) = Ix = yll2);

Histories: H; := A\, H := U;H;; Strategies: 6, H — A(A); A € A(A).

Expected Payoffs: u;(A,A-) = >, >, Mi(a)ui(a,a-)r-i(@-;) € R™.

Feasible Expected Payoffs for A;: U;(},;) := {uj(A, A-;), A-; € A(A_;)} CR™.
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Approachability

Setup:
Two players face repeated game. m-dimensional goal/multi-utility representation.

Goal of each player: control average vector of attributes s.t. approaches/excludes
(keeps away) target set S ¢ R™.

Back to approachability... Blackwell (1956). Good reference: Maschler, Solan, Zamir
(2013 Book, Ch. 14).

Actions: A;; Stage-Game Payoffs: u; : Ay x A, — R™ uy = —uq; (endowed with
dix.y) = Ix = yll2);

Histories: H; := A\, H := U;H;; Strategies: 6, H — A(A); A € A(A).

Expected Payoffs: u;(A,A-) = >, >, Mi(a)ui(a,a-)r-i(@-;) € R™.

Feasible Expected Payoffs for A;: U(\) = {u;(Mi, A=), A—j € A(A_))} CR™.

Average Payoff: U;; = ; ZH u;(ay).

Feasible Avg Payoffs: co(u;) := co({u;(a),a € A}) C R™.
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Approachability

Definition
CCRMis

approachable by player i if 3o; s.t. Ve > 0, 3T : Vo_;, P°(d(T;, C) < gVt > T) >1—¢gin
this case, o; approaches C for player i; and

excludable by player i if 38 s.t. set C§ := {x | d(x,C) > 8} is approachable by player i if
strategy o; approaches C3, then it excludes C for player i.
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Approachability

Definition
CCRMis

approachable by player i if 3o; s.t. Ve > 0, 3T : Vo_;, P°(d(T;, C) < gVt > T) >1—¢gin
this case, o; approaches C for player i; and

excludable by player i if 38 s.t. set C§ := {x | d(x,C) > 8} is approachable by player i if
strategy o; approaches C3, then it excludes C for player i.

Approachable by a player if can guarantee that average payoff approaches the set wp1
uniformly over opponent'’s strategies: P°(lim;_,oo d(U, C) = 0) = 1.
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Approachability

Definition
CCRMis
approachable by player i if 3o; s.t. Ve > 0, 3T : Vo_;, P°(d(T;, C) < gVt > T) >1—¢gin
this case, o; approaches C for player i; and
excludable by player i if 3§ s.t. set C§ := {x | d(x,C) > &} is approachable by player i; if
strategy o; approaches C3, then it excludes C for player i.

Approachable by a player if can guarantee that average payoff approaches the set wp1

uniformly over opponent'’s strategies: P°(lim;_,oo d(U, C) = 0) = 1.

Remark

(1) If o; approaches (resp. excludes) C, then it approachers (resp. excludes) the clo-
sure of C.
(2) C cannot be approachable by one player and excludable by the other.
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Hyperplanes

Definition

Hyperplane H(a,b) := {x ¢ R |a - x = b}.
Half-spaces: H"(a,b) ={x e R" |a-x > b}, H (a,b) ={x € R™ | a-x < b}.

H*(a,b) "H (a,b) = H(a, b).
H*(a,b) = H (-a,—b) and H(a, b) = H(-a, —b).
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Hyperplanes

Definition

Hyperplane H(a,b) := {x ¢ R |a - x = b}.
Half-spaces: H"(a,b) ={x e R™ |a-x > b},H (a,b) ={x € R |a-x < b}.

H*(a,b) "H (a,b) = H(a, b).
H*(a,b) = H (-a,—b) and H(a, b) = H(-a, —b).

Definition

Hyperplane H(a, b) separates x from C if (i) x € H*(a,b) \ H(a,b) and C C H™(a,b), or (ii)
X € H (a,b)\ H(a,b) and C C H*(a, b).
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Hyperplanes

{ Remark

Hyperplane H(x =y, (x = y) - y):

() y e Hx =y, (x=y) - ).

(i) Orthogonal/Perpendicular to line passing through xand y,ie. z € Hx -y, (x-y)-
y) <= @-y)-k-y)=0.

(iii) y is pointin H(x =y, (x — y) - y) closest to x: Vz € Hx = y, (x = y) - y), ||x — z||% =
Ix = ylI? + |ly - z||%. (Pythagorean theorem)

(iv) Vhyperplane Hand x ¢ H,if y € His closestin Hto x, then H = Hx =y, (x =) - ).

Approachability, Calibration, Adaptive Algorithms, and
Gongalves (UCL) Sophisticated Learning 10



Separating Hyperplanes in the B-set Condition

HY =% 0 = %) HY = .4y = x1)

Hyperplane H(y' = x, (y' = x,y’)) separates x from U;(A;).

Approachability, Calibration, Adaptive Algorithms, and
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Approachability

{ Definition

Closed set C is B-set for player i if ¥x € co(u;) \ C,3y € Cand A; € A(4)) s.t.
(1) yisclosesttoxin C: d(x,y) = d(x,C); and

(2) hyperplane H(x =y, (x = y) - y) separates x from U;(A;):
() x € H (x=y,(x=y)-y)\H(x=y,(x=y)-y) and (i) Uih) C H™ (x =y, (x=y)-y).

(i) is equiv. to VA, (Ui(A, A=) —y) - (x—y) <0

Approachability, Calibration, Adaptive Algorithms, and
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Approachability

{ Definition

Closed set C is B-set for player i if ¥x € co(u;) \ C,3y € Cand A; € A(4)) s.t.
(1) yisclosesttoxin C: d(x,y) = d(x,C); and
(2) hyperplane H(x =y, (x — y) - y) separates x from U;(A;):
() x € H (x=y,(x=y)-y)\H(x=y,(x=y)-y) and (i) Uih) C H™ (x =y, (x=y)-y).

(i) is equiv. to VA, (Ui(A, A=) —y) - (x—y) <0

Theorem (Blackwell 1956)
If C is B-set for player i, then it is approachable by player i.

Approachability, Calibration, Adaptive Algorithms, and
Gongalves (UCL) Sophisticated Learning 12



Proving Approachability Theorem: One-Step Projection

Setup for One Step

(1) Fixt > 1. Let Tj—1 € co(u;).
(2) If Uj;—1 € C, play anything (e.g., a1). Otherwise, let ;-1 € C be a closest point:
d(Tit-1,0) = [[Ujz-1 = Yr=1ll-
(3) By B-set, 3N;; € A(A)) s.t. hyperplane H(Tj—1 = yi-1, (Ti¢—1 — Y1-1) - ¥i-1) Separates
Uj -1 from Ui, 1):
Uit-1 = Ye=1) - (Uiip A=) = y2-1) <0, VA € A(AL).

(4) Play }\'irt at Stage L. Approachability, Calibration, Adaptive Algorithms, and
Gongalves (UCL) Sophisticated Learning 13



Proving Approachability Theorem: One-Step Projection Inequality
Key Inequality

Update: Tt = Uiz + ¢ (Uj(ar) = Uj¢-1). Recall d(Tg-1, C) = [|Tje—1 = Yeal-
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Key Inequality

Update: Tt = Uiz + ¢ (Uj(ar) = Uj¢-1). Recall d(Tg-1, C) = [|Tje—1 = Yeal-

Identity:

- 2 - 2.2, = 1 - 2
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Proving Approachability Theorem: One-Step Projection Inequality
Key Inequality

Update: Tt = Uiz + ¢ (Uj(ar) = Uj¢-1). Recall d(Tg-1, C) = [|Tje—1 = Yeal-

Identity:

- 2 - 2.2, = 1 - 2
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Proving Approachability Theorem: One-Step Projection Inequality
Key Inequality
Update: Tt = Uiz + ¢ (Uj(ar) = Uj¢-1). Recall d(Tg-1, C) = [|Tje—1 = Yeal-
Identity:
- - 2, - 1 -
G = Yell” = 1Tien = yeall* + 7Tt = yer) - (Uiae) =~ Tyea) + §||Ui(at) ~ Tyl
Write (-1 = Yi-1) - (Ui@r) = Tig1) = @je—1 = Yeo1) - Wi@r) = Yee1) = [1Tjgn = e l®

Conditional expectation: by separation,
E[@—1 — Y1) - Wi@0) = ¥r-1) | He=1] < maxy @1 = Yi1) - Wik, A=) = y-1) < 0.



Proving Approachability Theorem: One-Step Projection Inequality

Key Inequality

Update: Tt = Uiz + ¢ (Uj(ar) = Uj¢-1). Recall d(Tg-1, C) = [|Tje—1 = Yeal-

Identity:

- 2 - 2.2, = 1 - 2
it = Ye1ll” = [|Tjz—1 = el + ?(Ui,t—1 —Yi-1) - (Uiay) = i) + t7||Ui(at) = Uje”

Write (Tjs1 = Y1) - (Ui@r) = Tig=1) = @iz—1 = Ye1) - Ui@0) = Yee1) = NTyem1 = Yerl®.
Conditional expectation: by separation,
E[@—1 — Y1) - Wi@0) = ¥r-1) | He=1] < maxy @1 = Yi1) - Wik, A=) = y-1) < 0.
Let L := maxaea [|Ui(@)|| < co. Then Elljuj(ar) = Tjg—1l|* | He-1] < 4L%
2

= 2 2\ - 2 4L
Hence E[HUI Yl | Htf‘l] < (1 - ?)Humq —yq|©+ E



Proving Approachability Theorem: One-Step Projection Inequality
Key Inequality

Update: Tt = Uiz + ¢ (Uj(ar) = Uj¢-1). Recall d(Tg-1, C) = [|Tje—1 = Yeal-

Identity:

- 2 - 2.2, = 1 - 2
it = Ye1ll” = [|Tjz—1 = el + ?(Ui,t—1 —Yi-1) - (Uiay) = i) + t7||Ui(at) = Uje”

Write (Ti1—1 = Yi-1) - Wi(@r) = Uj—1) = @ie=1 = Ye=1) - (Ui(@0) = Ye=1) = |Tje=1 = Yo ||>-

Conditional expectation: by separation,

E[@—1 — Y1) - Wi@0) = ¥r-1) | He=1] < maxy @1 = Yi1) - Wik, A=) = y-1) < 0.

Let L = maxaea |ui@)|| < oo. Then Ell|uj(ar) = Tjp 1 | Heal < 4L%.

_ 2\ - 4.2

Hence E[|[Z; = yirl* | Hie] < (1= 2) 180 = a2+ 5.
Since d(Tjy, C) < ||Tj¢ — yi-1ll. setting V; = d(Tjy, C)? gives

2 412

BV | Heal < (1= 5) Vi + S5

Approachability, Calibration, Adaptive Algorithms, and
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Convergence of Non-negative Almost Supermartingales

{ Theorem (Robbins and Siegmund 1971)

Let (F3) be filtration and (V¢);>0 be nonnegative, adapted. Suppose there are nonnega-
tive, Fi-adapted processes (&), (Bt), (C¢) s.t.

EVir | Al < (1+E&)Ve — & + B t>0,

with > 755 & <oo and >y B < oo as.

oo
Then, V; converges a.s. to a finite, nonnegative limit Vo, and Z i <oas.
t=0

Going beyond Doob's MCT: convergence for non-negative almost supermartingales.
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Convergence of Non-negative Almost Supermartingales

{ Theorem (Robbins and Siegmund 1971)
Let (F3) be filtration and (V¢);>0 be nonnegative, adapted. Suppose there are nonnega-
tive, Fi-adapted processes (&), (By), (&) s-t.

EVir | Al < (1+E&)Ve — & + B t>0,

with > 755 & <oo and >y B < oo as.
oo

Then, V; converges a.s. to a finite, nonnegative limit Vo, and Z i <oas.
t=0

{ Corollary

If nonnegative (V;) satisfies E[V; | Hy—q] < (1—0t)Vi—q+Br with >~ o = coand Y-, By < oc,
then V; — O as.

Useful corollary: & = 0, §; = a;V; with o € [0,1]. If 3°; 0 = 00, then Voo = 0 as.

Since Y-, o4V < o0; if - 0 = o0, only possible limit Vo is 0.

Approachability, Calibration, Adaptive Algorithms, and
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Proving Approachability Theorem: Concluding

Concluding the Proof of Blackwell’s Approachability Theorem

Use the one-step choice A;; from the B-set condition at Uj;_.
EVe | Hir] < (1= 2)Vioq + 42

(
(3) Take oy = 2 (dlverges) and B; = 4L (summable).
(

Approachability, Calibration, Adaptive Algorithms, and
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Proving Approachability Theorem: Concluding

Concluding the Proof of Blackwell’s Approachability Theorem

Use the one-step choice A;; from the B-set condition at Uj;_.

ELV; | HH] < (1= 2V + 4

Theorem (Blackwell 1956)
If C is B-set for player j, then it is approachable by player i.

Strategy (Blackwell's rule): at each t, project U;;— onto C, pick A;; separating Uj;—¢ from
Ui(kip), play Ay

Approachability, Calibration, Adaptive Algorithms, and
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Generalisations and Variations

Theorem (Blackwell 1956)
If C is B-set for player j, then it is approachable by player i.

Generalisations and Variations:
Lehrer (2002 IJGT): generalises Blackwell's approachability theorem to
infinite-dimensional spaces.
Hou (1971 AMS): A closed set C is approachable by player i if and only if it contains
a B-set for player i.

Approachability, Calibration, Adaptive Algorithms, and
Gongalves (UCL) Sophisticated Learning 18



Overview

2. Approachability

— Application: Picking Experts



Application: Picking Experts

S states of nature. A actions. Payoffsu: A x S — R. Set of experts E.

Every period t,

(1) state s realises,

(2) each expert recommends action ae; € A,

(3) DM chooses which expert to follow e; € E and adopts their recommended action,
(4) payoffs realise, and DM observes s;.

Approachability, Calibration, Adaptive Algorithms, and
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Application: Picking Experts

S states of nature. A actions. Payoffsu: A x S — R. Set of experts E.

4 t-1 .
History: h; € H; = (S x Al x E)" " (previous states, what each expert recommended,
expert chosen). H := U¢H;

Strategy: 6 : H — A(E). Distribution of s ~ v € A(S).
Average payoff: Tr(c,) = F Yt Yoo 6(h)(€)¥(S)u(@e, ).
Payoff from following particular expert e: Gr(e, y).

Approachability, Calibration, Adaptive Algorithms, and
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Application: Picking Experts

S states of nature. A actions. Payoffsu: A x S — R. Set of experts E.

4 t-1 .
History: h; € Hy := (S x AFl x E)" * (previous states, what each expert recommended,
expert chosen). H := U¢H;

Strategy: 6 : H — A(E). Distribution of s ~ v € A(S).
Average payoff: Tr(c,) = F Yt Yoo 6(h)(€)¥(S)u(@e, ).
Payoff from following particular expert e: Gr(e, y).

Small problem: DM doesn’t know what experts actually know, whether have full info,
partial, no info, biased, etc.

Definition

DM’s ¢ is no-regret strategy if Ve € £ and each sequence sy, Sy,

oo0p

p° (Iim inf¢(o,y) — Ue(e,y) > 0) =1.
t—oo

Does no-regret strategy even exist? Can we characterise it?

Approachability, Calibration, Adaptive Algorithms, and
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Application: Picking Experts

Theorem

The DM has a no-regret strategy.

Simplying assumption: |E| = |Al and for each e, a¢; = a for some different a.

Approachability, Calibration, Adaptive Algorithms, and
Gongalves (UCL) Sophisticated Learning
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Application: Picking Experts

Theorem

The DM has a no-regret strategy.

Simplying assumption: |E| = |Al and for each e, a¢; = a for some different a.

Proof

Opponent: nature, choosing g : H — A(S). C = R
Letv(d,y) = (U(hy) — u(e, V)eck € R and 77 = % > i<7 V(o(hy), oo (hy). Regret vector:
no-regret <= liminf;v; € C.

For x € R projection onto Cis y := x* (positive part), and the normal is x~ = y — x

(negative part).

Choose the Blackwell action at x: if -, xe > 0, set

N(e) =
D e Xer

andany A¥if x € C.

(put weight on experts relative to which you are behind),

Approachability, Calibration, Adaptive Algorithms, and
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Application: Picking Experts — Proof (via Blackwell)

Proof

oo i H = A(S). €= REL V(L) = (UM V) =~ u(e Meer € R™ 77 = 7 Ty<7 vio(he), oo (hy)).

Forx € REl y = x* x™ =y — x. For =(x > 0), set A*(e) := ij; A




Application: Picking Experts — Proof (via Blackwell)

Proof

oo i H = A(S). €= REL V(L) = (UM V) =~ u(e Meer € R™ 77 = 7 Ty<7 vio(he), oo (hy)).

El y = x*,x™ == y = x. For =(x > 0), set X(e) := e

Forx e R e
orx € T

For any opponent choice y € A(S),
() ~(x>0) = X[ = [x=yl| >0 = x € H' (x=y,(x=y) - Y)\HKX=y, (x=y)-y);



Application: Picking Experts — Proof (via Blackwell)

Proof
o - H— AES). C = REL V(L) = (U y) — ueM)ece € RE 77 = T 317 vio(hy), so(hy)).

e

Forx € REl y = x* x™ =y — x. For =(x > 0), set A*(e) := o

For any opponent choice y € A(S),
() ~(x>0) = X[ = [x=yl| >0 = x € H' (x=y,(x=y) - Y)\HKX=y, (x=y)-y);
(i) 0> (VA7) =y)-(x=y) = (X" =vA, 1) - X7 = X" X" =v(W,y) X~ = —v(A,y) X
Note that

er Z%X u(e’,y) - u(e,v))
ZZ xaru(e’,y) - eruey > xeue'y) = > xeuley) = 0.
e// e// e/ e



Application: Picking Experts — Proof (via Blackwell)

Proof

o 1 H = A(S). C = RELv(Ly) = (UL Y) - u(e. V)ece € RE 77 = 3 327 Vo(hy), oo (hy).
Forx € REl y = x* x™ =y — x. For =(x > 0), set A*(e) := Z:/;X;, A

For any opponent choice y € A(S),
() ~(x>0) = X[ = [x=yl| >0 = x € H' (x=y,(x=y) - Y)\HKX=y, (x=y)-y);
(i) 0 > (v, 1) =y)- (x=y) = (T = v 7)) X = X" x” =v(A, )X = —v(Ay) X

Note that
er Z%X ue’,y) - u(e.y))

ZZ xaru(e’,y) - eruey > xeue'y) = > xeuley) =0
el e// o e

Hence C is a B-set. Blackwell's theorem —> V;approaches Ca.s, i.e,
Iitm inf (TU¢(0, 69) — Ut(e, 0p)) > 0 for all e € E and any of nature's moves .
hde el

Approachability, Calibration, Adaptive Algorithms, and
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Application: Picking Experts — Proof (via Blackwell)

Proof

o 1 H = A(S). C = RELv(Ly) = (UL Y) - u(e. V)ece € RE 77 = 3 327 Vo(hy), oo (hy).
Forx € REl y = x* x™ =y — x. For =(x > 0), set A*(e) := Z:/;X;, A

For any opponent choice y € A(S),
() ~(x>0) = X[ = [x=yl| >0 = x € H' (x=y,(x=y) - Y)\HKX=y, (x=y)-y);
(i) 0> (VA7) =y)-(x=y) = (X" =vA, 1) - X7 = X" X" =v(W,y) X~ = —v(A,y) X
Note that

er Z%X u(e’,y) - u(e,v))
ZZ xaru(e’,y) - eruey > xeue'y) = > xeuley) =0
e// e// e/ e

Hence C is a B-set. Blackwell's theorem —> V;approaches Ca.s, i.e,
Iitm inf (TU¢(0, 69) — Ut(e, 0p)) > 0 for all e € E and any of nature's moves .
hde el

Strategy (implementable): compute current average regrets x := V;_q; if x & C play A*.

Approachability, Calibration, Adaptive Algorithms, and
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Hannan (1957): Setting

Repeated decision problem
Actions A ={1,...,|Al}; states S ={1,...,|S|}.
Bounded stage payoff u: A x S — [0,1].

At t: DM chooses a; € A; Nature reveals s; € S; payoff u(ay, s¢).

Approachability, Calibration, Adaptive Algorithms, and
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Hannan (1957): Setting

Repeated decision problem

Actions A ={1,...,|Al}; states S ={1,.. ., 1S}

Bounded stage payoff u: A x S — [0,1].

At t: DM chooses a; € A; Nature reveals s; € S; payoff u(ay, s¢).
Beliefs and empirical distribution

pr € A(S): empirical distribution of (s;)e<.

Bayes payoff of action a against p € A(S): U(a, p) := Es~plu(a, s)].

Approachability, Calibration, Adaptive Algorithms, and
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Hannan (1957): Setting

Repeated decision problem

Actions A ={1,...,|Al}; states S ={1,.. ., 1S}

Bounded stage payoff u: A x S — [0,1].

At t: DM chooses a; € A; Nature reveals s; € S; payoff u(ay, s¢).
Beliefs and empirical distribution

pr € A(S): empirical distribution of (s;)e<.

Bayes payoff of action a against p € A(S): U(a, p) := Es~plu(a, s)].
Benchmark: (External) Regret

For any fixed a € A, Ur(a) = _17 > ula,sy).
t<T

Average payoff: (o) := lT > ular sy
t<T

No (External) Regret: lim inf (Ur(c) — maxlr(a)) >0 as.
T—o0 a

External regret: comparison relative to swapping to fixed action.

Approachability, Calibration, Adaptive Algorithms, and
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Hannan's Procedure (1957)

{ Smoothed fictitious play

Att > 1, form the smoothed empirical belief
pr = (1= 1Y) Pr—1 + 11 Vt.
Choose a Bayes action (or mixed Bayes rule) against py:

a¢ € argmaxu(a, py) (or At € argmax Z h(a)u(a,pt))
acA AEAA) a

Ties are broken by a fixed rule; y; prevents zero exploration.

Fix a full-support v; € A(S) iid and a sequence (y;) with y; . 0 and >, ¢ < oo.

Interpretation: best respond to slightly perturbed empirical model;
perturbations vanish.

Approachability, Calibration, Adaptive Algorithms, and
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Hannan Consistency

Theorem (Hannan 1957)
Under SFP with bounded payoffs and (y;) as above,

liminf ((_JT(G) - max UT(a)) >0 almost surely.
T—o0 acA

Equivalently, for every a € A, liminf (Tr(c) - Ur(a)) > 0 a.s.
T—o0

Full-support vt ensures absolute continuity of beliefs; (y;) controls approximation error.

Approachability, Calibration, Adaptive Algorithms, and
Gongalves (UCL) Sophisticated Learning 25



Proof Idea

Key steps

Let v4(a) := u(ay, St) — u(a, Sy); regret against a is vr(a) = Ur(o) — Ur(a).
Conditional on H;—1, a; maximises u(-, pt), hence for all a,

Elvi(a) | Hi-1] = u(aw, pr)—u(a, py) + (E[U(ar, st) — u(a, st) | He] = [u(an pr) — u(a, Pr)]) :

model error
The first term > 0 by optimality of a; for p;.

The model-error termis O(y;) since p — (1-7:)Pt-1 has mass y: and payoffs are bounded
in [0, 1].

Summing and dividing by T gives E[vr(a)] > —17 >ot<T C¥t With 351t < oo,
liminfr E[vr(a)] > 0.

A standard martingale SLLN upgrades to a.s. statements (bounded differences).

Approachability, Calibration, Adaptive Algorithms, and
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Direct No-Regret via Approachability

History H = UgHy, Hy = (A x S)U. Strategy 6 - H — A(A); Nature 6 : H — A(S).
Define regret vector v(A,y) € R* with v(A,7) := (u(A,y) — u(@,v))aen-

V= 7 et Vo(hy) oo (hy).
Target set C = R4 (no external regret ).

Letx e R'A|, y:=x",x~ =y - x and choose

A (a) = ZXaX_ ifxe¢C,  anyAifxecC.
a’ a’

Thenx™ -Elrt | Hi-q] =0<0; CisaB-set = vy — Cas.
Consequence: IimTimc (Ur(o) — Ur(a)) > O foralla.
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Direct No-Regret via Approachability

History H = UgHy, Hy = (A x S)U. Strategy 6 - H — A(A); Nature 6 : H — A(S).
Define regret vector v(A,y) € R* with v(A,7) := (u(A,y) — u(@,v))aen-

V= 7 et Vo(hy) oo (hy).
Target set C = R4 (no external regret ).

Letx e R'A|, y:=x",x~ =y - x and choose

A (a) = ZXaX_ ifxe¢C,  anyAifxecC.
a’ a’

Thenx™ -Elrt | Hi-q] =0<0; CisaB-set = vy — Cas.
Consequence: IimTimc (Ur(o) — Ur(a)) > O foralla.

Remark

Hannan (1957) and Blackwell (1956) yield same external no-regret guarantee; update
rules differ (smoothed best reply vs projection-based mixture).

Approachability, Calibration, Adaptive Algorithms, and
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Implementation, Interpretation and Links

Choice of Smoothing and Rates:
Any full-support v; works; e.g. v uniformon S.
Typical schedules: y; = t1°¢ (summable) for a.s. convergence via
almost-supermartingale; or y; < ™2 for 0(1/+/T) expected regret.
Boundedness of u and tie-breaking rules ensure measurability and martingale
applicability.
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Implementation, Interpretation and Links

Choice of Smoothing and Rates:
Any full-support v; works; e.g. v uniformon S.

Typical schedules: y; = t1°¢ (summable) for a.s. convergence via
almost-supermartingale; or y; < ™2 for 0(1/+/T) expected regret.

Boundedness of u and tie-breaking rules ensure measurability and martingale
applicability.
Exploration: y; > 0 avoids being trapped by early noise; ¥; J. 0 removes bias.

Interpretation: “Fictitious play” against the environment with vanishing perturbations.
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Implementation, Interpretation and Links

Choice of Smoothing and Rates:
Any full-support v; works; e.g. v uniformon S.

Typical schedules: y; = t1°¢ (summable) for a.s. convergence via
almost-supermartingale; or y; < ™2 for 0(1/+/T) expected regret.

Boundedness of u and tie-breaking rules ensure measurability and martingale
applicability.
Exploration: y; > 0 avoids being trapped by early noise; ¥; J. 0 removes bias.
Interpretation: “Fictitious play” against the environment with vanishing perturbations.
Connections: Approachability (Blackwell), SFP.
Scope: applies to arbitrary state sequences (adversarial or stochastic).
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Overview
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Learning in Games

Convergence issues of the learning in games:

Generalised FP: if converge, asymptotic behaviour is Nash-like; but convergence
not assured.

Similar issues with replicator dynamic and other models.

Foster and Vohra (1997 GEB): different learning basis — calibration — yields different
solution concept — correlated equilibrium.

Calibration: from learning literature (Dawid 1982 JASA)

Suppose that, in a long conceptually infinite sequence of weather forecasts, we
look at all those days for which the forecast probability of precipitation was, say,
close to some given value p and assuming these form an infinite sequence deter-
mine the long run proportion p of such days on which the forecast event rain in
fact occurred. The plot of p against p is termed the forecaster’s empirical calibra-
tion curve. If the curve is the diagonal p = p, the forecaster may be termed well
calibrated.

Approachability, Calibration, Adaptive Algorithms, and
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Calibrated Learning: Setup

Stage game
Players i € {1,2}; actions A; finite; A = A7 x As.
Payoffsu;: A — R.
Repeated play (t =1,2,...)
History H; := AT, H = UiH;.
Strategies o; : H — A(A)); realised actions a; = (a1, a2;4)-
Empirical distribution 5; € A(A): &¢(@) = Y s<t a,-a)-
Forecasts and behaviour
Player i's forecasting rule fﬂ, :H — A(A_)); issues forecasts fﬂ,(hr) = Gi_[’t € AAL).
Myopic best replies: a;; € arg max ui(af, c’_,)

i

Fix a deterministic tie-breaking rule.

Approachability, Calibration, Adaptive Algorithms, and
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Calibration (Partition Version)

{ Definition

Fix finite partition IT; = {B’i,}f:1 of A(A-;) and representative 65[ € BX. Fort > 1set

k ._ =k ] ENK S0 ow =
Ni,f o= Z 1{011’5685,}' (L,-’t(a,,') o= NT Z 1{5’,,»’5682} 1{87,’5:87,} |f Nf,f > 0, oW = 0
s<t it s<t

The forecasting rule is calibrated (wrt (a_;;) on IT;) if for every k

N«
: =k k s _
1‘ler] ”G’il - Gﬁ“it =0.
—00

K

Intuition: on subsequence when o’;, € BX,,

Kk
Zj

Refining IT; (mesh | 0) yields full calibration on A(A-)).

empirical conditional frequency of a_;;
matches ¢

Approachability, Calibration, Adaptive Algorithms, and
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Existence of Calibrated Forecasters

Proposition (Foster and Vohra 1997 GEB)

For any finite partition I, there exists a (possibly randomised) forecasting scheme fﬂ,- :
H — A(A-;) that is calibrated on IT; a.s.

Proof idea (via Blackwell approachability)

Build calibration vector z; € RK-! with components
- k
zi(ka-i) =1y epry (Ma_y=a_y ~ 0=i(@-1)).
Calibration vector average: Z; == > o Zs/t
Target set C := R¥-1.
Note that d(Z;,C) — 0 <— Zx(k,a-;) < cﬁ,-(a_;) Va_; and k : lim¢_ oo th/t >0
< Zoo(kay) = c’i,(a,,-)

At step t, choose e forecast cell k (i.e. Gi_,-’t € Bk) to satisfy Blackwell's separation for
the current average Z;—q.

Blackwell = Z; — 0 a.s. on each active cell k = calibration on I1;.

Approachability, Calibration, Adaptive Algorithms, and
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Calibration via Blackwell Approachability: Vector Game

Fix finite forecast menu S = {c_,, . ,,c’f} C A(A_)) that contains all pure actions {ea_}.
At t, forecaster chooses index k; € {1,.. ., K} (announces c ) Nature chooses
a-jt €A
Stage vector payoff z; ¢ RK- with blocks z;(k, -) € RA-":
zi(k,a-) = Tgo-ky (1{a_u=a_,) - 05/(8—1))»
Averaging gives (for each k)

; Ni(K) /_ - > os<t M=k Wo_o=a,
2k) = MO (5= k), M= SN (e = S e,
s<t

Target set C = {0} c RAA-1

Goal: Z; — 0 a.s. < foreachk, HGr Al il - Ne(k)/t — 0 (partition calibration on S).

Approachability, Calibration, Adaptive Algorithms, and
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Separation and Control Rule (choose k¢)

Separation at current average

Let x = Z; € RK-l and write its k-block as x;, € RA-1.
If we announce cell k and Nature uses A_; € A(A-;), then
Elzi | Hin kAol - x = (Ao = 65) - xq.
Choose an index k; such that its fixed representative is a maximiser of the linear form
q = X, - g over the whole simplex:

k
G, € argmaxxy, - g.
qeAA-)
This exists because a linear form on A(A-;) is maximised at an extreme point; since all
pure actions are in S, we can take c’f‘i = gj- where j* € argmax,_ Xy, (a-;).

Then for every A_,,

sup  Elz [ Hiq, ke Aol - x = (max Xy, - Aoj) = X, - G’i’, < 0.
A €A(AL) =

Conclusion

The origin C = {0} satisfies Blackwell's separation condition for this control rule. Hence

AB_ o o o e +Appreachability.Calibration Adaptive Algorithms, and
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From Approachability to Calibration (on S)

Blackwell's theorem (bounded vectors) = Z; — 0 a.s.

For each k:

_ Ni(K) /2
Zi(k, ) = #(k’f -o*) —0,
hence | - o)l - M) 0.
Calibration (partition version): the forecast is calibrated w.r.t. the (finite) forecast menu

S actually used.

If both players best reply to their calibrated forecasts, standard Foster—Vohra argument
= the empirical distribution of play is a (coarse) correlated equilibrium; with
vanishing mesh grids, obtain correlated equilibrium.
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Implementation Recipe (what to compute each period)

At the start of period ¢

Maintain x = Z;—q and its blocks x.

For each k whose representative is pure ea, compute x,(a).

Pick k; with representative ckf = ea« Where a* € argmax;, x, (a).
Announce forecast <5,,v‘ : 7,, ; play a myopic best reply to this forecast (for the “learning
— CE” part).

Update z; and the running average.

Remark

To move from calibration on a finite menu S to e-calibration on A(A-), take S to be a
fine grid (mesh < &) together with all pure actions. The same separation rule works.
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Existence of Calibrated Forecasters

Separation step and control rule

Let x = Z_ € RKA1 Target set € := RK-1 Projection y := 0 A x; normal x - y = x*.
If we announce cell k (i.e. forecast o ;) and Nature uses A_; € A(A;), then
[Zt|Ht‘Ik7LI]_ek®(7\'* G—/)
where e is k-th basis vector and ® concatenates |A_-block at k.

For Blackwell's approachability, need: Elz; | Hi1.kA_]-x" = (A - ) x; <0,
V- € A(A_;), where xj is the k-block of x*. This holds iff o~ € argmaxx; - q.
qeAA-)
Rule at time t: compute x;, for each k and choose
ki € arg Itnaxxz . c/i,-, then forecast ci_,‘t = c’f,..
Then for every A_;, (A—; — ) Xy <0 = Blackwell separation at x.

Implementation remark

Include all pure actions among representatives {c© J since A_j — xk A_j is linear,

maximiser can be taken pure, ensuring argmax is available.
Approachability, Calibration, Adaptive Algorithms, and
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Correlated Equilibrium

Definition (correlated equilibrium)

7 € A(A) is a correlated equilibrium if for all maps Fq : A — Ajand Fp 1 Ay — Ay,

Zn(a) [u1(a) — u1(Fr(aq).a2)] >0, Zﬂ(a) [u2(a) — up(aq, Fa(a2))] > 0.

a a

Equivalent to Aumann'’s “no profitable deviation conditional on signal”.
Denote the set by CE.

Approachability, Calibration, Adaptive Algorithms, and
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Calibrated Learning = Correlated Equilibrium

Theorem (Foster and Vohra 1997)

Suppose each player uses a calibrated forecasting scheme (on arbitrarily fine partitions)
and in each t plays a myopic best reply to their forecast (fixed tie-breaking). Then every
limit point of (D) lies in CE.

Proof

For player 1, define best-reply regions My(aq) := {g € A(A2) : a1 € argmax,, >-,, q(az)ur(xy,
By tie-breaking, whenever p; € BX C M, (a1), player 1 plays ay.

Calibration on IT = conditional empirical law of a;; given {p; € BN} converges to G
hence any limit & satisfies n(- | a1) € Mq(a;) whenever n(a;) > 0.

Symmetrically for player 2: (- | ap) € My(as) if n(ap) > 0.
These conditions are equivalent to the CE inequalities — = € CE.
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Attainability of Any Correlated Equilibrium

Theorem (Foster and Vohra 1997)

For any m* € CE there exist calibrated forecasters and myopic best replies such that
D¢ — m* (all limit points equal T*).

Construct partitions and representatives matching n*'s conditionals; calibrate to them.

Best replies implement the recommended supports; empirical play tracks ©*.

Approachability, Calibration, Adaptive Algorithms, and
Gongalves (UCL) Sophisticated Learning 40



From Calibration to CE: Details

Write D¢(aq, -) for row-aq. If liminf; >a, Dy(aq,a2) > 0, then along any convergent
subsequence Dy, — ,
Dtk (811 )
> s, Dy (@r,a2)
Hence 3, m(aq,a2)[u1(a1,82) — u1(xq,@2)] > 0 for all x;.

— g™ € My(ay).

Do the same for player 2; collect the inequalities to obtain the CE conditions.
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Constructing Calibrated Forecasts (Procedure)

Fix partition IT = {8} with representatives (q¥).
Maintain running average z;_; € Rf¥2! of calibration vectors z;(k, a,).
Forecast rule (Blackwell step):
If Zi—1 € C (all active components near 0), pick any k.
Else letx™ = (Z;-1)"; choose k that minimises »~, x” (k, a2) qk(az); setp; € BX.
Guarantees: Z; — 0 a.s. on all active k = calibration on IT.

Refining IT over time (mesh | 0) yields full calibration.
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Interpretation and Links

Meaning of calibration: whenever you forecast p, reality looks like p on that
subsequence.

Behavioural content: minimal discipline on beliefs + myopic optimality =— CE.

Internal vs external regret: no internal regret also leads to CE (contrast with
calibration-based route).

Design/selection: by designing calibrated grids, any target t* € CE can be attained.
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Uniform Calibration (Refinement Limit)

{ Definition (uniform e-calibration)

Aforecast sequence (p;) is e-calibrated if there exist points q', . . ., g with maxa, miny Ip(p2.
qX(ap)l < eforall p € A(Ay) and

K
limsup > w max | rf(a2) - q¥(a) | <e.

t—oo k=1

Existence for all € > 0; letting € | 0 yields full calibration.

Compatible with the approachability construction by refining the partition.
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Calibrated learning procedure: learning procedure such that in the long run each action is
a best response to the frequency distribution of opponents’ choices in all periods in
which that action was played

Foster Vohra 1997 GEB, Calibrated Learning and Correlated Equilibrium

Foster Hart 2018 GEB, Smooth calibration, leaky forecasts, finite recall, and Nash
dynamics

Foster Hart 2021 JPE, Forecast Hedging and Calibration
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The first study of no-regret strategies was conducted by Hannan [1957]. The connection
between no-regret strategies and the concept of approachable sets was first made by
Hart and Mas-Colell [2000]. Several studies, including Foster and Vohra [1997] and
Fudenberg and Levine [1999], define no-regret in a stronger form than the one presented
here. Rustichini [1999], Lugosi, Mannor, and Stoltz [2007], and Lehrer and Solan [2007]
studied no-regret strategies under which the decision maker does not know the true
state of nature, but receives information that depends on the state of nature and the
chosen action.

Approachability, Calibration, Adaptive Algorithms, and
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Overview

4. Adaptive Algorithms



Papers: Hart Mas-Colell 2003 AER, Uncoupled Dynamics Do Not Lead to Nash
Equilibrium

*Hart 2005 Ecta, Adaptive Heuristics

Foster Young 2006 TE, Regret testing. learning to play Nash equilibrium without knowing

you have an opponent
Papers on reinforcement learning and Q-learning
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Sophisticated Learning

What is players are Bayesian wrt gameplay and engage in sophisticated learning?

Approachability, Calibration, Adaptive Algorithms, and
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Sophisticated Learning

What is players are Bayesian wrt gameplay and engage in sophisticated learning?

Two papers:
Kalai and Lehrer (1993 Ecta) “Rational Learning Leads to Nash Equilibria”
Kalai and Lehrer (1993 Ecta) “Subjective Equilibrium in Repeated Games”

(Will favour Fudenberg and Levine's “sophisticated learning” terminology.)
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Stage Game and Repeated Interaction

Playersi € | ={1,...,n}; actions 4; (finite). Profile A = x;A;.
Payoffs u; : A — R. One-period outcome a' = (a!); € A.
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Stage Game and Repeated Interaction

Playersi € | ={1,...,n}; actions 4; (finite). Profile A = x;A;.

Payoffs u; : A — R. One-period outcome a' = (a!); € A.

Repeated game: infinite horizon, perfect monitoring, discounts §; € (0,1).
Histories h = (@°,...,a" ") € H' := A H = UisoH' D at t = 0.

Behavioural strategies o; = (0j4);>0, With 6j; : H' — AA)).

Strategy profile 6 = (;);. Outcome law p° on Q := AN (product c-algebra).

Approachability, Calibration, Adaptive Algorithms, and
Gongalves (UCL) Sophisticated Learning 49



Stage Game and Repeated Interaction

Playersi € | ={1,...,n}; actions 4; (finite). Profile A = x;A;.

Payoffs u; : A — R. One-period outcome a' = (a!); € A.

Repeated game: infinite horizon, perfect monitoring, discounts §; € (0,1).
Histories h = (@°,...,a" ") € H' := A H = UisoH' D at t = 0.

Behavioural strategies o; = (0j4);>0, With 6j; : H' — AA)).

Strategy profile 6 = (;);. Outcome law p° on Q := AN (product c-algebra).
History concatenation: hh' € H™ :h e H, ' e H'.

Continuation histories starting from hy: C(hy) := {h’" € H*> | (h:h") € H*}.
Filtration (), Ft := o({h}).

Normalised expected discounted payoff:

Ui0) = (1~ 8)Eus [ > 8 ui(ah)].

t>0
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Beliefs, Absolute Continuity, and Payoffs

Player i's conjectures/degenerate beliefs about opponents’ strategies csﬂ,-.
Induces belief ; = u®i on Q.

Player i's prior v; on opponents’ strategies o—; (Actual uncertainty).
Induces belief w; on Q via 6_; — p(ei6-1),

For v;, expected conjecture: 6;(h)(a;) = Es_ v, [6-i(h)(@-))].

Player i's Subjective joint strategy: o= (o}, c’_,).
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Beliefs, Absolute Continuity, and Payoffs

Player i's conjectures/degenerate beliefs about opponents’ strategies csﬂ,-.
Induces belief ; = u®i on Q.

Player i's prior v; on opponents’ strategies o—; (Actual uncertainty).
Induces belief w; on Q via 6_; — p(ei6-1),

For v;, expected conjecture: 6;(h)(a;) = Es_ v, [6-i(h)(@-))].

Player i's Subjective joint strategy: ¢ = (o, c’_,).

Truth-compatibility (absolute continuity): u° < y; foralli.
(e, u°(E) >0 = w(E) > 0 for any ui-measurable E.)

Posteriors: after h!, update (- | h') by Bayes (well-defined by abs. cont.).
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Beliefs, Absolute Continuity, and Payoffs

Player i's conjectures/degenerate beliefs about opponents’ strategies csﬂ,-.
Induces belief ; = u®i on Q.

Player i's prior v; on opponents’ strategies o—; (Actual uncertainty).
Induces belief w; on Q via 6_; — p(ei6-1),

For v;, expected conjecture: 6;(h)(a;) = Es_ v, [6-i(h)(@-))].

Player i's Subjective joint strategy: ¢ = (o, c’_,).

Truth-compatibility (absolute continuity): u° < y; foralli.
(e, u°(E) >0 = w(E) > 0 for any ui-measurable E.)

Posteriors: after h!, update (- | h') by Bayes (well-defined by abs. cont.).
Rationality path: each period t, o;; is a best response to (- | hY).

Induced strategy: for histories h,h’ € H, denote o, (h’") := o(hh’) (strategy following h for

H).
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Closeness and “Plays e-Like"

Definition (¢-close measures)

Fore >0, nis e-close to fi if 3Q with u(Q), i(Q) > 1-¢es.t. V measurable A C Q,

(1-e)fi(A) < u(A) < (1+e)ji(A).
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Closeness and “Plays e-Like"

Definition (¢-close measures)

Fore >0, nis e-close to fi if 3Q with u(Q), i(Q) > 1-¢es.t. V measurable A C Q,

(1-e)fi(A) < u(A) < (1+e)ji(A).

Definition (plays ¢-like)

A profile o plays e-like ¢’ if p° is e-close to u"'; equivalently, after any h, the conditional
laws are e-close on a large-probability subset.

Approachability, Calibration, Adaptive Algorithms, and
Gongalves (UCL) Sophisticated Learning 51



Closeness and “Plays e-Like"

Definition (¢-close measures)

Fore >0, nis e-close to fi if 3Q with u(Q), i(Q) > 1-¢es.t. V measurable A C Q,

(1-e)fi(A) < u(A) < (1+e)ji(A).

Definition (plays ¢-like)

A profile o plays e-like ¢’ if p° is e-close to u"'; equivalently, after any h, the conditional
laws are e-close on a large-probability subset.

Controls conditional probabilities on tails; prevents cumulative small-error blowup
across time.
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Learning to Predict Future Play

Theorem 1 (Learning to predict)

Fix actual strategy o and player i's subjective joint strategy o = (o}, 0 ,,) If u° < u
then for every € > 0 and for u®-a.e. pathh € H*, 3T s.t. vt > T, continuation op, plays
elike o}, .
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Learning to Predict Future Play

Theorem 1 (Learning to predict)

Fix actual strategy ¢ and player i's subjective joint strategy ¢ := = (o}, 0 ,,) If u° < u
then for every € > 0 and for u®-a.e. pathh € H*, 3T s.t. vt > T, continuation op, plays

-,
elike oy, .

Posterior forecasts of future play (conditional on realised history) merge with truth.
No optimality required here; this is a property of Bayesian updating under abs. cont.
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Merging via Likelihood Ratios

Theorem 3 (Blackwell and Dubins, 1962)

If L < fi, then with p-probability 1, for every € > 0 there exists random time t(g) such
that for all t > 1(¢) the posteriors u(- | 7) and fi(- | ;) are e-close.
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Merging via Likelihood Ratios

Theorem 3 (Blackwell and Dubins, 1962)

If L < fi, then with p-probability 1, for every € > 0 there exists random time t(g) such
that for all t > 1(¢) the posteriors u(- | 7) and fi(- | ;) are e-close.

If people start off with compatible priors, posteriors become arbitrarily close after
exposed to enough information.
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Merging via Likelihood Ratios

Theorem 3 (Blackwell and Dubins, 1962)

If L < fi, then with p-probability 1, for every € > 0 there exists random time t(g) such
that for all t > 1(¢) the posteriors u(- | 7) and fi(- | ;) are e-close.

If people start off with compatible priors, posteriors become arbitrarily close after
exposed to enough information.

Proof Idea

Radon-Nikodym derivative ¢ = g—g exists; set My = Eglo | Fl.

(M) is a nonnegative fi-martingale; My — Moo a.s.

Control likelihood ratios on Q with u(Q), fi(Q) ~ 1.

Translate bounds to conditionals on continuation histories C(h'); conclude e-closeness.
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Subjective e-Equilibrium

Definition (Subjective e-equilibrium)

A profile o = (o)); is a subjective e-equilibrium if there exist beliefs ¢’ = (o;, G[_f) with:
j
_I'l

o; is a best response to ¢_;, for every |

o plays e-like &, for every i,
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Subjective e-Equilibrium

{ Definition (Subjective e-equilibrium)

A profile o = (o)); is a subjective e-equilibrium if there exist beliefs ¢’ = (o;, G[_f) with:
o, is a best response to G’_,, for every i;

o plays e-like &, for every i,

Corollary 1

If each o; best responds to ci_, and 6 < & for all i, then for a.e. path h 3T st. vt > T,
the continuation oy, is a subjective e-equilibrium.
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Subjective e-Equilibrium

Definition (Subjective e-equilibrium)

A profile o = (o)); is a subjective e-equilibrium if there exist beliefs ¢’ = (o;, G[_f) with:
j
_I'l

o plays e-like &, for every i,

o; is a best response to ¢_;, for every |

Corollary 1

If each o; best responds to ci_, and 6 < & for all i, then for a.e. path h 3T st. vt > T,
the continuation oy, is a subjective e-equilibrium.

Proof Idea

Fixe > 0; for u®-a.e. h 3T st.Vt > T, o, plays e-like 0;‘71 for each i (Theorem 7).

By rationality, at every t player i plays a best response to (- | hy).

Merging == those best responses are e-best responses to true continuation u°(- | hy).
Both (supporting beliefs & closeness) = subjective e-equilibrium from time T.
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From Subjective to (Approximate) Nash

Proposition 1

Forevery e > 0,3dn > 0 : if o is a subjective n-equilibrium then 36* s t.
(i) o plays elike 6*;

(i) o* is an e-Nash equilibrium of the repeated game.
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From Subjective to (Approximate) Nash

Proposition 1

Forevery e > 0,3dn > 0 : if o is a subjective n-equilibrium then 36* s t.
(i) o plays elike 6*;

(i) o* is an e-Nash equilibrium of the repeated game.

Idea: under perfect monitoring and known own payoffs, adjust off-path prescriptions to
align incentives while preserving realisations up to €.
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From Subjective to (Approximate) Nash

Proposition 1

Forevery e > 0,3dn > 0 : if o is a subjective n-equilibrium then 36* s t.
(i) o plays elike 6*;
(i) o* is an e-Nash equilibrium of the repeated game.

Idea: under perfect monitoring and known own payoffs, adjust off-path prescriptions to
align incentives while preserving realisations up to €.

Proof Idea

Fixm > 0 small. Given subjective n-equilibrium o, modify off-path prescriptions s.t.
unilateral deviations trigger responses that keep the deviator's continuation payoff

within € of best-reply payoff.

Perfect monitoring = changes leave realisations e-close.

Resulting ¢* is an e-best reply for each player: 6* is an e-Nash equilibrium; and & plays
e-like o™.
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Main Theorem: Rational Learning = Nash Play

Theorem 2 (Kalai and Lehrer 1993)

Suppose each o; best responds to G’_, and p° < u"l for alli. Then for every € > 0 and
for u®-a.e. path h, 3T s.t. vt > T there is an e-Nash equilibrium o® of the repeated game
with o, playing e-like c°.
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Main Theorem: Rational Learning = Nash Play

Theorem 2 (Kalai and Lehrer 1993)

Suppose each o; best responds to G’_, and p° < u"l for alli. Then for every € > 0 and
for u®-a.e. path h, 3T s.t. vt > T there is an e-Nash equilibrium o® of the repeated game
with o, playing e-like c°.

Proof Idea

1) Theorem 1 = eventually correct forecasts (merging).
2) Best responses to beliefs = e-best responses to truth (large t).

3) Proposition T = approximate Nash play along the realised path.
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Absolute Continuity and Bayesian Nash Equilibrium

Bayesian Nash equilibrium (BNE): in incomplete information (finite type space), each
o; maximises expected utility given beliefs over types and strategies.

At a BNE of the repeated game, priors give a grain of truth: realised play has positive
probability under beliefs = absolute continuity holds.

Application: starting from a BNE, players eventually play (approximately) a Nash
equilibrium of the realised complete-information repeated game.
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Meaning and Interpretation

What converges? Not actions each period, but forecasts of future play; behaviour is
best response to (nearly) correct forecasts.

Why it matters: ensures long-run play consistent with Nash discipline without common
knowledge of rationality or equilibrium selection.

Learning vs commitment: players learn the environment they face (others’ strategies),
not a fixed state of nature.

Role of absolute continuity: bans dogmatic zero-probability beliefs about realised
events; makes Bayes informative.

Learning: with merging, each player’s beliefs about future play match the truth;
subjective e-equilibrium obtains on-path.
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Incomplete Information on Payoffs

Bayesian Nash starting point

In a repeated game with finitely many payoff types, if play starts at a Bayesian Nash
equilibrium, then eventually players play (approximately) a Nash equilibrium of the re-
alised complete-information repeated game.

Grain of truth at BNE = abs. cont.; merging = correct forecasts; best responses
= near-NE of realised environment.
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Fudenberg and Levine (1998; 2009 ARE): Main Critique

Endogeneity of absolute continuity: abs. cont. must hold for the realised path under
the true play; ensuring this is itself an equilibrium-like fixed-point problem.

Grain of truth: wanting priors that always put positive mass on the truth is impossible
in rich (uncountable) environments; workable classes may be very restrictive.

Interpretation caution: Kalai and Lehrer (1993 Ecta) shows a consistency result
conditional on abs. cont.; not a general path-to-equilibrium selection theory.

Comparative statics: results sensitive to prior support assumptions; small changes
can break abs. cont. and merging conclusion.

Bottom line: powerful when abs. cont. holds (e.g., BNE start with finite types), but
limited as a general behavioural foundation without specifying priors.

“Our interest here, however, is in “learning models,” by which we mean that the allowed
priors are exogenously specified, without reference to a fixed point problem.”
Fudenberg and Levine (1998)
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Takeaways

Under absolute continuity, Bayesian learning merges beliefs with the truth along
realised play.

Rational (best-reply) control with merged beliefs = eventual (approximate) Nash
play.

At BNE with finite types, eventual play tracks an NE of the realised
complete-information game.

Abs. cont. is strong and endogenous; use with care as general foundation for learning
in games.
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