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Learning in Games

How do people get to play equilibrium?
Main question of interest in ‘learning in games’ (̸= games with learning)

Goals
Provide foundations for existing equilibrium concepts.
Capture lab behaviour.
Predict adjustment dynamics transitioning to new equilibrium.
(akin to ‘impulse response’ in macro; uncommon but definitely worth
investigating)

Select equilibria.
Algorithm to solve for equilibria.
Explain persistence of heuristics/nonequilibrium behaviour.
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Approachability

Setup:
Two players face repeated game. m-dimensional goal/multi-utility representation.
Goal of each player: control average vector of attributes s.t. approaches/excludes
(keeps away) target set S ⊂ Rm.

Brief detour: rationalising multi-utility.
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Multi-Utility Representation

≿⊆ X2: preorder (reflexive, transitive).

Want to allow for incompleteness.
x and y are incomparable if ¬(x ≿ y or y ≿ x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Definition

For any binary relation ≿ on X with symmetric part ∼, for any x ∈ X, x’s equivalence
class is [x] := {y ∈ X|x ∼ y} and the set of equivalence classes X̂ := {[x], x ∈ X}.

Remark

For any preorder ≿ on X, let ≿̂ on X̂ : ∀x, y ∈ X : [x]≿̂[y] if x ≿ y. Then, ≿̂ is partial order.
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Multi-Utility Representation

≿⊆ X2: preorder (reflexive, transitive).

Want to allow for incompleteness.

x and y are incomparable if ¬(x ≿ y or y ≿ x). Ow, they are comparable.
E.g., choice by unanimity, incomparable attributes.

Set of all linear extensions of ≿̂ on X: L(X̂, ≿̂).

Szpilrajn’s Theorem: any partial order can be extended to a linear order.
Remark 1: =⇒ L(X̂, ≿̂) ̸= ∅.
Remark 2: ≿̂ = ∩≥̃∈L(X̂,≿̂)≥̃.

Order dimension: dim(X,≿) := min{k ∈ N| ≥i∈ L(X̂, ≿̂), i = 1, ..., k : ≿̂ = ∩k
i=1 ≥i}.

dim(X,≿): min number of linear extensions of ≿̂ whose intersection yields ≿̂.
Examples:
≿̂ is linear order on X iff dim(X,≿) = 1.
If no distinct x, y are comparable (≿̂ is antichain) and dim(X,≿) = 2 since
≿̂ =≥ ∩ ≤.

If X = 2A and |A| = ∞, then dim(X,⊆) = ∞.
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Multi-Utility Representation

Definition

≿⊆ X2 admits a multi-utility representation u : X → Rm with m ∈ N iff ∀x, y ∈ X, x ≿

y ⇐⇒ u(x) ≥ u(y).

Proposition 1 (Ok 2002 JET)

Let ≿ be preorder on X.
(1) ≿ admits a multi-utility representation u only if dim(X,≿) < ∞.
(2) If X̂ countable, ≿ admits a multi-utility representation u if and only if dim(X,≿) < ∞.

Alternative (social) interpretation: ∃U ⊂ RX such that x ≿ y ⇐⇒ u(x) ≥ u(y)∀u ∈ U.

Proof Idea

Take X finite. Let ux(y) = 1{y≿x}. u(y) = (ux(y))x∈X .

Let x ≿ y. (a) ∀z ∈ X : (uz(x) = 0) ⇐⇒ (z ≿ x) =⇒ (z ≿ y) ⇐⇒ (uz(y) = 0)

(b) ∀z ∈ X : (uz(y) = 1) ⇐⇒ (y ≿ z) =⇒ (x ≿ z) ⇐⇒ (uz(x) = 1).

(a) + (b) =⇒ u(x) ≥ u(y).
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Multi-Utility Representation

Definition

≿⊆ X2 admits a multi-utility representation u : X → Rm with m ∈ N iff ∀x, y ∈ X, x ≿

y ⇐⇒ u(x) ≥ u(y).

Proposition 1 (Ok 2002 JET)

Let ≿ be preorder on X.
(1) ≿ admits multi-utility representation u only if dim(X,≿) < ∞.
(2) If X̂ countable, ≿ admits a multi-utility representation u if and only if dim(X,≿) < ∞.

Proposition 2 (Ok 2002 JET)

(a) X0 = ×k
i=1Xi, with Xi be metric space and ≿i be preorders on Xi, i = 0, 1, ..., k;

(b) Each Xi is s.t. {yi | yi ≻i xi} is open for every xi ∈ Xi and i = 1, ..., k; and

(c) x ≿0 y ⇐⇒ xi ≿i yi ∀i = 1, ..., k.
If X0 admits a countable≿0-dense subset, then≿0 admits amulti-utility representation
u which is continuous in the product topology.
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Approachability

Setup:
Two players face repeated game. m-dimensional goal/multi-utility representation.
Goal of each player: control average vector of attributes s.t. approaches/excludes
(keeps away) target set S ⊂ Rm.

Back to approachability... Blackwell (1956). Good reference: Maschler, Solan, Zamir
(2013 Book, Ch. 14).

Actions: Ai; Stage-Game Payoffs: u1 : A1 × A2 → Rm u2 := –u1; (endowed with
d(x, y) = ∥x – y∥2);

Histories: Ht := At, H := ∪tHt; Strategies: σi : H → ∆(Ai); λi ∈ ∆(Ai).

Expected Payoffs: ui(λi, λ–i) =
∑

ai

∑
a–i

λi(ai)ui(ai, a–i)λ–i(a–i) ∈ Rm.

Feasible Expected Payoffs for λi: Ui(λi) := {ui(λi, λ–i), λ–i ∈ ∆(A–i)} ⊆ Rm.

Average Payoff: ūi,t = 1
t
∑t

ℓ=1 ui(at).

Feasible Avg Payoffs: co(ui) := co({ui(a), a ∈ A}) ⊆ Rm.
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Approachability

Definition

C ⊆ Rm is

approachable by player i if ∃σi s.t. ∀ε > 0, ∃T : ∀σ–i, Pσ(d(ūt,C) < ε,∀t ≥ T) > 1 – ε; in
this case, σi approaches C for player i; and

excludable by player i if ∃δ s.t. set Cc
δ
:= {x | d(x,C) ≥ δ} is approachable by player i; if

strategy σi approaches Cc
δ
, then it excludes C for player i.

Approachable by a player if can guarantee that average payoff approaches the set wp1
uniformly over opponent’s strategies: Pσ(limt→∞ d(ūt,C) = 0) = 1.

Remark

(1) If σi approaches (resp. excludes) C, then it approachers (resp. excludes) the clo-
sure of C.

(2) C cannot be approachable by one player and excludable by the other.
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Hyperplanes

Definition

Hyperplane H(a, b) := {x ∈ Rm | a · x = b}.
Half-spaces: H+(a, b) := {x ∈ Rm | a · x ≥ b}, H–(a, b) := {x ∈ Rm | a · x ≤ b}.

H+(a, b) ∩ H–(a, b) = H(a, b).

H+(a, b) = H–(–a, –b) and H(a, b) = H(–a, –b).

Definition

Hyperplane H(a, b) separates x from C if (i) x ∈ H+(a, b) \H(a, b) and C ⊆ H–(a, b), or (ii)
x ∈ H–(a, b) \ H(a, b) and C ⊆ H+(a, b).
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Hyperplanes

Remark

Hyperplane H(x – y, (x – y) · y):
(i) y ∈ H(x – y, (x – y) · y).

(ii) Orthogonal/Perpendicular to line passing through x and y, i.e. z ∈ H(x– y, (x– y) ·
y) ⇐⇒ (z – y) · (x – y) = 0.

(iii) y is point in H(x – y, (x – y) · y) closest to x: ∀z ∈ H(x – y, (x – y) · y), ∥x – z∥2 =
∥x – y∥2 + ∥y – z∥2. (Pythagorean theorem)

(iv) ∀ hyperplane H and x /∈ H, if y ∈ H is closest in H to x, then H = H(x– y, (x– y) · y).
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Separating Hyperplanes in the B-set Condition

C

x
yy′

Ui(λi)

H(y – x, ⟨y – x, y⟩)H(y′ – x, ⟨y′ – x, y′⟩)

Hyperplane H(y′ – x, ⟨y′ – x, y′⟩) separates x from Ui(λi).
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Approachability

Definition

Closed set C is B-set for player i if ∀x ∈ co(ui) \ C, ∃y ∈ C and λi ∈ ∆(Ai) s.t.
(1) y is closest to x in C: d(x, y) = d(x,C); and

(2) hyperplane H(x – y, (x – y) · y) separates x from Ui(λi):
(i) x ∈ H+(x–y, (x–y) ·y) \H(x–y, (x–y) ·y) and (ii) Ui(λi) ⊆ H–(x–y, (x–y) ·y).

(ii) is equiv. to ∀λ–i, (ui(λi, λ–i) – y) · (x – y) ≤ 0.

Theorem (Blackwell 1956)

If C is B-set for player i, then it is approachable by player i.
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Proving Approachability Theorem: One-Step Projection

C

y

ūi,t

Ui(λi)
E[ui,t+1]

E[ūi,t+1]

Setup for One Step

(1) Fix t ≥ 1. Let ūi,t–1 ∈ co(ui).

(2) If ūi,t–1 ∈ C, play anything (e.g., a1). Otherwise, let yt–1 ∈ C be a closest point:
d(ūi,t–1,C) = ∥ūi,t–1 – yt–1∥.

(3) By B-set, ∃ λi,t ∈ ∆(Ai) s.t. hyperplane H(ūi,t–1 – yt–1, (ūi,t–1 – yt–1) · yt–1) separates
ūi,t–1 from Ui(λi,t):

(ūi,t–1 – yt–1) ·
(
ui(λi,t, λ–i) – yt–1

)
≤ 0, ∀ λ–i ∈ ∆(A–i).

(4) Play λi,t at stage t.
Gonçalves (UCL)
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Proving Approachability Theorem: One-Step Projection Inequality

Key Inequality

Update: ūi,t = ūi,t–1 + 1
t
(
ui(at) – ūi,t–1

)
. Recall d(ūt–1,C) = ∥ūi,t–1 – yt–1∥.

Identity:

∥ūi,t – yt–1∥
2 = ∥ūi,t–1 – yt–1∥

2 + 2
t
(ūi,t–1 – yt–1) · (ui(at) – ūi,t–1) +

1
t2
∥ui(at) – ūi,t–1∥

2.

Write (ūi,t–1 – yt–1) · (ui(at) – ūi,t–1) = (ūi,t–1 – yt–1) · (ui(at) – yt–1) – ∥ūi,t–1 – yt–1∥2.

Conditional expectation: by separation,
E
[
(ūi,t–1 – yt–1) · (ui(at) – yt–1) | Ht–1

]
≤ maxλ–i (ūi,t–1 – yt–1) · (ui(λi,t, λ–i) – yt–1) ≤ 0.

Let L := maxa∈A ∥ui(a)∥ < ∞. Then E[∥ui(at) – ūi,t–1∥2 | Ht–1] ≤ 4L2.

Hence E
[
∥ūt – yt–1∥

2 | Ht–1
]
≤

(
1 – 2

t

)
∥ūi,t–1 – yt–1∥

2 + 4L2

t2
.

Since d(ūi,t,C) ≤ ∥ūi,t – yt–1∥, setting Vt := d(ūi,t,C)2 gives

E[Vt | Ht–1] ≤
(
1 – 2

t

)
Vt–1 +

4L2

t2
.
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t
(
ui(at) – ūi,t–1
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Identity:
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Hence E
[
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Since d(ūi,t,C) ≤ ∥ūi,t – yt–1∥, setting Vt := d(ūi,t,C)2 gives

E[Vt | Ht–1] ≤
(
1 – 2

t

)
Vt–1 +

4L2

t2
.

Gonçalves (UCL)
Approachability, Calibration, Adaptive Algorithms, and

Sophisticated Learning 14



Proving Approachability Theorem: One-Step Projection Inequality

Key Inequality
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Identity:
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Convergence of Non-negative Almost Supermartingales

Theorem (Robbins and Siegmund 1971)

Let (Ft) be filtration and (Vt)t≥0 be nonnegative, adapted. Suppose there are nonnega-
tive, Ft-adapted processes (ξt), (βt), (ζt) s.t.

E[Vt+1 | Ft] ≤ (1 + ξt)Vt – ζt + βt, t ≥ 0,

with
∑∞

t=0 ξt < ∞ and
∑∞

t=0 βt < ∞ a.s.

Then, Vt converges a.s. to a finite, nonnegative limit V∞, and
∞∑
t=0

ζt < ∞ a.s.

Going beyond Doob’s MCT: convergence for non-negative almost supermartingales.
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∞∑
t=0
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Corollary

If nonnegative (Vt) satisfiesE[Vt | Ht–1] ≤ (1–αt)Vt–1+βt with
∑

t αt = ∞ and
∑

t βt < ∞,
then Vt → 0 a.s.

Useful corollary: ξt = 0, ζt = αtVt with αt ∈ [0, 1]. If
∑

t αt = ∞, then V∞ = 0 a.s.

Since
∑

t αtVt < ∞; if
∑

t αt = ∞, only possible limit V∞ is 0.
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Proving Approachability Theorem: Concluding

Concluding the Proof of Blackwell’s Approachability Theorem

(1) Use the one-step choice λi,t from the B-set condition at ūi,t–1.

(2) E[Vt | Ht–1] ≤ (1 – 2
t )Vt–1 + 4L2

t2 .

(3) Take αt = 2
t (diverges) and βt = 4L2

t2 (summable).

(4) Robbins–Siegmund =⇒ Vt = d(ūt,C)2 → 0 a.s.

Theorem (Blackwell 1956)

If C is B-set for player i, then it is approachable by player i.

Strategy (Blackwell’s rule): at each t, project ūi,t–1 onto C, pick λi,t separating ūi,t–1 from
Ui(λi,t), play λi,t.
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Generalisations and Variations

Theorem (Blackwell 1956)

If C is B-set for player i, then it is approachable by player i.

Generalisations and Variations:
Lehrer (2002 IJGT): generalises Blackwell’s approachability theorem to
infinite-dimensional spaces.

Hou (1971 AMS): A closed set C is approachable by player i if and only if it contains
a B-set for player i.
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Overview

1. Learning in Games

2. Approachability
– Multi-Utility Representation
– Approachability
– Application: Picking Experts
– Universal Consistency

3. Calibration

4. Adaptive Algorithms

5. Sophisticated Learning



Application: Picking Experts

S states of nature. A actions. Payoffs u : A× S → R. Set of experts E.

Every period t,
(1) state st realises,
(2) each expert recommends action ae,t ∈ A,
(3) DM chooses which expert to follow et ∈ E and adopts their recommended action,
(4) payoffs realise, and DM observes st.
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Application: Picking Experts

S states of nature. A actions. Payoffs u : A× S → R. Set of experts E.

History: ht ∈ Ht := (S× A|E| × E)
t–1

(previous states, what each expert recommended,
expert chosen). H := ∪tHt

Strategy: σ : H → ∆(E). Distribution of st ∼ γt ∈ ∆(S).

Average payoff: ūT(σ, γ) := 1
T
∑

t≤T
∑

e σ(ht)(e)γ(s)u(ae,t, s).

Payoff from following particular expert e: ūT(e, γ).

Small problem: DM doesn’t know what experts actually know, whether have full info,
partial, no info, biased, etc.

Definition

DM’s σ is no-regret strategy if ∀e ∈ E and each sequence s1, s2, ...,

Pσ

(
lim inf
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ūt(σ, γ) – ūt(e, γ) ≥ 0
)

= 1.

Does no-regret strategy even exist? Can we characterise it?
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Application: Picking Experts

Theorem

The DM has a no-regret strategy.

Simplying assumption: |E| = |A| and for each e, ae,t = a for some different a.

Proof

Opponent: nature, choosing σ0 : H → ∆(S). C := R|E|
+ .

Let v(λ, γ) := (u(λ, γ) – u(e, γ))e∈E ∈ R|E| and v̄T := 1
T
∑

t≤T v(σ(ht),σ0(ht)). Regret vector:
no-regret ⇐⇒ lim inft v̄t ∈ C.

For x ∈ R|E|, projection onto C is y := x+ (positive part), and the normal is x– := y – x
(negative part).

Choose the Blackwell action at x: if
∑

e x
–
e > 0, set

λ
x(e) := x–e∑

e′ x–e′
(put weight on experts relative to which you are behind),

and any λ
x if x ∈ C.
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Application: Picking Experts – Proof (via Blackwell)

Proof

σ0 : H → ∆(S). C := R|E|
+ . v(λ, γ) := (u(λ, γ) – u(e, γ))e∈E ∈ R|E|; v̄T := 1

T
∑

t≤T v(σ(ht),σ0(ht)).

For x ∈ R|E|, y := x+, x– := y – x. For ¬(x ≥ 0), set λ
x(e) := x–e∑

e′ x–e′
.

For any opponent choice γ ∈ ∆(S),
(i)¬(x ≥ 0) =⇒ ∥x–∥ = ∥x–y∥ > 0 =⇒ x ∈ H+(x–y, (x–y) ·y)\H(x–y, (x–y) ·y);
(ii) 0 ≥ (v(λx , γ)–y) · (x–y) = (x+–v(λx , γ)) ·x– = x+ ·x––v(λx , γ) ·x– = –v(λx , γ) ·x–.
Note that

x– · v(λx , γ) =
∑
e

x–e (
∑
e′

λ
x(e′)u(e′, γ) – u(e, γ))

=
∑
e′

∑
e x

–
e∑

e′′ x–e′′
x–e′u(e

′, γ) –
∑
e

x–e u(e, γ) =
∑
e′

x–e′u(e
′, γ) –

∑
e

x–e u(e, γ) = 0.

Hence C is a B-set. Blackwell’s theorem =⇒ v̄t approaches C a.s., i.e.,
lim inf
t→∞

(
ūt(σ,σ0) – ūt(e,σ0)

)
≥ 0 for all e ∈ E and any of nature’s moves σ0.

Strategy (implementable): compute current average regrets x := v̄t–1; if x /∈ C play λ
x.
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)
≥ 0 for all e ∈ E and any of nature’s moves σ0.

Strategy (implementable): compute current average regrets x := v̄t–1; if x /∈ C play λ
x.

Gonçalves (UCL)
Approachability, Calibration, Adaptive Algorithms, and

Sophisticated Learning 22



Application: Picking Experts – Proof (via Blackwell)

Proof

σ0 : H → ∆(S). C := R|E|
+ . v(λ, γ) := (u(λ, γ) – u(e, γ))e∈E ∈ R|E|; v̄T := 1

T
∑

t≤T v(σ(ht),σ0(ht)).

For x ∈ R|E|, y := x+, x– := y – x. For ¬(x ≥ 0), set λ
x(e) := x–e∑

e′ x–e′
.

For any opponent choice γ ∈ ∆(S),
(i)¬(x ≥ 0) =⇒ ∥x–∥ = ∥x–y∥ > 0 =⇒ x ∈ H+(x–y, (x–y) ·y)\H(x–y, (x–y) ·y);
(ii) 0 ≥ (v(λx , γ)–y) · (x–y) = (x+–v(λx , γ)) ·x– = x+ ·x––v(λx , γ) ·x– = –v(λx , γ) ·x–.
Note that

x– · v(λx , γ) =
∑
e

x–e (
∑
e′

λ
x(e′)u(e′, γ) – u(e, γ))

=
∑
e′

∑
e x

–
e∑

e′′ x–e′′
x–e′u(e

′, γ) –
∑
e

x–e u(e, γ) =
∑
e′

x–e′u(e
′, γ) –

∑
e

x–e u(e, γ) = 0.

Hence C is a B-set. Blackwell’s theorem =⇒ v̄t approaches C a.s., i.e.,
lim inf
t→∞

(
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Hannan (1957): Setting

Repeated decision problem
Actions A = {1, . . . , |A|}; states S = {1, . . . , |S|}.
Bounded stage payoff u : A× S → [0, 1].
At t: DM chooses at ∈ A; Nature reveals st ∈ S; payoff u(at, st).

Beliefs and empirical distribution
p̂t ∈ ∆(S): empirical distribution of (sℓ)ℓ≤t.
Bayes payoff of action a against p ∈ ∆(S): U(a, p) := Es∼p[u(a, s)].

Benchmark: (External) Regret

For any fixed a ∈ A, ūT(a) :=
1
T
∑
t≤T

u(a, st).

Average payoff: ūT(σ) :=
1
T
∑
t≤T

u(at, st).

No (External) Regret: lim inf
T→∞

(
ūT(σ) – max

a
ūT(a)

)
≥ 0 a.s.

External regret: comparison relative to swapping to fixed action.
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Hannan’s Procedure (1957)

Smoothed fictitious play

Fix a full-support νt ∈ ∆(S) iid and a sequence (γt) with γt ↓ 0 and
∑

t γt < ∞.

At t ≥ 1, form the smoothed empirical belief

pt := (1 – γt) p̂t–1 + γt νt.

Choose a Bayes action (or mixed Bayes rule) against pt:

at ∈ argmax
a∈A

u(a, pt)
(
or λt ∈ argmax

λ∈∆(A)

∑
a

λ(a)u(a, pt)
)
.

Ties are broken by a fixed rule; γt prevents zero exploration.

Interpretation: best respond to slightly perturbed empirical model;
perturbations vanish.
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Hannan Consistency

Theorem (Hannan 1957)

Under SFP with bounded payoffs and (γt) as above,

lim inf
T→∞

(
ūT(σ) – max

a∈A
ūT(a)

)
≥ 0 almost surely.

Equivalently, for every a ∈ A, lim inf
T→∞

(
ūT(σ) – ūT(a)

)
≥ 0 a.s.

Full-support νt ensures absolute continuity of beliefs; (γt) controls approximation error.
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Proof Idea

Key steps

Let vt(a) := u(at, st) – u(a, st); regret against a is v̄T(a) = ūT(σ) – ūT(a).

Conditional on Ht–1, at maximises u(·, pt), hence for all a,

E[vt(a) | Ht–1] = u(at, pt)–u(a, pt) +
(

E[u(at, st) – u(a, st) | Ht–1] – [u(at, pt) – u(a, pt)]
)

︸ ︷︷ ︸
model error

.

The first term ≥ 0 by optimality of at for pt.

Themodel-error term isO(γt) since pt–(1–γt)p̂t–1 hasmass γt and payoffs are bounded
in [0, 1].

Summing and dividing by T gives E[v̄T(a)] ≥ – 1
T
∑

t≤T c γt; with
∑

t γt < ∞,
lim infT E[v̄T(a)] ≥ 0.

A standard martingale SLLN upgrades to a.s. statements (bounded differences).
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Direct No-Regret via Approachability

History H = ∪tHt, Ht := (A× S)t–1. Strategy σ : H → ∆(A); Nature σ0 : H → ∆(S).

Define regret vector v(λ, γ) ∈ RA with v(λ, γ) := (u(λ, γ) – u(a, γ))a∈A.
v̄T := 1

T
∑

t≤T v(σ(ht),σ0(ht)).

Target set C = RA
+ ( no external regret ).

Let x ∈ R|A|, y := x+, x– := y – x, and choose

λ
x(a) = x–a∑

a′ x–a′
if x /∈ C, any λ

x if x ∈ C.

Then x– · E[rt | Ht–1] = 0 ≤ 0; C is a B-set =⇒ v̄T → C a.s.

Consequence: lim inf
T

(
ūT(σ) – ūT(a)

)
≥ 0 for all a.

Remark

Hannan (1957) and Blackwell (1956) yield same external no-regret guarantee; update
rules differ (smoothed best reply vs projection-based mixture).
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Implementation, Interpretation and Links

Choice of Smoothing and Rates:
Any full-support νt works; e.g. ν uniform on S.
Typical schedules: γt = t–1–ε (summable) for a.s. convergence via
almost-supermartingale; or γt ≍ t–1/2 for O(1/

√
T) expected regret.

Boundedness of u and tie-breaking rules ensure measurability and martingale
applicability.

Exploration: γt > 0 avoids being trapped by early noise; γt ↓ 0 removes bias.

Interpretation: “Fictitious play” against the environment with vanishing perturbations.

Connections: Approachability (Blackwell), SFP.

Scope: applies to arbitrary state sequences (adversarial or stochastic).
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Learning in Games

Convergence issues of the learning in games:
Generalised FP: if converge, asymptotic behaviour is Nash-like; but convergence
not assured.

Similar issues with replicator dynamic and other models.

Foster and Vohra (1997 GEB): different learning basis – calibration – yields different
solution concept – correlated equilibrium.

Calibration: from learning literature (Dawid 1982 JASA)
Suppose that, in a long conceptually infinite sequence of weather forecasts, we
look at all those days for which the forecast probability of precipitation was, say,
close to some given value p and assuming these form an infinite sequence deter-
mine the long run proportion ρ of such days on which the forecast event rain in
fact occurred. The plot of ρ against p is termed the forecaster’s empirical calibra-
tion curve. If the curve is the diagonal ρ = p, the forecaster may be termed well
calibrated.
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Calibrated Learning: Setup

Stage game
Players i ∈ {1, 2}; actions Ai finite; A = A1 × A2.
Payoffs ui : A → R.

Repeated play (t = 1, 2, . . . )
History Ht := At–1, H := ∪tHt.
Strategies σi : H → ∆(Ai); realised actions at = (a1,t, a2,t).
Empirical distribution σ̄t ∈ ∆(A): σ̄t(a) := 1

t
∑

s≤t 1{as=a}.

Forecasts and behaviour
Player i’s forecasting rule f i–i : H → ∆(A–i); issues forecasts f i–i(ht) = σ

i
–i,t ∈ ∆(A–i).

Myopic best replies: ai,t ∈ argmax
a′i

ui(a
′
i ,σ

i
–i)

Fix a deterministic tie-breaking rule.
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Calibration (Partition Version)

Definition

Fix finite partition Πi = {Bk
–i}

K
k=1 of ∆(A–i) and representative σ

k
–i ∈ Bk. For t ≥ 1 set

Nk
i,t :=

∑
s≤t

1{σi
–i,s∈Bk

–i}
, σ̄

k
–i,t(a–i) :=

1
Nk
i,t

∑
s≤t

1{σi
–i,s∈Bk

–i}
1{a–i,s=a–i} if N

k
i,t > 0; ow = 0.

The forecasting rule is calibrated (wrt (a–i,t) on Πi) if for every k

lim
t→∞

∥σ̄
k
–i,t – σ

k
–i∥

Ni,tk

t
= 0.

Intuition: on subsequence when σ
i
–i,t ∈ Bk

–i, empirical conditional frequency of a–i,t
matches σ

k
–i.

Refining Πi (mesh ↓ 0) yields full calibration on ∆(A–i).
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Existence of Calibrated Forecasters

Proposition (Foster and Vohra 1997 GEB)

For any finite partition Πi there exists a (possibly randomised) forecasting scheme f i–i :
H → ∆(A–i) that is calibrated on Πi a.s.

Proof idea (via Blackwell approachability)

Build calibration vector zt ∈ RK|A–i | with components

zt(k, a–i) := 1{σi
–i,t∈Bk

–i}
(
1{a–i,t=a–i} – σ

k
–i(a–i)

)
.

Calibration vector average: z̄t :=
∑

s≤t zs/t

Target set C := Rk|A–i |– .
Note that d(z̄t,C) → 0 ⇐⇒ z̄∞(k, a–i) ≤ σ

k
–i(a–i) ∀a–i and k : limt→∞ Nk

i,t/t > 0
⇐⇒ z̄∞(k, a–i) = σ

k
–i(a–i).

At step t, choose e forecast cell k (i.e. σ
i
–i,t ∈ Bk) to satisfy Blackwell’s separation for

the current average z̄t–1.

Blackwell =⇒ z̄t → 0 a.s. on each active cell k =⇒ calibration on Πi.
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Calibration via Blackwell Approachability: Vector Game

Fix finite forecast menu S = {σ1
–i, . . . ,σ

K
–i} ⊂ ∆(A–i) that contains all pure actions {ea–i }.

At t, forecaster chooses index kt ∈ {1, . . . ,K} (announces σ
kt
–i); Nature chooses

a–i,t ∈ A–i.

Stage vector payoff zt ∈ RK|A–i | with blocks zt(k, ·) ∈ R|A–i |:

zt(k, a–i) := 1{kt=k}
(
1{a–i,t=a–i} – σ

k
–i(a–i)

)
.

Averaging gives (for each k)

z̄t(k, ·) = Nt(k)
t

(
σ̄
k
t – σ

k
–i

)
, Nt(k) :=

∑
s≤t

1{ks=k}, σ̄
k
t (a–i) :=

∑
s≤t 1{ks=k}1{a–i,s=a–i}

Nt(k)
.

Target set C := {0} ⊂ RK|A–i |.

Goal: z̄t → 0 a.s. ⇐⇒ for each k, ∥σ̄
k
t – σ

k
–i∥ · Nt(k)/t → 0 (partition calibration on S).
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Separation and Control Rule (choose kt)
Separation at current average

Let x := z̄t–1 ∈ RK|A–i | and write its k-block as xk ∈ R|A–i |.

If we announce cell k and Nature uses λ–i ∈ ∆(A–i), then

E[zt | Ht–1, k, λ–i] · x = (λ–i – σ
k
–i) · xk.

Choose an index kt such that its fixed representative is a maximiser of the linear form
q 7→ xkt · q over the whole simplex:

σ
kt
–i ∈ argmax

q∈∆(A–i)
xkt · q.

This exists because a linear form on ∆(A–i) is maximised at an extreme point; since all
pure actions are in S, we can take σ

kt
–i = ej∗ where j∗ ∈ argmaxa–i

xkt (a–i).

Then for every λ–i,

sup
λ–i∈∆(A–i)

E[zt | Ht–1, kt, λ–i] · x =
(
max

λ–i
xkt · λ–i

)
– xkt · σ

kt
–i ≤ 0.

Conclusion

The origin C = {0} satisfies Blackwell’s separation condition for this control rule. Hence
C is a B-set and the forecaster can approach C a.s.Gonçalves (UCL)
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From Approachability to Calibration (on S)

Blackwell’s theorem (bounded vectors) =⇒ z̄t → 0 a.s.

For each k:

z̄t(k, ·) =
Nt(k)

t
(
λ̂
k
t – σ

k
–i
)
−−−→
t→∞

0,

hence ∥λ̂
k
t – σ

k
–i∥ ·

Nt(k)
t → 0.

Calibration (partition version): the forecast is calibrated w.r.t. the (finite) forecast menu
S actually used.

If both players best reply to their calibrated forecasts, standard Foster–Vohra argument
=⇒ the empirical distribution of play is a (coarse) correlated equilibrium; with
vanishing mesh grids, obtain correlated equilibrium.
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Implementation Recipe (what to compute each period)

At the start of period t

Maintain x = z̄t–1 and its blocks xk.

For each k whose representative is pure ea, compute xk(a).

Pick kt with representative σ
kt
–i = ea∗ where a∗ ∈ argmaxa xkt (a).

Announce forecastσ
i
–i,t := σ

kt
–i; play amyopic best reply to this forecast (for the “learning

→ CE” part).

Update zt and the running average.

Remark

To move from calibration on a finite menu S to ε-calibration on ∆(A–i), take S to be a
fine grid (mesh ≤ ε) together with all pure actions. The same separation rule works.
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Existence of Calibrated Forecasters
Separation step and control rule

Let x := z̄t–1 ∈ RK|A–i |. Target set C := RK|A–i |– . Projection y := 0 ∧ x; normal x – y = x+.

If we announce cell k (i.e. forecast σ
k
–i) and Nature uses λ–i ∈ ∆(A–i), then

E[zt | Ht–1, k, λ–i] = ek ⊗ (λ–i – σ
k
–i),

where ek is k-th basis vector and ⊗ concatenates |A–i|-block at k.

For Blackwell’s approachability, need: E[zt | Ht–1, k, λ–i] · x
+ = (λ–i – σ

k
–i) · x

+
k ≤ 0,

∀ λ–i ∈ ∆(A–i), where x+k is the k-block of x+. This holds iff σ
k
–i ∈ argmax

q∈∆(A–i)
x+k · q.

Rule at time t: compute x+k for each k and choose

kt ∈ argmax
k

x+k · σ
k
–i, then forecast σ

i
–i,t := σ

kt
–i.

Then for every λ–i, (λ–i – σ
kt
–i) · x

+
k ≤ 0 =⇒ Blackwell separation at x.

Implementation remark

Include all pure actions among representatives {σk
–i}; since λ–i 7→ x+k · λ–i is linear,

maximiser can be taken pure, ensuring argmax is available.
Gonçalves (UCL)
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Correlated Equilibrium

Definition (correlated equilibrium)

π ∈ ∆(A) is a correlated equilibrium if for all maps F1 : A1 → A1 and F2 : A2 → A2,∑
a

π(a)
[
u1(a) – u1(F1(a1), a2)

]
≥ 0,

∑
a

π(a)
[
u2(a) – u2(a1, F2(a2))

]
≥ 0.

Equivalent to Aumann’s “no profitable deviation conditional on signal”.

Denote the set by CE.
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Calibrated Learning =⇒ Correlated Equilibrium

Theorem (Foster and Vohra 1997)

Suppose eachplayer uses a calibrated forecasting scheme (on arbitrarily fine partitions)
and in each t plays a myopic best reply to their forecast (fixed tie-breaking). Then every
limit point of (Dt) lies in CE.

Proof

For player 1, define best-reply regionsM1(a1) := {q ∈ ∆(A2) : a1 ∈ argmaxx1
∑

a2
q(a2)u1(x1, a2)}.

By tie-breaking, whenever pt ∈ Bk ⊆ M1(a1), player 1 plays a1.

Calibration on Π =⇒ conditional empirical law of a2,t given {pt ∈ Bk} converges to qk ;
hence any limit π satisfies π(· | a1) ∈ M1(a1) whenever π(a1) > 0.

Symmetrically for player 2: π(· | a2) ∈ M2(a2) if π(a2) > 0.

These conditions are equivalent to the CE inequalities =⇒ π ∈ CE.
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Attainability of Any Correlated Equilibrium

Theorem (Foster and Vohra 1997)

For any π
⋆ ∈ CE there exist calibrated forecasters and myopic best replies such that

Dt → π
⋆ (all limit points equal π

⋆).

Construct partitions and representatives matching π
⋆ ’s conditionals; calibrate to them.

Best replies implement the recommended supports; empirical play tracks π
⋆.
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From Calibration to CE: Details

Write Dt(a1, ·) for row-a1. If lim inft
∑

a2
Dt(a1, a2) > 0, then along any convergent

subsequence Dtk → π,
Dtk (a1, ·)∑
a2

Dtk (a1, a2)
→ qa1 ∈ M1(a1).

Hence
∑

a2
π(a1, a2)

[
u1(a1, a2) – u1(x1, a2)

]
≥ 0 for all x1.

Do the same for player 2; collect the inequalities to obtain the CE conditions.
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Constructing Calibrated Forecasts (Procedure)

Fix partition Π = {Bk} with representatives (qk).

Maintain running average z̄t–1 ∈ RK|A2 | of calibration vectors zt(k, a2).

Forecast rule (Blackwell step):
If z̄t–1 ∈ C (all active components near 0), pick any k.
Else let x– := (z̄t–1)–; choose k that minimises

∑
a2

x–(k, a2) qk(a2); set pt ∈ Bk.

Guarantees: z̄t → 0 a.s. on all active k =⇒ calibration on Π.

Refining Π over time (mesh ↓ 0) yields full calibration.
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Interpretation and Links

Meaning of calibration: whenever you forecast p, reality looks like p on that
subsequence.

Behavioural content: minimal discipline on beliefs + myopic optimality =⇒ CE.

Internal vs external regret: no internal regret also leads to CE (contrast with
calibration-based route).

Design/selection: by designing calibrated grids, any target π
⋆ ∈ CE can be attained.
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Uniform Calibration (Refinement Limit)

Definition (uniform ε-calibration)

A forecast sequence (pt) is ε-calibrated if there exist pointsq1, . . . , qK withmaxa2 mink |p(a2)–
qk(a2)| ≤ ε for all p ∈ ∆(A2) and

lim sup
t→∞

K∑
k=1

Nk(t)
t

max
a2

∣∣ rkt (a2) – qk(a2)
∣∣ ≤ ε.

Existence for all ε > 0; letting ε ↓ 0 yields full calibration.

Compatible with the approachability construction by refining the partition.
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Calibrated learning procedure: learning procedure such that in the long run each action is
a best response to the frequency distribution of opponents’ choices in all periods in
which that action was played
Foster Vohra 1997 GEB, Calibrated Learning and Correlated Equilibrium
Foster Hart 2018 GEB, Smooth calibration, leaky forecasts, finite recall, and Nash
dynamics
Foster Hart 2021 JPE, Forecast Hedging and Calibration
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The first study of no-regret strategies was conducted by Hannan [1957]. The connection
between no-regret strategies and the concept of approachable sets was first made by
Hart and Mas-Colell [2000]. Several studies, including Foster and Vohra [1997] and
Fudenberg and Levine [1999], define no-regret in a stronger form than the one presented
here. Rustichini [1999], Lugosi, Mannor, and Stoltz [2007], and Lehrer and Solan [2007]
studied no-regret strategies under which the decision maker does not know the true
state of nature, but receives information that depends on the state of nature and the
chosen action.
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Overview

1. Learning in Games

2. Approachability

3. Calibration

4. Adaptive Algorithms

5. Sophisticated Learning



Papers: Hart Mas-Colell 2003 AER, Uncoupled Dynamics Do Not Lead to Nash
Equilibrium
*Hart 2005 Ecta, Adaptive Heuristics
Foster Young 2006 TE, Regret testing. learning to play Nash equilibrium without knowing
you have an opponent
Papers on reinforcement learning and Q-learning
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Sophisticated Learning

What is players are Bayesian wrt gameplay and engage in sophisticated learning?

Two papers:
Kalai and Lehrer (1993 Ecta) “Rational Learning Leads to Nash Equilibria”
Kalai and Lehrer (1993 Ecta) “Subjective Equilibrium in Repeated Games”

(Will favour Fudenberg and Levine’s “sophisticated learning” terminology.)
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Stage Game and Repeated Interaction

Players i ∈ I = {1, . . . , n}; actions Ai (finite). Profile A = ×iAi.

Payoffs ui : A → R. One-period outcome at = (ati )i ∈ A.

Repeated game: infinite horizon, perfect monitoring, discounts δi ∈ (0, 1).

Histories ht = (a0, . . . , at–1) ∈ Ht := At; H = ∪t≥0Ht; ∅ at t = 0.

Behavioural strategies σi = (σi,t)t≥0, with σi,t : Ht → ∆(Ai).

Strategy profile σ = (σi)i. Outcome law µ
σ on Ω := AN (product σ-algebra).

History concatenation: hh′ ∈ Ht+r : h ∈ Ht, h′ ∈ Hr .

Continuation histories starting from ht: C(ht) := {h′ ∈ H∞ | (hth′) ∈ H∞}.

Filtration (Ft), Ft := σ({ht}).

Normalised expected discounted payoff:

Ui(σ) = (1 – δi)Eµσ

[∑
t≥0

δ
t
i ui(a

t)
]
.
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Beliefs, Absolute Continuity, and Payoffs

Player i’s conjectures/degenerate beliefs about opponents’ strategies σ
i
–i.

Induces belief µi = µ
σ
i
–i on Ω.

Player i’s prior νi on opponents’ strategies σ–i (Actual uncertainty).
Induces belief µi on Ω via σ̃–i 7→ µ

(σi ,σ̃–i).

For νi, expected conjecture: σ
i
–i(h)(a–i) = Eσ̃–i∼νi [σ̃–i(h)(a–i)].

Player i’s Subjective joint strategy: σ
i = (σi,σi

–i).

Truth-compatibility (absolute continuity): µ
σ ≪ µi for all i.

(i.e., µ
σ(E) > 0 =⇒ µi(E) > 0 for any µi-measurable E.)

Posteriors: after ht, update µi(· | ht) by Bayes (well-defined by abs. cont.).

Rationality path: each period t, σi,t is a best response to µi(· | ht).

Induced strategy: for histories h, h′ ∈ H, denote σh(h
′) := σ(hh′) (strategy following h for

h′).
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Closeness and “Plays ε-Like”

Definition (ε-close measures)

For ε > 0, µ is ε-close to µ̃ if ∃Q with µ(Q), µ̃(Q) ≥ 1 – ε s.t. ∀ measurable A ⊆ Q,

(1 – ε)µ̃(A) ≤ µ(A) ≤ (1 + ε)µ̃(A).

Definition (plays ε-like)

A profile σ plays ε-like σ
′ if µ

σ is ε-close to µ
σ
′
; equivalently, after any ht, the conditional

laws are ε-close on a large-probability subset.

Controls conditional probabilities on tails; prevents cumulative small-error blowup
across time.
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Learning to Predict Future Play

Theorem 1 (Learning to predict)

Fix actual strategy σ and player i’s subjective joint strategy σ
i := (σi,σi

–i). If µ
σ ≪ µ

σ
i
,

then for every ε > 0 and for µ
σ-a.e. path h ∈ H∞, ∃T s.t. ∀t ≥ T, continuation σht plays

ε-like σ
i
ht
.

Posterior forecasts of future play (conditional on realised history) merge with truth.

No optimality required here; this is a property of Bayesian updating under abs. cont.
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Merging via Likelihood Ratios

Theorem 3 (Blackwell and Dubins, 1962)

If µ ≪ µ̃, then with µ-probability 1, for every ε > 0 there exists random time τ(ε) such
that for all t ≥ τ(ε) the posteriors µ(· | Ft) and µ̃(· | Ft) are ε-close.

If people start off with compatible priors, posteriors become arbitrarily close after
exposed to enough information.

Proof Idea

Radon-Nikodym derivative φ = dµ

dµ̃
exists; set Mt = Eµ̃[φ | Ft].

(Mt) is a nonnegative µ̃-martingale; Mt → M∞ a.s.

Control likelihood ratios on Q with µ(Q), µ̃(Q) ≈ 1.

Translate bounds to conditionals on continuation historiesC(ht); conclude ε-closeness.
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Subjective ε-Equilibrium

Definition (Subjective ε-equilibrium)

A profile σ = (σi)i is a subjective ε-equilibrium if there exist beliefs σ
i = (σi,σi

–i) with:

σi is a best response to σ
i
–i, for every i;

σ plays ε-like σ
i, for every i.

Corollary 1

If each σi best responds to σ
i
–i and σ ≪ σ

i for all i, then for a.e. path h ∃T s.t. ∀t ≥ T,
the continuation σht is a subjective ε-equilibrium.

Proof Idea

Fix ε > 0; for µ
σ-a.e. h ∃T s.t. ∀t ≥ T, σht plays ε-like σ

i
ht

for each i (Theorem 1).

By rationality, at every t player i plays a best response to µi(· | ht).

Merging =⇒ those best responses are ε-best responses to true continuation µ
σ(· | ht).

Both (supporting beliefs & closeness) =⇒ subjective ε-equilibrium from time T.
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From Subjective to (Approximate) Nash

Proposition 1

For every ε > 0, ∃η > 0 : if σ is a subjective η-equilibrium then ∃σ
∗ s.t.

(i) σ plays ε-like σ
∗;

(ii) σ
∗ is an ε-Nash equilibrium of the repeated game.

Idea: under perfect monitoring and known own payoffs, adjust off-path prescriptions to
align incentives while preserving realisations up to ε.

Proof Idea

Fix η > 0 small. Given subjective η-equilibrium σ, modify off-path prescriptions s.t.
unilateral deviations trigger responses that keep the deviator’s continuation payoff
within ε of best-reply payoff.

Perfect monitoring =⇒ changes leave realisations ε-close.

Resulting σ
∗ is an ε-best reply for each player: σ

∗ is an ε-Nash equilibrium; and σ plays
ε-like σ

∗.
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Main Theorem: Rational Learning =⇒ Nash Play

Theorem 2 (Kalai and Lehrer 1993)

Suppose each σi best responds to σ
i
–i and µ

σ ≪ µ
σ
i
for all i. Then for every ε > 0 and

for µ
σ-a.e. path h, ∃T s.t. ∀t ≥ T there is an ε-Nash equilibrium σ

ε of the repeated game
with σht playing ε-like σ

ε.

Proof Idea

1) Theorem 1 =⇒ eventually correct forecasts (merging).

2) Best responses to beliefs =⇒ ε-best responses to truth (large t).

3) Proposition 1 =⇒ approximate Nash play along the realised path.
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Absolute Continuity and Bayesian Nash Equilibrium

Bayesian Nash equilibrium (BNE): in incomplete information (finite type space), each
σi maximises expected utility given beliefs over types and strategies.

At a BNE of the repeated game, priors give a grain of truth: realised play has positive
probability under beliefs =⇒ absolute continuity holds.

Application: starting from a BNE, players eventually play (approximately) a Nash
equilibrium of the realised complete-information repeated game.
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Meaning and Interpretation

What converges? Not actions each period, but forecasts of future play; behaviour is
best response to (nearly) correct forecasts.

Why it matters: ensures long-run play consistent with Nash discipline without common
knowledge of rationality or equilibrium selection.

Learning vs commitment: players learn the environment they face (others’ strategies),
not a fixed state of nature.

Role of absolute continuity: bans dogmatic zero-probability beliefs about realised
events; makes Bayes informative.

Learning: with merging, each player’s beliefs about future play match the truth;
subjective ε-equilibrium obtains on-path.
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Incomplete Information on Payoffs

Bayesian Nash starting point

In a repeated game with finitely many payoff types, if play starts at a Bayesian Nash
equilibrium, then eventually players play (approximately) a Nash equilibrium of the re-
alised complete-information repeated game.

Grain of truth at BNE =⇒ abs. cont.; merging =⇒ correct forecasts; best responses
=⇒ near-NE of realised environment.
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Fudenberg and Levine (1998; 2009 ARE): Main Critique

Endogeneity of absolute continuity: abs. cont. must hold for the realised path under
the true play; ensuring this is itself an equilibrium-like fixed-point problem.

Grain of truth: wanting priors that always put positive mass on the truth is impossible
in rich (uncountable) environments; workable classes may be very restrictive.

Interpretation caution: Kalai and Lehrer (1993 Ecta) shows a consistency result
conditional on abs. cont.; not a general path-to-equilibrium selection theory.

Comparative statics: results sensitive to prior support assumptions; small changes
can break abs. cont. and merging conclusion.

Bottom line: powerful when abs. cont. holds (e.g., BNE start with finite types), but
limited as a general behavioural foundation without specifying priors.

“Our interest here, however, is in “learning models,” by which we mean that the allowed
priors are exogenously specified, without reference to a fixed point problem.”
Fudenberg and Levine (1998)
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Takeaways

Under absolute continuity, Bayesian learning merges beliefs with the truth along
realised play.

Rational (best-reply) control with merged beliefs =⇒ eventual (approximate) Nash
play.

At BNE with finite types, eventual play tracks an NE of the realised
complete-information game.

Abs. cont. is strong and endogenous; use with care as general foundation for learning
in games.
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