
Common Knowledge and Common Learning

Duarte Gonçalves
University College London

Topics in Economic Theory



3 people are prisoners on an island.

They cannot communicate with each other, cannot see their reflections, and all had
green eyes.

The island is ruled by a despotic bear who imposed a peculiar rule:
a prisoner can ask to leave every night, but only prisoners with green eyes will be
permitted to escape, whilst all others will be tossed in the volcano.

All the prisoners want to leave, but will never take action unless they are absolutely
certain that they have green eyes.

You want to do something to help the prisoners.

The dictator allows you one thing only: to say a single sentence to the prisoners.

But there’s a twist: you can’t tell them anything that each didn’t know.

What do you do?
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‘There is at least one person with green eyes.’

Everyone knew that. On the first day, no one asks to leave. On the second day, neither.
On the third day, everyone does.

If no one asks to leave on day 1, then it must be that everyone sees someone with green
eyes
(otherwise they’d deduce they themselves have green eyes).

If no one asks to leave on day 2, then it must be that everyone sees two people with
green eyes
(otherwise they’d deduce they themselves have green eyes).

On day 3, everyone is sure they have green eyes.
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Common Knowledge

What happened? Saying something everyone knows makes it commonly known.

Who cares (other than for its own sake)?
Highlights the role of public signals and announcements (monetary policy,
auctions).

Clarifies limits of coordination (distributed systems, protests, currency attacks).
Provides epistemic foundations for solution concepts (backward induction,
Bayesian Nash equilibrium).

This lecture: formalising knowledge and deriving implications.
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Knowledge

ω ∈ Ω: state of the world. Finite.

Events E, F ⊆ Ω.

Knowledge Function: k : Ω → 2Ω

When true state is ω, k(ω) represents what DM knows.
Or, k(ω) are the states DM cannot distinguish from ω.
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Knowledge

Example

Ω = {ω,ω′}, k(ω) = {ω,ω′}, k(ω′) = {ω′}.
ω= Skipped my stop; ω= Didn’t skip my stop.

If I didn’t skip my stop, I know I didn’t. By if I did, I don’t know that I did.
Issue: if introspect, I realise that if I didn’t skip my stop I would know it, so if I don’t know
I must’ve skipped it!
If I knew k, introspection would rule this out.
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Knowledge

ω ∈ Ω: state of the world. Finite.

Events E, F ⊆ Ω.

Knowledge Function: k : Ω → 2Ω

When true state is ω, k(ω) represents what DM knows.
Or, k(ω) are the states DM cannot distinguish from ω.
Partitional Knowledge function: (i) ∀ω ∈ Ω, ω ∈ k(ω) and (ii)

ω
′ ∈ k(ω) =⇒ k(ω) = k(ω′).

Knowledge Operator: K : 2Ω → 2Ω s.t. K(E) := {ω ∈ Ω | k(ω) ⊆ E}.
Note: K(E) = ∪k(ω)⊆Ek(ω).
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Knowledge

Lemma

If k is partitional, then:
1. K(Ω) = Ω. (Axiom of awareness)
2. K(E) ∩ K(F) = K(E ∩ F).
3. K(E) ⊆ E. (Axiom of knowledge)
4. K(E) = K(K(E)). (axiom of transparency)
5. Ω \ K(E) = K(Ω \ K(E)). (Axiom of wisdom)
6. F ⊆ E =⇒ K(F) ⊆ K(E). (Monotonicity)
7. K(E) = ∪ω∈K(E)k(ω).

Proof

1. ∀ω,ω ∈ k(ω) ⊆ Ω =⇒ K(Ω) = Ω.

2. ω ∈ K(E ∩ F) ⇐⇒ ∃ω
′ : ω ∈ k(ω′) = k(ω) ⊆ E ∩ F ⇐⇒ ω ∈ K(E) ∩ K(F).

3. ω ∈ K(E) =⇒ ω ∈ k(ω) ⊆ E.
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Proof

4. K(K(E)) ⊆ K(E) from 3. Moreover, ω ∈ K(K(E)) =⇒ k(ω) ⊆ K(E) ⊆ E =⇒ ω ∈
K(E) =⇒ K(K(E)) ⊆ K(E) (Using 3.).
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Knowledge

Lemma
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6. F ⊆ E =⇒ K(F) ⊆ K(E). (Monotonicity)
7. K(E) = ∪ω∈K(E)k(ω).

Proof

5. Using 3., as K(E) = K(K(E)) = ∪K({ω})⊆K(E)K({ω}) K(Ω \ K(E)) ⊆ Ω \ K(E) from 3.
Moreover, as k partitional, ω ∈ Ω \ K(E) =⇒ ω /∈ K(E) = K(K(E)) =⇒ ¬(k(ω) ⊆
K(E)) =⇒ (ω′ /∈ K(E)∀ω

′ ∈ k(ω)) =⇒ k(ω) ⊆ Ω \ K(E) =⇒ ω ∈ K(Ω \ K(E)).
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Knowledge

Proposition

If k is partitional, then:
1. K(Ω) = Ω. (Axiom of awareness)
2. K(E) ∩ K(F) = K(E ∩ F).
3. K(E) ⊆ E. (Axiom of knowledge)
4. K(E) = K(K(E)). (axiom of transparency)
5. Ω \ K(E) = K(Ω \ K(E)). (Axiom of wisdom)
6. F ⊆ E =⇒ K(F) ⊆ K(E). (Monotonicity)
7. K(E) = ∪ω∈K(E)k(ω).

Proof

6. F ⊆ E =⇒ K(F) = K(F ∩ E) = K(F) ∩ K(E) ⊆ K(E) (using 2).

7. K(E) = ∪ω∈K(E){ω} ⊆ K(E) = ∪ω∈K(E)k(ω). Moreover, ∀ω
′ ∈ ∪ω∈K(E)k(ω), ∃ω

′′ ∈
K(E) : ω

′ ∈ k(ω′′); and as k(ω′) = k(ω′′) ⊆ E, then ω
′ ∈ K(E).
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Knowledge

Proposition

If k is partitional, then:
1. K(Ω) = Ω. (Axiom of awareness)
2. K(E) ∩ K(F) = K(E ∩ F).
3. K(E) ⊆ E. (Axiom of knowledge)
4. K(E) = K(K(E)). (axiom of transparency)
5. Ω \ K(E) = K(Ω \ K(E)). (Axiom of wisdom)
6. F ⊆ E =⇒ K(F) ⊆ K(E). (Monotonicity)
7. K(E) = ∪ω∈K(E)k(ω).

Proof

6. F ⊆ E =⇒ K(F) = K(F ∩ E) = K(F) ∩ K(E) ⊆ K(E) (using 2).

7. K(E) = ∪ω∈K(E){ω} ⊆ K(E) = ∪ω∈K(E)k(ω). Moreover, ∀ω
′ ∈ ∪ω∈K(E)k(ω), ∃ω

′′ ∈
K(E) : ω

′ ∈ k(ω′′); and as k(ω′) = k(ω′′) ⊆ E, then ω
′ ∈ K(E).

Gonçalves (UCL) Common Knowledge and Common Learning 10



Interactive Knowledge

Player i ∈ {1, ..., I} with knowledge operator Ki.

Assume partitional ki henceforth.

Definition

(i) There is mutual knowledge of E ⊆ Ω at ω if ω ∈ K1(E) := ∩iKi(E).

(ii) Let Kn+1(E) := K1(Kn(E)), for n = 1, 2, .... There is common knowledge of E ⊆ Ω at
ω if ω ∈ K∞(E) := ∩nKn(E).

Remark

If E is CK at ω, then ∀F ⊇ E, F is CK at ω.

Proof

By monotonicity of Ki, ω ∈ K∞(E) ⊆ K∞(F).

Can also consider CK for subset of players.
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Properties of Mutual and Common Knowledge Operators

Proposition

If ki is partitional ∀i, then, for any n = 1, 2, ...,∞,
1. Kn(Ω) = Ω. (Axiom of awareness)
2. Kn(E) ∩ Kn(F) = Kn(E ∩ F).
3. Kn(E) ⊆ E. (Axiom of knowledge)
4. Kn(E) ⊇ Kn(Kn(E)). (axiom of transparency)
5. Ω \ Kn(E) ⊇ Kn(Ω \ Kn(E)). (Axiom of wisdom)
6. F ⊆ E =⇒ Kn(F) ⊆ K(E). (Monotonicity)
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Properties of Mutual and Common Knowledge Operators

Proof

We prove for n = 1.

1. ∩iKi(Ω) = ∩iΩ = Ω.

2. (∩iKi(E)) ∩ (∩iKi(F)) = ∩i(Ki(E) ∩ Ki(F)) = ∩iKi(E ∩ F).

3. ∩iKi(E) ⊆ ∩iE = E.

4. Follows from 3.

5. Follows from 3.

6. F ⊆ E =⇒ Ki(F) ⊆ Ki(E)∀i =⇒ ∩iKi(F) ⊆ ∩iKi(E).

Iterate arguments to extend to n > 1.
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Interactive Knowledge

Example

Ω = {ω1,ω2,ω3}.

k1(ω1) = {ω1}, k1(ω2) = k1(ω3) = {ω2,ω3}.

k2(ω1) = k2(ω2) = {ω1,ω2}, k2(ω3) = {ω3}.

E = {ω2,ω3} =⇒ K1(E) = E, K2(E) = {ω3} =⇒ K1(E) = {ω3}.

K1(K1(E)) = ∅ =⇒ Kn(E) = K∞(E) = ∅, ∀n ≥ 2.

Only Ω is CK.

How to get CK? By assumption or deriving CK from CK of something else.
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Interactive Knowledge

Definition

Event E is evident if it is mutually known, E ⊆ K1(E).

If E happens, everyone knows E happens.

Remark

(i) E is evident =⇒ E ⊆ K1(E) ⊆ E =⇒ E = K1(E).

(ii) E is evident ⇐⇒ ki(ω) ⊆ E, ∀ω ∈ E.

(iii) If E is evident, E = K∞(E) and so E is CK at any ω ∈ E.
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Interactive Knowledge

Definition

Event E is evident if it is mutually known, E ⊆ K1(E).

Proposition (Monderer and Samet, 1989 GEB)

C is CK at ω if and only if there is an evident event E s.t. ω ∈ E and E ⊆ K1(C).

One could have just as well have written (...) “ω ∈ E and E ⊆ C”

Proof

If: E ⊆ K1(C) =⇒ ω ∈ E = K∞(E) ⊆ K∞(C).

Only if: Let E := K∞(C) := ∩nKn(C). Then, Ki(E) = E ∀i =⇒ K1(E) = E, and E is evident.
Moreover, by transparency, E = K∞(C) ⊆ K1(C).
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Syntactic Knowledge

In the words of Aumann (1999 IJGT, I)
One question that often arises is, what do the players know about the [semantic]
formalism itself? Does each know the others’ partitions? If so, from where does
this knowledge derive? If not, how can the formalism indicate what each player
knows about the others’ knowledge?

(...) More generally, the whole idea of “state of the world,” and of a partition struc-
ture that accurately reflects the players’ knowledge about other players’ knowl-
edge, is not transparent. What are the states? Can they be explicitly described?
Where do they come from? Where do the information partitions come from?
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Syntactic Knowledge Model

Main Ingredients
Symbols: including Letters from an alphabet X := {x, y, z, ...} taken as fixed, and
∨,¬, (), and κi.

Formula (or Propositions): finite string of symbols.
1. Every letter is a formula.
2. If f and g are formulas, so is (f) ∨ (g).
3. If f is a formula, so are ¬(f) and κi(f) for each i.

Interpretation
κif : “i knows f”.
∨,¬: ‘or’, ‘it is not true that’.
Formula f : a finite concatenation of natural occurrences, using operators and
connectives of propositional logic plus the knowledge operators.
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Lists of Formulas

Lists
f =⇒ g means (¬f) ∨ g.
f ⇐⇒ g means f =⇒ g and g =⇒ f .
List is set of formulas.

Properties of List L
- logically closed if (f ∈ L and f =⇒ g ∈ L) implies g ∈ L.
- epistemically closed if f ∈ L implies κif ∈ L.
- strongly closed if logically and epistemically closed.

Strong closure of L is smalles strongly clost list that includes L.
- coherent if ¬f ∈ L implies f /∈ L.
- complete if f /∈ L implies ¬f ∈ L.
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Tautologies

Tautology is statement commonly believed by everyone.

Formally:

Tautology: a formula in strong closure of the list of all formulas having one of the
following forms:

(i) (f ∨ f) =⇒ f .
(ii) f =⇒ (f ∨ g).
(iii) (g ∨ f) =⇒ (f ∨ g).
(iv) (f =⇒ g) =⇒ ((h ∨ f) =⇒ (h ∨ g)).
(v) κif =⇒ f .
(vi) κi(f =⇒ g) =⇒ ((κif) =⇒ (κig)).
(vii) ¬κif =⇒ κi¬κif .

T : list of all tautologies.

(Theorems are tautologies!)

g is consequence of f if f =⇒ g is a tautology.

Syntax S: set of all formulas with given population I and alphabet X , countable.
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Towards an Isomorphism for Syntactic-Semantic Knowledge

Canonical Semantic Knowledge System: For given syntax S ,
State ω:= a closed, coherent, complete list of formulas containing all tautologies.
Ω: set of all states.
Information function: ki : Ω → 2Ω s.t. ki(ω) is set of formulas in ω starting with κi.
Events Ef := {ω ∈ Ω : f ∈ ω}.

For any list L, let L∗ denote the strong closure of L ∪ T .

L is consistent if f ∈ L∗ implies ¬f /∈ L∗.

Proposition: A list is a state iff it is complete and consistent.

Syntactic and semantic approaches isomorphic (under conditions)
– Aumann (1999 IJGT I, §9).
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So What?

Contractual complexity, intrincate financial derivatives, and failures of contigent
reasoning: issues in dealing with logical deduction (costly, confusing).

Vague and complex contracts: e.g., Jakobsen (2020 AER), Piermont (2024 WP).

Expanding state space via introducing new concepts/possibilities.

(Fun fact: modern concept of concept originated mainly in Kant’s work in 18th century.)
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Overview
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2. An Aside: Syntactic Knowledge

3. Common Prior Assumption and Its Implications
– Adding Beliefs
– Agreeing to Disagree
– No-Trade Theorem
– No-Trade Theorem
– Charaterising CPA

4. Common Belief

5. Common Learning
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Back to Semantics: Adding Beliefs to Partitional Model

Prior Belief Pi of player i over Ω. Assume full support, Pi > 0.

Posterior Belief Pi(E|ki(ω)) = Pi(E ∩ ki(ω))/Pi(ki(ω)).

Common Prior P ∈ ∆(Ω) if Pi = P ∀i.

Harsanyi Doctrine: We are born equal; we have different views about the world because
we receive different information.

Implications of common prior assumption (CPA)?
Agreeing to disagree and no-trade theorem.
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Agreeing to Disagree

Aumann (1976 AMS): Two individuals with a common prior belief, even if they had very
different information (attending different school, different upbring, etc.) cannot agree
to disagree.

i.e., if differences are due to information and posteriors are common knowledge, then
there can’t actually be disagreement.

Theorem

Let there be a common prior P. Suppose it is CK at ω
∗ that player 1’s posterior beliefs

on event E are m1 whereas player 2’s are m2. Then, m1 = m2.
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Agreeing to Disagree

Theorem

Let there be a common prior P. Suppose it is CK at ω
∗ that player 1’s posterior beliefs

on event E are m1 whereas player 2’s are m2. Then, m1 = m2.

Proof

Consider Di := {ω |P(E | ki(ω)) = mi}.

D1 ∩ D2 CK at ω
∗, ∃ evident event F s.t. ω

∗ ∈ F ⊆ D1 ∩ D2.

As F is evident, F = Ki(F) = {ω | ki(ω) ⊆ F}. Hence, F = ∪ω∈Fki(ω), where {ki(ω)}ω∈F
denotes a partition.

Since, for disjoint A,B, one has P(E|A) = P(E|B) =⇒ P(E|A) = P(E|A ∪ B),
then P(E|F) = P(E|ki(ω)) = mi.

Hence, m1 = m2 = P(E|F).
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Agreeing to Disagree

Theorem

Let there be a common prior P. It cannot be CK at some ω
∗ that player 1’s posterior

beliefs on event E is strictly greater than player 2’s.

Proof

Suppose not: ∃ω
∗ at which D := {ω |P(E | k1(ω)) > P(E | k2(ω))} is CK.

∃ evident event F s.t. ω
∗ ∈ F ⊆ D.

=⇒ ∀ω ∈ F, P(ω)P(E|k1(ω)) > P(ω)P(E|k2(ω)).

=⇒ P(F∩E) =
∑

ω∈F P(ω)P(E|k1(ω)) >
∑

ω∈F P(ω)P(E|k2(ω)) = P(F∩E), contradiction.
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Agreeing to Disagree

It can be CK that two players have different beliefs at an event E.

Example

Ω = {ω1,ω2}, P uniform common prior.

∀ω, k1(ω) = {ω} k2(ω) = Ω.

E = Ω.

“the two players have different posterior beliefs” at every state of the world, and this
event is common knowledge: K∞(Ω) = Ω.
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Agreeing to Disagree

Corollary

Let there be a common prior P and X : Ω → R a random variable. It cannot be CK at
some ω

∗ that player 1’s holds a higher expectation of X than player 2 does.

Proof

Suppose not: ∃ω
∗ at which D := {ω |E[X | k1(ω)] > E[X | k2(ω)]} is CK.

∃ evident event F s.t. ω
∗ ∈ F ⊆ D.

=⇒ ∀ω ∈ F, P(ω)
P(F) E[X|k1(ω)] > P(ω)

P(F) E[X|k2(ω)].

=⇒ E[X | F] =
∑

ω∈F
P(ω)
P(F) E[X|k1(ω)] >

∑
ω∈F

P(ω)
P(F) E[X|k2(ω)] = E[X | F], contradiction.
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Let there be a common prior P and X : Ω → R a random variable. It cannot be CK at
some ω

∗ that player 1’s holds a higher expectation of X than player 2 does.

Proof

Suppose not: ∃ω
∗ at which D := {ω |E[X | k1(ω)] > E[X | k2(ω)]} is CK.

∃ evident event F s.t. ω
∗ ∈ F ⊆ D.

=⇒ ∀ω ∈ F, P(ω)
P(F) E[X|k1(ω)] > P(ω)

P(F) E[X|k2(ω)].

=⇒ E[X | F] =
∑

ω∈F
P(ω)
P(F) E[X|k1(ω)] >

∑
ω∈F

P(ω)
P(F) E[X|k2(ω)] = E[X | F], contradiction.

Gonçalves (UCL) Common Knowledge and Common Learning 28



Agreeing to Disagree

Corollary

Let there be a common prior P and X : Ω → R a random variable. It cannot be CK at
some ω

∗ that player 1’s holds a higher expectation of X than player 2 does.

Proof

Suppose not: ∃ω
∗ at which D := {ω |E[X | k1(ω)] > E[X | k2(ω)]} is CK.

∃ evident event F s.t. ω
∗ ∈ F ⊆ D.

=⇒ ∀ω ∈ F, P(ω)
P(F) E[X|k1(ω)] > P(ω)

P(F) E[X|k2(ω)].

=⇒ E[X | F] =
∑

ω∈F
P(ω)
P(F) E[X|k1(ω)] >

∑
ω∈F

P(ω)
P(F) E[X|k2(ω)] = E[X | F], contradiction.

Gonçalves (UCL) Common Knowledge and Common Learning 28



Agreeing to Disagree

Corollary

Let there be a common prior P and X : Ω → R a random variable. It cannot be CK at
some ω

∗ that player 1’s holds a higher expectation of X than player 2 does.

Proof

Suppose not: ∃ω
∗ at which D := {ω |E[X | k1(ω)] > E[X | k2(ω)]} is CK.

∃ evident event F s.t. ω
∗ ∈ F ⊆ D.

=⇒ ∀ω ∈ F, P(ω)
P(F) E[X|k1(ω)] > P(ω)

P(F) E[X|k2(ω)].

=⇒ E[X | F] =
∑

ω∈F
P(ω)
P(F) E[X|k1(ω)] >

∑
ω∈F

P(ω)
P(F) E[X|k2(ω)] = E[X | F], contradiction.

Gonçalves (UCL) Common Knowledge and Common Learning 28



No-Trade Theorem

Typical reason provided for trading: differences in information.

Milgrom and Stokey (1982 JET) show this is not exactly correct...

Definitions
Allocation: a : Ω → A, a contract that associates each state with an allocation or
transfer to all agents.

Payoffs: Player i’s state-dependent utility function ui(a(ω),ω).
Ex-ante Efficiency: b is ex-ante efficient if ∄a s.t. ∀i E[ui(a(ω),ω)] ≥ E[ui(b(ω),ω)]
with a strict inequality for some i.
i.e.,

∑
ω∈Ω

P(ω)ui(a(ω),ω) ≥
∑

ω∈Ω
P(ω)ui(b(ω),ω)
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No-Trade Theorem

Theorem (Milgrom and Stokey, 1982 JET)

Let there be a common prior P. Suppose b is ex-ante efficient. If cannot be common
knowledge that there is some allocation a that is weakly preferred to b by all players
and strictly by at least one.

Then players cannot trade away from b even if new information ki arrives.

Agreeing to disagree results have brutal implications for trading:
with CPA, once we get to an ex-ante efficient allocation, there is no scope for purely
information-based trade.
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No-Trade Theorem

Theorem (Milgrom and Stokey, 1982 JET)

Let there be a common prior P. Suppose b is ex-ante efficient. If cannot be common
knowledge that there is some allocation a that is weakly preferred to b by all players
and strictly by player 1.

Proof

Suppose ∃a s.t. CK (with new information) that a is weakly preferred to b by everyone
and strictly so by player 1.

Let F be evident event contained in

{ω ∈ Ω|E[ui(a(ω),ω)–ui(b(ω),ω) | ki(ω)] ≥ 0∀i and E[u1(a(ω),ω)–u1(b(ω),ω) | k1(ω)] > 0}.

Then, ∀i, E[ui(a(ω),ω) – ui(b(ω),ω) | F] ≥ 0, and E[u1(a(ω),ω) – u1(b(ω),ω) | F] > 0.

Define contract c: c(ω) = a(ω) if ω ∈ F and c(ω) = b(ω) if otherwise. We get

E[ui(c(ω),ω) – ui(b(ω),ω)] = P(F)E[ui(a(ω),ω) – ui(b(ω),ω)]
which is ≥ 0 for all i and > 0 for i = 1.

Contradicts b being ex-ante efficient.
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No-Trade Theorem

Typical reason provided for trading: differences in information.

Milgrom and Stokey (1982 JET) show this is not exactly correct...

With CPA, once we get to an ex-ante efficient allocation, there is no scope for purely
information-based trade.

Note! Prices do adjust to new information.
More: under weak conditions
(essentially strict risk-aversion, smooth EU, ex-ante efficiency
— see Milgrom and Stokey, 1982 JET, Theorem 3)
change in relative prices reveals new info available to traders and is independent of
endowments, utility functions, prior beliefs, and initial allocation.
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Charaterising CPA

CPA has important consequences, not just theoretical convenience.

If observe beliefs of different players, can we say whether there is a common prior?

Two fundamental contributions:
Samet (1998 GEB), Common Priors and Separation of Convex Sets; and
Samet (1998 GEB), Iterated Expectations and Common Priors.
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Charaterising CPA

CPA has important consequences, not just theoretical convenience.

If observe beliefs of different players, can we say whether there is a common prior?

Samet (1998 GEB), Common Priors and Separation of Convex Sets
Each agent’s set of priors = convex hull of agent’s types.
Proposition: A common prior exists if and only if the intersection of these convex
sets is nonempty.

Proof idea: Generalisation of the separation theorem: multiple convex, closed
subsets of the simplex intersect ⇐⇒ no linear functional can simultaneously
separate them.

Interpretation: Absence of common prior ⇐⇒ existence of a bet that everyone
expects to win. (No-trade-theorem-like converse)
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Charaterising CPA

CPA has important consequences, not just theoretical convenience.

If observe beliefs of different players, can we say whether there is a common prior?

Samet (1998 GEB), Iterated Expectations and Common Priors
Can we test for a common prior using only present beliefs?

Key idea: (1) Start with any random variable X. (2) Compute iterated expectations:
Eve’s expectation of X, Adam’s expectation of Eve’s expectation, Eve’s
expectation of Adam’s expectation, .... These sequences always converge.

Proposition: Common prior exists if and only if for every X, all iterated expectation
sequences converge to the same limit. Common limit is expectation under the
common prior.

Proof idea: Represent type functions as Markov matrices. Common prior =
invariant probability measure for all players’ matrices.
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Charaterising CPA

CPA has important consequences, not just theoretical convenience.

If observe beliefs of different players, can we say whether there is a common prior?

Two fundamental contributions:
Samet (1998 GEB), Common Priors and Separation of Convex Sets; and
Samet (1998 GEB), Iterated Expectations and Common Priors.

Also: Feinberg (2000 JET), Geanakoplos and Polemarchakis (1982 JET).

Related: Literature on merging of beliefs.
Epistemic foundations for solution concepts (Aumann 1987 Ecta; Aumann and
Brandenburger 1995 Ecta).

More recently Arieli, Babichenko, Sandomirskiy, and Tamuz (2021 JPE): use ‘agree to
disagree’ to characterise ‘’‘Feasible Joint Posterior Beliefs” and applications to
information design.
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Overview

1. Knowledge

2. An Aside: Syntactic Knowledge

3. Common Prior Assumption and Its Implications

4. Common Belief

5. Common Learning

6. Universal Type Space



Common Belief

(Ω,Σ,P) probability space, I finite set agents, ki induces partition of Ω,
Hi := σ({ki(ω)}ω∈Ω).

“i knows E at ω” = {ki(ω) ⊆ E}.

“i knows E” = Ki(E) := {ω ∈ Ω | ki(ω) ⊆ E}.

From “i knows E at ω” to “i believes E wp≥ q at ω” ≡ “i q-believes E at ω”.

Definition

Bq
i (E) := {ω ∈ Ω | P(E|ki(ω)) ≥ q} = {ω ∈ Ω | P(E|Hi) ≥ q}.

“i q-believes E at ω” = {P(E|ki(ω)) ≥ q}.

Event “i q-believes E” = Bq
i (E).
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Properties of q-Belief

Proposition

For E, F ∈ Σ, q ∈ [0, 1], i ∈ I:
1. P(E|Bq

i (E)) ≥ p.

2. Bq
i (E) ∈ Hi.

3. If E ∈ Hi, then Bq
i (E) = E.

4. Bq
i (B

q
i (E)) = Bq

i (E).

5. E ⊆ F =⇒ Bq
i (E) ⊆ Bq

i (F).

6. If (En) is decreasing sequence of events, then Bq
i (∩nEn) = ∩nBq

i (E
n).

1-belief = knowledge with finite models; not in continuous models:
e.g., 1-believe that uniform random draw from [0, 1] is irrational, but we don’t know it.
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Common q-Belief

Definition

(i) There is mutual q-belief of E at ω if ω ∈ Bq,1(E) := ∩iB
q
i (E).

(ii) Let Bq,n+1(E) := Bq,1(Bq,n(E)), for n = 1, 2, ....
There is common q-belief of E at ω if ω ∈ Bq,∞(E) := ∩nBq,n(E).

Common q-belief as ‘almost CK’. Common q-belief vs CK:
C = currency attack starts at 9:00.
E=At 9:00, on a phone call, there is an announcement among traders that currency
attack starts.

If everyone sees announcement, E is evident and C is CK.
But if there is a small chance not everyone is paying attention, E is not evident
(may even not be q-evident for high q).
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Common q-Belief

Definition

E is evident q-believed or q-evident if it is mutually q-believed, E ⊆ Bq(E).

q-Evident event: whenever E occurs, everyone assigns probability ≥ q to its occurrence.

Proposition (Monderer and Samet, 1989 GEB)

C is common q-believed at ω if and only if there is a q-evident event E s.t. ω ∈ E and
E ⊆ Bq,1(C).

Proof

If: E ⊆ Bq(C) =⇒ ω ∈ E ⊆ Bq(E) ⊆ Bq,∞(C).

Only if: Let E := Bq,∞(C). Then, E = Bq(E) = Bq,∞(C).
By transparency, E = Bq,∞(C) ⊆ Bq,1(C).
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Common Learning: Attacking a Currency
Coordinating on a Currency Attack

Two traders coordinate on when to attack currency A or B.
Every day, each trader simultaneously decides to attack currency A, B, or wait.
They only stand to gain if both attack the weaker currency and at the same time.
Every day, each receives private signal about if it’s best to attack A or B (the state).
Signals iid conditional on the state, but possibly correlated across traders.

Coordination Requirements
Coordination requires traders to be sufficiently convinced if state is A or B.
With fixed state, if traders will a.s. learn the state this is not an issue.
But... i also needs to be sufficiently convinced that j is sufficiently convinced state
is the same. And i also needs to be sufficiently convinced that j is sufficiently
convinced that i is sufficiently convinced ... etc.

Attacking A is optimal for trader i in some period t if and only if the trader assigns
probability at least q to the joint event that (i) state is A and (ii) j attacks A too
(which will depend on their beliefs about a symmetric event).

Is the attack ever carried out? When does individual learning imply common learning?

Trivial case: public signals (perfect correlation). Anything else?
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Why Common learning?

Coordination needs higher-order belief convergence, not only individual learning.

Private signals may fail to generate common knowledge.

Question: when do private signals imply common learning?

Reference: Cripps, Ely, Mailath, and Samuelson (2008 Ecta).
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Setup

Time t = 0, 1, 2, . . . Players i, j ∈ {1, 2} (results extend to finite I).

Parameter θ ∈ Θ finite.

Period-t signals zt = (z1t, z2t) ∈ Z1 × Z2 =: Z.

Every period, player i observes zit. Conditional on θ, {zt}t≥0 iid over t.

Within-t correlation across players allowed unless stated.

States Ω = Θ × Z∞.

Prior P (CPA); Pθ(·) = P(· | θ); Eθ[·] = E[· | θ].
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Belief operators at time t

Agent i’s Private history hit = (zi0, ..., zit–1); induced filtration Hit := σ(zi0, . . . , zit).

Posterior P(E | hit) = P(E | Hit = hit) for event E ⊆ Θ.

q-belief: Bq
it(E) := {ω | P(E | Hit) ≥ q}.

Definition (Individual learning)

Agent i learns θ if ∀q ∈ (0, 1), ∃T s.t. ∀t > T, Pθ(Bq
it(θ)) > q.

Agent i learns Θ if this holds for each θ ∈ Θ.

Note: Individual learning is equivalent to limt→∞ Pθ(Bq
it(θ)) = 1 ∀q ∈ (0, 1).
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it(θ)) > q.

Agent i learns Θ if this holds for each θ ∈ Θ.

Mutual q-belief: Bq
t (E) ≡ Bq,1

t (E) := ∩iB
q
it(E). Iterate: B

q,n+1
t (E) := Bq,1

t (Bq,n
t (E)).

Common q-belief: Cq
t (E) := ∩n≥1B

q,n
t (E).

Definition (Common learning)

Players commonly learn θ if ∀q ∈ (0, 1), ∃T s.t. ∀t > T, Pθ(Cq
t (θ)) > q.

They commonly learn Θ if this holds for each θ ∈ Θ.
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t (θ)) = 1 ∀q ∈ (0, 1).
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Characterisation via Time-t q-Evident Events

Proposition (adapt. Monderer Samet 1989)

C commonly q-believed at ω and time t if and only if ∃ q-evident event E : ω ∈ E ⊆ Bq
t (C).

Corollary

Agents commonly learn Θ if and only if ∀θ and q ∈ (0, 1), there is events Et and period
T s.t. for all t > T
1. (High probability) Pθ(Et) > q;

2. (q-belief of θ) θ is q-believed on Et at time t;

3. (q-evidence) Et is q-evident at time t.

Proof Strategy

Define Et s.t.

Step 1 (High probability): Show Et has high probability.

Step 2 (q-belief of θ): Show that, on Et, θ is q-believed at time t.

Step 3 (q-evidence): Show that Et is q-evident at time t.
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Independent Signals

Theorem

Suppose (i) each player individually learns Θ; and (ii) signals are independent across
players. Then players commonly learn Θ.

Proof

Fix θ, q ∈ (0, 1) and define Et := {θ} ∩ B
√

q
t (θ).

Step 1 (High probability):
Learning + independence =⇒ ∃T : ∀t > T, Pθ(Et) = Pθ(B

√
q

1t (θ))Pθ(B
√

q
2t (θ)) >

√
q.

Step 2 (q-belief of θ):
On Et, Et ⊆ B

√
q

it (θ) =⇒ P(θ | Hit) ≥
√
q.

Step 3 (q-evidence): WTS Et ⊆ Bq
it(Et), i = 1, 2. Focus on i = 1; symmetric for player 2.
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it(Et), i = 1, 2. Focus on i = 1; symmetric for player 2.

P(Et|H1t) = P({θ} ∩ B
√

q
t (θ)|H1t) = P({θ} ∩ B

√
q

1t (θ) ∩ B
√

q
2t (θ)|H1t).

As B
√

q
1t (θ) ∈ H1t and from independence of signals:

P(Et|H1t) = P({θ} ∩ B
√

q
1t (θ) ∩ B

√
q

2t (θ)|H1t) = 1{B
√

q
1t (θ)}P({θ} ∩ B

√
q

2t (θ)|H1t)

= 1{B
√

q
1t (θ)}P(θ|H1t)P

θ(B
√

q
2t (θ)).
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Independent Signals

Theorem

Suppose (i) each player individually learns Θ; and (ii) signals are independent across
players. Then players commonly learn Θ.

Proof

Fix θ, q ∈ (0, 1) and define Et := {θ} ∩ B
√

q
t (θ).

Step 3 (q-evidence): WTS Et ⊆ Bq
it(Et), i = 1, 2. Focus on i = 1; symmetric for player 2.

P(Et|H1t) = 1{B
√

q
1t (θ)}P(θ|H1t)Pθ(B

√
q

2t (θ)).

ω
′ ∈ Et =⇒ ω

′ ∈ B
√

q
1t (θ) =⇒ on ω

′, 1{B
√

q
1t (θ)}P(θ|H1t) ≥

√
q.

As for large t, Pθ(B
√

q
2t (θ)) >

√
q,

ω
′ ∈ Et =⇒ ω

′ ∈ {ω | P(Et|H1t) = 1{B
√

q
1t (θ)}P(θ|H1t)Pθ(B

√
q

2t (θ)) > q} = Bq
1t(Et).

i.e., Et ⊆ Bq
1t(Et). Done.
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Beyond Independence and Perfect Correlation

Common learning holds trivially with perfect correlation.

Common learning also holds with independence.

Failing indepedence but less than perfect correlation: no more uniform bound on 1’s
beliefs about 2’s beliefs used for q-evidence.
Issue: Agent 1 may observe signals typical of θ but which lead 1 to believe 2 has
seen signals less typical of θ.

Can happen Pθ(Bq
jt(θ) | Hit) < Pθ(Bq

jt(θ))
i.e., conditioning complicates proof.
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Setup: Finite Signal Sets

Time t = 0, 1, 2, . . . Players i, j ∈ {1, 2} (results extend to finite I).

Parameter θ ∈ Θ finite.

Period-t signals zt = (z1t, z2t) ∈ Z1 × Z2 =: Z.

Every period, player i observes zit. Conditional on θ, {zt}t≥0 iid over t.

Within-t correlation across players allowed unless stated.

States Ω = Θ × Z∞.

Prior P (CPA); Pθ(·) = P(· | θ); Eθ[·] = E[· | θ].

Theorem

If Z1,Z2 are finite and each player individually learns Θ, then players commonly learn Θ.

Maintained simplifying assumption: Pθ(z) > 0 for all z and θ.
Not necessary, but significantly lightens notational burden and proof complexity.
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Finite Signal Sets

Marginals: Qθ

i := (Pθ(zi))zi . Individual learning requires: θ ̸= θ
′ =⇒ Qθ

i ̸= Qθ
′

i .

Markov kernels: Mθ

i := [Pθ(zj|zi)]zi ,zj . (i’s belief about j’s signal at t given each zit).

Expected frequency: Qθ

i M
θ

i = Qθ

j . Note: ∥Mθ

i ∥1 = 1

2-step kernels: Mθ

ij = Mθ

i M
θ

j = [
∑

zj P
θ(zi|zj)Pθ(zj|z′i )]zi ,z′i

.

Stationarity: Qθ

i M
θ

ij = Qθ

i .

Empirical frequencies (up to t): Q̂it.

Q̂it: empirical frequency of i’s signals.

Expected empirical frequencies of other: Q̂itMθ

i .

i’s expectation of 2’s expectation of i’s empirical frequencies: Q̂iMθ

ij .

Theorem

If Z1,Z2 are finite and each player individually learns Θ, then players commonly learn Θ.
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Key Lemma A: Own Frequencies Concentrate

Lemma A

For each θ, there are δt ↓ 0 and T s.t. ∀t > T, Pθ(∥Q̂it – Qθ

it∥ | Hit) ≥ 1 – δt.

Proof

Q̂it is an avg of conditionally iid rv with Eθ[Q̂it] = Qθ

it ∈ ∆(Θ).

Result follows from WLLN.
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Key Lemma B: Concentrated Own Frequencies =⇒ High Posterior

Lemma B

Fix θ. There is T and βt ↓ 0 s.t. for all t > T, on the event of Lemma A ({||Q̂it – Qθ

i || < δt}),
P(θ|Hit) ≥ 1 – βt.

Proof

Step 1: Define Log-likelihood ratio. λ
θθ

′

it := ln
(

P(θ|hit)
P(θ′ |hit)

)
.

λ
θθ

′

it = λ
θθ

′

it–1+ln

(
Qθ

i (zit–1)
Qθ′

i (zit–1)

)
= λ

θθ
′

i0 +
t–1∑
s=0

ln

(
Qθ

i (zis)
Qθ′

i (zis)

)
= λ

θθ
′

i0 +t
∑
zi

Q̂it(zi) ln

(
Qθ

i (zi)
Qθ′

i (zi)

)
.
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)
= λ

θθ
′

i0 +t
∑
zi

Q̂it(zi) ln

(
Qθ

i (zi)
Qθ′

i (zi)

)
.
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Key Lemma B: Concentrated Own Frequencies =⇒ High Posterior

Lemma B

Fix θ. There is T and βt ↓ 0 s.t. for all t > T, on the event of Lemma A ({||Q̂it – Qθ

i || < δt}),
P(θ|Hit) ≥ 1 – βt.

Proof

Step 2: Uniform bound on Log-likelihood ratio.
Recall Kulback-Leibler divergence DKL(p||q) :=

∑
x p(x) ln(p(x)/q(x)).

Let δ̃ < minθ′ ,zi Q
θ
′
(zi); δ̂ := minθ′ ̸=θ′′ DKL(Qθ

′′

i ||Qθ
′

i )/2; b := maxθ,θ′ ,zi Q
θ

i (zi)/Q
θ
′

i (zi).
Note also that when ||Q̂it – Qθ

it|| < δ̃ then we must have Q̂θ

it > 0.

∣∣∣∣λθθ
′

it – tDKL(Q
θ

i ||Q
θ
′

i )
∣∣∣∣ = t

∣∣∣∣∑
zi

(Q̂it(zi) – Qθ

i (zi)) ln

(
Qθ

i (zi)
Qθ′

i (zi)

)∣∣∣∣
≤ t||Q̂it – Qθ

i || max
θ,θ′ ,zi

ln(Qθ

i (zi)/Q
θ
′

i (zi)) = t||Q̂it – Qθ

i || ln b.

Event from Lemma A: Take T s.t. for t > T, ||Q̂it – Qθ

i || < δt < min{δ̃, δ̂}/(ln b).
Then, λ

θθ
′

it ≥ λ
θθ

′

i0 + t(DKL(Qθ

i ||Q
θ
′

i ) – ||Q̂it – Qθ

i || ln b) ≥ λ
θθ

′

i0 + tδ̂.
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Key Lemma B: Concentrated Own Frequencies =⇒ High Posterior

Lemma B

Fix θ. There is T and βt ↓ 0 s.t. for all t > T, on the event of Lemma A ({||Q̂it – Qθ

i || < δt}),
P(θ|Hit) ≥ 1 – βt.

Proof

Step 3: Obtaining βt.

∀θ
′ ̸= θ, λ

θθ
′

it ≥ λ
θθ

′

i0 + tδ̂ ⇐⇒ ∀θ
′ ̸= θ, P(θ′)

P(θ)
≥ P(θ′|hit)

P(θ|hit)
etδ̂

=⇒ 1 – P(θ)
P(θ)

≥ 1 – P(θ|hit)
P(θ|hit)

etδ̂ ⇐⇒ P(θ|hit) ≥
(
1 + 1 – P(θ)

P(θ)
e–tδ̂

)–1
=: 1 – βt.
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Key Lemma C: Beliefs about Others’ Frequencies Concentrate

Lemma C

Fix θ. ∀∃T and γt ↓ 0 s.t. for all t > T, Pθ(||Q̂itMθ

i – Q̂jt|| < γt | Hit) ≥ 1 – γt.

Proof

Step 1: Boole’s inequality. Define Q̄θ

jt := Q̂itMθ

i .
Noting that {

∑n
ℓ=1 Xℓ > c} ⊆ ∪n

ℓ=1{Xℓ > c/n}, by Boole’s inequality,

Pθ(||Q̄θ

jt – Q̂jt|| ≥ γt | hit) ≤
∑
zj

Pθ
(∣∣∣Q̄θ

jt(zj) – Q̂jt(zj)
∣∣∣ ≥ γt/|Zj| | hit

)
.

Reduces problem to bounding deviation of each component of the frequency vector.

Step 2: Hoeffding’s Inequality. For fixed zj, empirical frequency Q̂jt(zj) = 1
t
∑t–1

s=0 1{zjs=zj}
is avg of independent, bounded random variables.
Conditional on hit (and θ), not iid, but Hoeffding’s inequality still applies.
Note conditional mean is Eθ[Q̂jt(zj) | hit] = Q̄θ

jt(zj).
Hoeffding’s inequality gives, for any ε > 0:

Pθ(|Q̂jt(zj) – Q̄θ

jt(zj)| ≥ ε | hit) = Pθ(|Q̂jt(zj) – Eθ[Q̂jt(zj) | h1t]| ≥ ε | hit) ≤ e–2tε
2
.
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∑

zj P
θ
(∣∣∣Q̄θ

jt(zj) – Q̂jt(zj)
∣∣∣ ≥ γt/|Zj| | hit

)
.

Step 2: Hoeffding’s Inequality. Pθ(|Q̄θ

jt(zj) – Q̂jt(zj)| ≥ ε | hit) ≤ 2e–2tε
2
.

Step 3: Combine the bounds. Let ε = γt/|Zj|. Substituting into the sum from Step 1:

Pθ(||Q̄θ

jt – Q̂jt|| ≥ γt | hit) ≤ 2|Zj|e
–2tγ2

t /|Zj |2 .

Step 4: Choose γt. Let γt = t–1/3. For large enough t, 2|Zj|e–2t
1/3/|Zj |2 ≤ t–1/3 = γt.

Hence, Pθ(||Q̄θ

jt – Q̂jt|| < γt | hit) = 1 – Pθ(||Q̄θ

jt – Q̂jt|| ≥ γt | hit) ≥ 1 – γt.
The bound is uniform over all histories hit.
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Key Lemma D: A Contraction Mapping

Lemma D

For each θ, the 2-step kernel Mθ

ij = Mθ

i M
θ

j is a contraction mapping on ∆(Zi) with con-
traction modulus (1 – r), where r =

∑
z′i

minzi
∑

zj P
θ(zi | zj)Pθ(zj | z′i ) > 0.

Proof

Mθ

ij > 0 andMθ

ij is a product of two stochastic matrices, hence also a stochastic matrix.
The result follows from Stokey, Lucas, and Prescott (1989, Lemma 11.3).

Intuition: My expectation of your expectation of my frequencies (Q̂itMθ

ij ) is “more
accurate” (closer to the truth Qθ

i ) than my initial frequencies Q̂it.
∥Q̂itMθ

ij – Qθ

i ∥ = ∥Q̂itMθ

ij – Qθ

i M
θ

ij∥ ≤ (1 – r)∥Q̂it – Qθ

i ∥.

This property stabilises the entire belief hierarchy.
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Proof of the Theorem

Proof

Proof Strategy:
Use the Monderer-Samet corollary. For any q < 1, we must find an event Et that,
for large t, has high probability, implies q-belief in θ, and is q-evident.

Let Et be the event where all players’ empirical frequencies are very close to the
true ones (condition on the fixed parameter):

Et := {θ} ∩
⋂

k∈{i,j}

{ω | ||Q̂kt – Qθ

k || < δt}

where δt → 0 is chosen from Lemma A.

Step 1 (High probability): By Lemma A (LLN), Pθ(Et) → 1. So for large t, Pθ(Et) > q.

Step 2 (q-belief of θ): By Lemma B, for any ω ∈ Et, players’ posteriors on θ converge
to 1. So for large t, Et ⊆ Bq

t (θ).
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Proof of the Theorem
Proof

Step 3 (q-evidence): For any q < 1, WTS Et ⊆ Bq
t (Et) for large t.

Focus on player i. For any ω ∈ Et, we need to show P(Et | Hit) ≥ q.

Since ω ∈ Et =⇒ ω ∈ Eit (which isHit-measurable) and P(θ | Hit) → 1 (by Lemma B),
this task reduces to showing that for any ω ∈ Eit:

Pθ(Ejt | Hit) = Pθ(||Q̂jt – Qθ

j || < δt | Hit) is high.

Step 3.1: Triangle Inequality. Recall player i’s expectation of j’s frequencies, Q̄θ

jt :=
Q̂itMθ

i . For any realisation of frequencies: ∥Q̂jt – Qθ

j ∥ ≤ ∥Q̂jt – Q̄θ

jt∥︸ ︷︷ ︸
Term 1

+ ∥Q̄θ

jt – Qθ

j ∥︸ ︷︷ ︸
Term 2

.

Step 3.2: Bounding the Terms. Choose δt : γt/r < δt (we can always choose δt con-
verging slower to zero).
Term 1: By Lemma C, conditional on any hit and θ, the event {||Q̂jt – Q̄θ

jt|| < γt} ⊇
{||Q̂jt – Q̄θ

jt|| < rδt} occurs with probability at least 1 – γt.

Term 2: As ω ∈ Eit =⇒ ||Q̂it – Qθ

i || < δt, by Lemma D:

||Q̄θ

jt – Qθ

j || = ||Q̂itM
θ

i – Qθ

i M
θ

i || ≤ (1 – r)||Q̂it – Qθ

i || < (1 – r)δt.

Step 3.3: Synthesis. On event Eit, player i knows ∥Q̂jt–Qθ

j ∥ < δt with probability≥ 1–γt.

Therefore, ∃t s.t. ω ∈ Et =⇒ P(Et | Hit) = 1{Eit} ∩P(Ejt | Hit) = P(θ | Hit)Pθ(∥Q̂jt –Qθ

j ∥ <
δt | Hit) > (1 – βt)(1 – γt) ≥ q.
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Proof of the Theorem

Proof

Step 3 (q-evidence): For any q < 1, WTS Et ⊆ Bq
t (Et) for large t.

Focus on player i. For any ω ∈ Et, we need to show P(Et | Hit) ≥ q.

Since ω ∈ Et =⇒ ω ∈ Eit (which isHit-measurable) and P(θ | Hit) → 1 (by Lemma B),
this task reduces to showing that for any ω ∈ Eit:

Pθ(Ejt | Hit) = Pθ(||Q̂jt – Qθ

j || < δt | Hit) is high.

Step 3.3: Conclusion. On event Eit, player i knows ∥Q̂jt – Qθ

j ∥ < δt with prob. ≥ 1 – γt.

Therefore, for large enough t and ω ∈ Et:
P(Et | Hit) = 1{Eit}∩P(Ejt | Hit) = P(θ | Hit)Pθ(∥Q̂jt–Qθ

j ∥ < δt | Hit) > (1–βt)(1–γt) ≥ q.

We conclude Et ⊆ Bq
it(Et) for i = 1, 2. Done.
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Recap and Extensions

Common learning: Cq
t (θ) holds with probability → 1.

Characterisation via high-probability q-evident events Ft.

Theorems: independence suffices; finite signals suffice.

Extensions
Don’t need assumptions on Pθ(z) (just made our already long proof a bit easier).
Extends to finitely many players.
Extends to uncertainty and differences of belief about conditional
signal-generating distributions: e.g., signals iid conditional on (θ, ρθ).
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Limits to Common Learning

Remark

With countably infinite signal sets, playersmay individually learn Θ yet fail to commonly
learn: ∃q ∈ (0, 1) s.t. ∀t, Pθ(Cq

t (θ)) < q.

Construction idea

State-specific decisive signals with probabilities decreasing in t.

Each player’s posterior → 1 almost surely (individual learning).

But each remains unsure whether the other already saw a decisive signal.

No q-evident event forms for q near 1 at any finite t.
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Common Learning: Back to Attacking a Currency

Coordinating on a Currency Attack
Two traders coordinate on when to attack currency A or B.
Every day, each trader simultaneously decides to attack currency A, B, or wait.
They only stand to gain if both attack the weaker currency and at the same time.
Every day, each receives private signal about if it’s best to attack A or B (the state).
Signals iid conditional on the state, but possibly correlated across traders.

Coordination Requirements
Coordination requires traders to be sufficiently convinced if state is A or B.
With fixed state, if traders will a.s. learn the state this is not an issue.
But... i also needs to be sufficiently convinced that j is sufficiently convinced state
is the same. And i also needs to be sufficiently convinced that j is sufficiently
convinced that i is sufficiently convinced ... etc.

Attacking A is optimal for trader i in some period t if and only if the trader assigns
probability at least q to the joint event that (i) state is A and (ii) j attacks A too
(which will depend on their beliefs about a symmetric event).

Is the attack ever carried out?

Yes, a.s. with independent or finite signals.
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And Now for Something Completely Different

Incomplete Information in Games:
Players are uncertain about what actions other players can take, and their payoffs.
Players are uncertain about their opponents’ uncertainty, etc.
Higher-order interactive uncertainty.

Harsanyi’s Proposal: model uncertainty via (S× T1 × · · · × TI, (πi))
πi : Ti → ∆(S× T–i): if player i is of type ti, believes { true game is s and opponents’
type is t–i } with probability πi(ti).

For each t–i in support of πi(ti), player –i believes player i’s type (plus game s) is
distributed according to π–i(t–i).

Introduces higher-order interactive uncertainty over S.
If S is a singleton, this reduces to the partition model with state space Ω = ×iTi
and ki = {ti}× T–i.

Can this simple type construction capture any possible belief hierarchy? Or are we
missing something with Harsanyi’s model?

Question first resolved by Mertens and Zamir (1985 IJGT).
Brandenburger and Dekel (1993 JET) provide a simpler treatment.
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Universal Type Space

Setup:
Two players for notational simplicity.
X0 = S: set of basic uncertainties, complete, separable, metric (Polish) space.

Belief Hierarchies
µ1 ∈ ∆(X0) is player’s belief over basic uncertainties (first-order).

X1 := X0 × ∆(X0): enriched space of uncertainties.
µ2 ∈ ∆(X1) is player’s belief over (S, opponent’s first-order belief) (second-order).

Inductively: Xn = Xn–1 × ∆(Xn–1).
µn+1 ∈ ∆(Xn) is player’s (n + 1)th-order belief.

Hierarchy of beliefs: µ = (µ1,µ2, ...) ∈ ×∞
n=0∆(Xn) =: T0.

Describes all possible incomplete information situations.
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Universal Type Space

Coherent beliefs
Example: µ2 ∈ ∆(X1) = ∆(X0 × ∆(X0)). Marginal on X0 must be µ1 ∈ ∆(X0).
Let margXn–2

µn denote the marginal distribution of µn on Xn–2.
Belief hierarchy µ is coherent if margXn–2

µn = µn–1 for all n ≥ 2.
T1 ⊆ T0: set of all coherent belief hierarchies.
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Universal Type Space

Theorem

There is a homeomorphism (continuous, one-to-one, onto, inverse function) π : T1 →
∆(S× T0).

Proof: Step 1 – Construction

Let Z0 := X0 and Zn := ∆(Xn–1) for n ≥ 1.

Then Xn = Z0 × · · · × Zn, and S× T0 = ×∞
n=0Zn.

For any µ ∈ T0, each level is µn+1 ∈ ∆(Z0 × · · · × Zn).

If µ ∈ T1, coherence requires margXn–2
µn = µn–1 for n ≥ 2.

By Kolmogorov’s Extension Theorem, there exists a unique measure µ
′ ∈ ∆(S × T0)

with marginals (µn+1).

Define π(µ) := µ
′.
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Universal Type Space

Proof: Step 2 – Properties of π

Well-defined: Each µ ∈ T1 yields a unique µ
′ ∈ ∆(S× T0).

Injective: If π(µ) = π(µ̃), then all finite marginals coincide =⇒ µ = µ̃.

Onto: Given ν ∈ ∆(S× T0):
Define µn+1 as the marginal of ν on Z0 × · · · × Zn.
Marginals are automatically consistent, hence define coherent hierarchy µ ∈ T1.
Then π(µ) = ν.

Continuous: T1 has product weak* topology; ∆(S× T0) has weak* topology.
Weak* convergence in ∆(S× T0) determined by convergence on bounded contin-
uous functions depending on finitely many coordinates.

By construction, margZ0×···×Zn
π(µ) = µn+1.

If µ
k → µ in T1, then µ

k
n+1 → µn+1 for each n.

Hence π(µk) → π(µ) weak*, since all finite marginals converge.
Same reasoning shows π

–1 is continuous.
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Universal Type Space

Proof: Step 3 – Conclusion

π is a bijection between T1 and ∆(S× T0).

Both π and π
–1 are continuous.

Therefore π : T1 → ∆(S× T0) is a homeomorphism.

Two equivalent representations of types:
as infinite coherent belief hierarchies, or
as single Harsanyi-type probability measures.
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The Point of the Universal Type Space Theorem

Theorem

There is a homeomorphism π : T1 → ∆(S× T0).

Establishes an equivalence between two ways of describing beliefs.

View 1: Belief Hierarchies (Explicit but Complex)
A type is an infinite sequence: belief about S, belief about (S, others’ beliefs), etc.
T1 is the set of all coherent infinite hierarchies.

View 2: Harsanyi Types (Implicit but Simple)
A type is a single probability distribution over S and opponents’ types.
∆(S× T0) collects these “compressed” descriptions.

“So What?”
π is a lossless compression: every coherent hierarchy ⇐⇒ a unique measure.
Being homeomorphism is important. Implies mapping is well-behaved: onto and
continuous, preserving the topological structure.

Validates Harsanyi’s idea: all incomplete-information situations can be modelled
via types.
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The Universal Type Space

The theorem maps µ ∈ T1 to a belief over (S, all possible hierarchies).

But coherent players should (perhaps) only consider coherent opponents.

Enforce this iteratively:
T2: types in T1 assigning prob. only to T1.
Tk : types in Tk–1 assigning prob. only to Tk–1.

Universal type space is the limit: T = ∩k≥1T
k.

A type µ ∈ T represents a coherent hierarchy, and it is CK that all players’ hierarchies are
coherent.

Theorem

(S,T, π) is the universal type space, with π : T → ∆(S× T) a homeomorphism.

“Universal” =⇒ any other type space can be embedded in it.

Canonical model of incomplete information.
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Epistemic Game Theory

Literature dedicated to arriving at equilibrium via introspection.
Epistemic foundations underlying correlated equilibrium (Aumann 1987 Ecta),
Nash equilibrium (Aumann and Brandenburger 1993 Ecta; Polak 1999 Ecta),
level-k (Brandenburger, Friedenberg, and Kneeland 2025 WP).

Epistemics underlie selection argument in global games and coordination games
via higher-order uncertainty and contamination arguments (Morris, Rob, and Shin
1995 Ecta; Morris, Shin, and Yildiz 2016 JET). Laplacian selection (best-response
to uniform distribution) in global games (Morris and Yang 2022 REStud).

Miscellanea:
Epistemics on networks (with applications to macro and finance): Golub and
Morris (2017 WP, 2018 WP).
Undated communication can break down common learning via infection
arguments (Steiner and Stewart 2011 JET)

Ending with a teaser
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Morris (2014) “Coordination, timing and common knowledge”

There is a continuum of individuals whose clocks are not perfectly synchronized. In
particular, they are slow by an amount between 0 and 4 min relative to the “true time”,
with the delay uniformly distributed in the population.

Each individual does not know how slow his clock is and has a uniform belief about the
delay.

At what time does it become common knowledge that the true time is, say, 8:00 a.m. or
later?

The answer is never.

Only when the true time reaches 8:04 does everyone know that the true time has reached
8:00.

Only at 8:08 does everyone know that everyone knows that it is past 8:00, and so on.

Thus it never becomes common knowledge.
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Morris (2014) “Coordination, timing and common knowledge”

But the paradox gets worse. When does it become common 3/4-belief (...) that the true
time has reached 8:00?

An individual only assigns probability 3/4 to the true time being after 8:00 when his own
clock reaches 7:59.

At this point, the true time is after 8:00 as long as his clock is delayed by at least 1 min, a
probability 3/4 event.

It is not until a true time of 8:02 that proportion 3/4 of individuals observe a time after
7:59: this is because at true time 8:02, individual clock times are uniformly distributed
between 7:58 and 8:02.

Thus only at 8:02 is it 3/4-believed – i.e., 3/4 of the population assign probability at least
3/4 – that the true time is after 8:00.

It is only at 8:04 that it is 3/4-believed that it is 3/4-believed that the time is after 8:00, and
so on. So it is also never common 3/4-belief that the time is after 8:00.

We will formalize and generalize this argument and verify that for any p > 1/2 it is never
common p-belief that the true time is after 8:00.

But, for any p ≤ 1/2, there is common p-belief that the true time is after 8:00 from 8:00 on.
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