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3 people are prisoners on an island.

They cannot communicate with each other, cannot see their reflections, and all had
green eyes.

The island is ruled by a despotic bear who imposed a peculiar rule:
a prisoner can ask to leave every night, but only prisoners with green eyes will be
permitted to escape, whilst all others will be tossed in the volcano.

All the prisoners want to leave, but will never take action unless they are absolutely
certain that they have green eyes.

You want to do something to help the prisoners.

The dictator allows you one thing only: to say a single sentence to the prisoners.

But there’s a twist: you can’t tell them anything that each didn’t know.

What do you do?
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‘There is at least one person with green eyes.’

Everyone knew that. On the first day, no one asks to leave. On the second day, neither.
On the third day, everyone does.

If no one asks to leave on day 1, then it must be that everyone sees someone with green
eyes
(otherwise they’d deduce they themselves have green eyes).

If no one asks to leave on day 2, then it must be that everyone sees two people with
green eyes
(otherwise they’d deduce they themselves have green eyes).

On day 3, everyone is sure they have green eyes.
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Common Knowledge

What happened? Saying something everyone knows makes it commonly known.

Who cares (other than for its own sake)?
Highlights the role of public signals and announcements (monetary policy,
auctions).

Clarifies limits of coordination (distributed systems, protests, currency attacks).
Provides epistemic foundations for solution concepts (backward induction,
Bayesian Nash equilibrium).

This lecture: formalising knowledge and deriving implications.
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Knowledge

ω ∈ Ω: state of the world. Finite.

Events E, F ⊆ Ω.

Knowledge Function: k : Ω → 2Ω

When true state is ω, k(ω) represents what DM knows.
Or, k(ω) are the states DM cannot distinguish from ω.
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Knowledge

Example

Ω = {ω,ω′}, k(ω) = {ω,ω′}, k(ω′) = {ω′}.
ω= Skipped my stop; ω= Didn’t skip my stop.
If I didn’t skip my stop, I know I didn’t. By if I did, I don’t know that I did.
Issue: if introspect, I realise that if I didn’t skip my stop I would know it, so if I don’t know
I must’ve skipped it!
If I knew k, introspection would rule this out.
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Knowledge

ω ∈ Ω: state of the world. Finite.

Events E, F ⊆ Ω.

Knowledge Function: k : Ω → 2Ω

When true state is ω, k(ω) represents what DM knows.
Or, k(ω) are the states DM cannot distinguish from ω.
Partitional Knowledge function: (i) ∀ω ∈ Ω, ω ∈ k(ω) and (ii)

ω
′ ∈ k(ω) =⇒ k(ω) = k(ω′).

Knowledge Operator: K : 2Ω → 2Ω s.t. K(E) := {ω ∈ Ω | k(ω) ⊆ E}.
Note: K(E) = ∪k(ω)⊆Ek(ω).
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Knowledge

Lemma

If k is partitional, then:
1. K(Ω) = Ω. (Axiom of awareness)
2. K(E) ∩ K(F) = K(E ∩ F).
3. K(E) ⊆ E. (Axiom of knowledge)
4. K(E) = K(K(E)). (axiom of transparency)
5. Ω \ K(E) = K(Ω \ K(E)). (Axiom of wisdom)
6. F ⊆ E =⇒ K(F) ⊆ K(E). (Monotonicity)
7. K(E) = ∪ω∈K(E)k(ω).

Proof

1. ∀ω,ω ∈ k(ω) ⊆ Ω =⇒ K(Ω) = Ω.

2. ω ∈ K(E ∩ F) ⇐⇒ ∃ω
′ : ω ∈ k(ω′) = k(ω) ⊆ E ∩ F ⇐⇒ ω ∈ K(E) ∩ K(F).

3. ω ∈ K(E) =⇒ ω ∈ k(ω) ⊆ E.
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Knowledge

Lemma

If k is partitional, then:
1. K(Ω) = Ω. (Axiom of awareness)
2. K(E) ∩ K(F) = K(E ∩ F).
3. K(E) ⊆ E. (Axiom of knowledge)
4. K(E) = K(K(E)). (axiom of transparency)
5. Ω \ K(E) = K(Ω \ K(E)). (Axiom of wisdom)
6. F ⊆ E =⇒ K(F) ⊆ K(E). (Monotonicity)
7. K(E) = ∪ω∈K(E)k(ω).

Proof

4. K(K(E)) ⊆ K(E) from 3. Moreover, ω ∈ K(K(E)) =⇒ k(ω) ⊆ K(E) ⊆ E =⇒ ω ∈
K(E) =⇒ K(K(E)) ⊆ K(E) (Using 3.).
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Knowledge

Lemma

If k is partitional, then:
1. K(Ω) = Ω. (Axiom of awareness)
2. K(E) ∩ K(F) = K(E ∩ F).
3. K(E) ⊆ E. (Axiom of knowledge)
4. K(E) = K(K(E)). (axiom of transparency)
5. Ω \ K(E) = K(Ω \ K(E)). (Axiom of wisdom)
6. F ⊆ E =⇒ K(F) ⊆ K(E). (Monotonicity)
7. K(E) = ∪ω∈K(E)k(ω).

Proof

5. Using 3., as K(E) = K(K(E)) = ∪K({ω})⊆K(E)K({ω}) K(Ω \ K(E)) ⊆ Ω \ K(E) from 3.
Moreover, as k partitional, ω ∈ Ω \ K(E) =⇒ ω /∈ K(E) = K(K(E)) =⇒ ¬(k(ω) ⊆
K(E)) =⇒ (ω′ /∈ K(E)∀ω

′ ∈ k(ω)) =⇒ k(ω) ⊆ Ω \ K(E) =⇒ ω ∈ K(Ω \ K(E)).
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Knowledge

Proposition

If k is partitional, then:
1. K(Ω) = Ω. (Axiom of awareness)
2. K(E) ∩ K(F) = K(E ∩ F).
3. K(E) ⊆ E. (Axiom of knowledge)
4. K(E) = K(K(E)). (axiom of transparency)
5. Ω \ K(E) = K(Ω \ K(E)). (Axiom of wisdom)
6. F ⊆ E =⇒ K(F) ⊆ K(E). (Monotonicity)
7. K(E) = ∪ω∈K(E)k(ω).

Proof

6. F ⊆ E =⇒ K(F) = K(F ∩ E) = K(F) ∩ K(E) ⊆ K(E) (using 2).

7. K(E) = ∪ω∈K(E){ω} ⊆ K(E) = ∪ω∈K(E)k(ω). Moreover, ∀ω
′ ∈ ∪ω∈K(E)k(ω), ∃ω

′′ ∈
K(E) : ω

′ ∈ k(ω′′); and as k(ω′) = k(ω′′) ⊆ E, then ω
′ ∈ K(E).
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Interactive Knowledge

Player i ∈ {1, ..., I} with knowledge operator Ki.

Assume partitional ki henceforth.

Definition

(i) There is mutual knowledge of E ⊆ Ω at ω if ω ∈ K1(E) := ∩iKi(E).

(ii) Let Kn+1(E) := K1(Kn(E)), for n = 1, 2, .... There is common knowledge of E ⊆ Ω at
ω if ω ∈ K∞(E) := ∩nKn(E).

Remark

If E is CK at ω, then ∀F ⊇ E, F is CK at ω.

Proof

By monotonicity of Ki, ω ∈ K∞(E) ⊆ K∞(F).

Can also consider CK for subset of players.
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Properties of Mutual and Common Knowledge Operators

Proposition

If ki is partitional ∀i, then, for any n = 1, 2, ...,∞,
1. Kn(Ω) = Ω. (Axiom of awareness)
2. Kn(E) ∩ Kn(F) = Kn(E ∩ F).
3. Kn(E) ⊆ E. (Axiom of knowledge)
4. Kn(E) ⊇ Kn(Kn(E)). (axiom of transparency)
5. Ω \ Kn(E) ⊇ Kn(Ω \ Kn(E)). (Axiom of wisdom)
6. F ⊆ E =⇒ Kn(F) ⊆ K(E). (Monotonicity)
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Properties of Mutual and Common Knowledge Operators

Proof

We prove for n = 1.

1. ∩iKi(Ω) = ∩iΩ = Ω.

2. (∩iKi(E)) ∩ (∩iKi(F)) = ∩i(Ki(E) ∩ Ki(F)) = ∩iKi(E ∩ F).

3. ∩iKi(E) ⊆ ∩iE = E.

4. Follows from 3.

5. Follows from 3.

6. F ⊆ E =⇒ Ki(F) ⊆ Ki(E)∀i =⇒ ∩iKi(F) ⊆ ∩iKi(E).

Iterate arguments to extend to n > 1.
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Interactive Knowledge

Example

Ω = {ω1,ω2,ω3}.

k1(ω1) = {ω1}, k1(ω2) = k1(ω3) = {ω2,ω3}.

k2(ω1) = k2(ω2) = {ω1,ω2}, k2(ω3) = {ω3}.

E = {ω2,ω3} =⇒ K1(E) = E, K2(E) = {ω3} =⇒ K1(E) = {ω3}.

K1(K1(E)) = ∅ =⇒ Kn(E) = K∞(E) = ∅, ∀n ≥ 2.

Only Ω is CK.

How to get CK? By assumption or deriving CK from CK of something else.
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Interactive Knowledge

Definition

Event E is evident if it is mutually known, E ⊆ K1(E).

If E happens, everyone knows E happens.

Remark

(i) E is evident =⇒ E ⊆ K1(E) ⊆ E =⇒ E = K1(E).

(ii) E is evident ⇐⇒ ki(ω) ⊆ E, ∀ω ∈ E.

(iii) If E is evident, E = K∞(E) and so E is CK at any ω ∈ E.
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Interactive Knowledge

Definition

Event E is evident if it is mutually known, E ⊆ K1(E).

Proposition (Monderer and Samet, 1989 GEB)

C is CK at ω if and only if there is an evident event E s.t. ω ∈ E and E ⊆ K1(C).

One could have just as well have written (...) “ω ∈ E and E ⊆ C”

Proof

If: E ⊆ K1(C) =⇒ ω ∈ E = K∞(E) ⊆ K∞(C).

Only if: Let E := K∞(C) := ∩nKn(C). Then, Ki(E) = E ∀i =⇒ K1(E) = E, and E is evident.
Moreover, by transparency, E = K∞(C) ⊆ K1(C).
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Adding Beliefs to Partitional Model

Prior Belief Pi of player i over Ω. Assume full support, Pi > 0.

Posterior Belief Pi(E|ki(ω)) = Pi(E ∩ ki(ω))/Pi(ki(ω)).

Common Prior P ∈ ∆(Ω) if Pi = P∀i.

Harsanyi Doctrine: We are born equal; we have different views about the world because
we receive different information.

Implications of common prior assumption (CPA)?
Agreeing to disagree and no-trade theorem.
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Agreeing to Disagree
Aumann (1976 AMS): Two individuals with a common prior belief, even if they had very

different information (attending different school, different upbring, etc.) cannot agree
to disagree.

I.e., if differences are due to information and posteriors are common knowledge, then
there can’t be disagreement.

Theorem

Let there be a common prior P. Suppose it is CK at ω
∗ that player 1’s posterior beliefs

on event E are m1 whereas player 2’s are m2. Then, m1 = m2.

Proof

Consider Di := {ω|P(E | ki(ω)) = mi}.

D1 ∩ D2 CK at ω
∗, ∃ evident event F s.t. ω

∗ ∈ F ⊆ D1 ∩ D2.

As F is evident, F = Ki(F) = {ω | ki(ω) ⊆ F}. Hence, F = ∪ω∈Fki(ω), where {ki(ω)}ω∈F
denotes a partition.

Since, for disjoint A,B, one has P(E|A) = P(E|B) =⇒ P(E|A) = P(E|A ∪ B),
then P(E|F) = P(E|ki(ω)) = mi.

Hence, m1 = m2 = P(E|F).Gonçalves (UCL) Common Learning 18



Agreeing to Disagree

Theorem

Let there be a common prior P. It cannot be CK at some ω
∗ that player 1’s posterior

beliefs on event E is strictly greater than player 2’s.

Proof

Suppose not: ∃ω
∗ at which D := {ω|P(E | k1(ω)) > P(E | k2(ω))} is CK.

∃ evident event F s.t. ω
∗ ∈ F ⊆ D.

=⇒ ∀ω ∈ F, P(ω)P(E|k1(ω)) > P(ω)P(E|k2(ω)).

=⇒ , P(F∩E) =
∑

ω∈F P(ω)P(E|k1(ω)) >
∑

ω∈F P(ω)P(E|k2(ω)) = P(F∩E), contradiction.
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Agreeing to Disagree

It can be CK that two players have different beliefs at an event E.

Example

Ω = {ω1,ω2}, P uniform common prior.

∀ω, k1(ω) = {ω} k2(ω) = Ω.

E = Ω.

“the two players have different posterior beliefs” at every state of the world, and this
event is common knowledge: K∞(Ω) = Ω.
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Agreeing to Disagree

Corollary

Let there be a common prior P and X : Ω → R a random variable. It cannot be CK at
some ω

∗ that player 1’s holds a higher expectation of X than player 2 does.

Proof

Suppose not: ∃ω
∗ at which D := {ω|E[X | k1(ω)] > E[X | k2(ω)]} is CK.

∃ evident event F s.t. ω
∗ ∈ F ⊆ D.

=⇒ ∀ω ∈ F, P(ω)
P(F) E[X|k1(ω)] > P(ω)

P(F) E[X|k2(ω)].

=⇒ E[X | F] =
∑

ω∈F
P(ω)
P(F) E[X|k1(ω)] >

∑
ω∈F

P(ω)
P(F) E[X|k2(ω)] = E[X | F], contradiction.
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No-Trade Theorem

Typical reason provided for trading: differences in information.

Milgrom and Stokey (1982 JET) show this is not exactly correct...

Definitions
Allocation: a : Ω → A, a contract that associates each state with an allocation or
transfer to all agents.

Payoffs: Player i’s state-dependent utility function ui(a(ω),ω).
Ex-ante Efficiency: b is ex-ante efficient if ∄a s.t. ∀i E[ui(a(ω),ω)] ≥ E[ui(b(ω),ω)]
with a strict inequality for some i.
i.e.,

∑
ω∈Ω

P(ω)ui(a(ω),ω) ≥
∑

ω∈Ω
P(ω)ui(b(ω),ω)
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No-Trade Theorem

Theorem (Milgrom and Stokey, 1982 JET)

Let there be a common prior P. Suppose b is ex-ante efficient. If cannot be common
knowledge that there is some allocation a that is weakly preferred to b by all players
and strictly by at least one.

Then players cannot trade away from b even if new information ki arrives.

Agreeing to disagree results have brutal implications for trading:
with CPA, once we get to an ex-ante efficient allocation, there is no scope for purely
information-based trade.
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No-Trade Theorem

Theorem (Milgrom and Stokey, 1982 JET)

Let there be a common prior P. Suppose b is ex-ante efficient. If cannot be common
knowledge that there is some allocation a that is weakly preferred to b by all players
and strictly by player 1.

Proof

Suppose ∃a s.t. CK (with new information) that a is weakly preferred to b by everyone
and strictly so by player 1.

Let F be evident event contained in

{ω ∈ Ω|E[ui(a(ω),ω)–ui(b(ω),ω) | ki(ω)] ≥ 0∀i and E[u1(a(ω),ω)–u1(b(ω),ω) | k1(ω)] > 0}.

Then, ∀i, E[ui(a(ω),ω) – ui(b(ω),ω) | F] ≥ 0, and E[u1(a(ω),ω) – u1(b(ω),ω) | F] > 0.

Define contract c: c(ω) = a(ω) if ω ∈ F and c(ω) = b(ω) if otherwise. We get

E[ui(c(ω),ω) – ui(b(ω),ω)] = P(F)E[ui(a(ω),ω) – ui(b(ω),ω)]
which is ≥ 0 for all i and > 0 for i = 1.

Contradicts b being ex-ante efficient.
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No-Trade Theorem

Typical reason provided for trading: differences in information.

Milgrom and Stokey (1982 JET) show this is not exactly correct...

With CPA, once we get to an ex-ante efficient allocation, there is no scope for purely
information-based trade.

Note! Prices do adjust to new information.
More: under weak conditions
(essentially strict risk-aversion, smooth EU, ex-ante efficiency
— see Milgrom and Stokey, 1982 JET, Theorem 3)
change in relative prices reveals new info available to traders and is independent of
endowments, utility functions, prior beliefs, and initial allocation.
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Charaterising CPA

CPA has important consequences, not just theoretical convenience.

If observe beliefs of different players, can we say whether there is a common prior?

Two fundamental contributions:
Samet (1998 GEB), Common Priors and Separation of Convex Sets; and
Samet (1998 GEB), Iterated Expectations and Common Priors.
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Charaterising CPA

CPA has important consequences, not just theoretical convenience.

If observe beliefs of different players, can we say whether there is a common prior?

Samet (1998 GEB), Common Priors and Separation of Convex Sets
Each agent’s set of priors = convex hull of agent’s types.
Proposition: A common prior exists if and only if the intersection of these convex
sets is nonempty.

Proof idea: Generalisation of the separation theorem: multiple convex, closed
subsets of the simplex intersect ⇐⇒ no linear functional can simultaneously
separate them.

Interpretation: Absence of common prior ⇐⇒ existence of a bet that everyone
expects to win. (No-trade-theorem-like converse)

Gonçalves (UCL) Common Learning 27



Charaterising CPA

CPA has important consequences, not just theoretical convenience.

If observe beliefs of different players, can we say whether there is a common prior?

Samet (1998 GEB), Iterated Expectations and Common Priors
Can we test for a common prior using only present beliefs?
Key idea: (1) Start with any random variable X. (2) Compute iterated expectations:
Eve’s expectation of X, Adam’s expectation of Eve’s expectation, Eve’s
expectation of Adam’s expectation, .... These sequences always converge.

Proposition: Common prior exists if and only if for every X, all iterated expectation
sequences converge to the same limit. Common limit is expectation under the
common prior.

Proof idea: Represent type functions as Markov matrices. Common prior =
invariant probability measure for all players’ matrices.
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Charaterising CPA

CPA has important consequences, not just theoretical convenience.

If observe beliefs of different players, can we say whether there is a common prior?

Two fundamental contributions:
Samet (1998 GEB), Common Priors and Separation of Convex Sets; and
Samet (1998 GEB), Iterated Expectations and Common Priors.

Also: Feinberg (2000 JET), Geanakoplos and Polemarchakis (1982 JET).

Related: Literature on merging of beliefs.
Epistemic foundations for solution concepts (Aumann 1987 Ecta; Aumann and
Brandenburger 1995 Ecta).
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Common Belief

(Ω,Σ,µ) probability space, I finite set agents, ki induces partition of Ω,
Fi := σ({ki(ω)}ω∈Ω).

“i knows E at ω” = {ki(ω) ⊆ E}.

“i knows E” = Ki(E) := {ω ∈ Ω | ki(ω) ⊆ E}.

From “i knows E at ω” to “i believes E wp≥ p at ω” ≡ “i p-believes E at ω”.

“i p-believes E at ω” = {µ(E|ki(ω)) ≥ p}.

“i p-believes E” = Bp
i (E) = {ω ∈ Ω | µ(E|ki(ω)) ≥ p}.
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Properties of p-Belief

Proposition

For E, F ∈ Σ, p ∈ [0, 1], i ∈ I:
1. µ(E|Bp

i (E)) ≥ p.

2. Bp
i (E) ∈ Fi.

3. If E ∈ Fi, then Bp
i (E) = E.

4. Bp
i (B

p
i (E)) = Bp

i (E).

5. E ⊆ F =⇒ Bp
i (E) ⊆ Bp

i (F).

6. If (En) is decreasing sequence of events, then Bp
i (∩nEn) = ∩nBp

i (E
n).

1-belief = knowledge with finite models; not in continuous models:
e.g., 1-believe that uniform random draw from [0, 1] is irrational, but we don’t know it.
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Common p-Belief

Definition

(i) There is mutual p-belief of E at ω if ω ∈ Bp,1(E) := ∩iB
p
i (E).

(ii) Let Bp,n+1(E) := Bp,1(Bp,n(E)), for n = 1, 2, .... There is common p-belief of E at ω if
ω ∈ Bp,∞(E) := ∩nBp,n(E).

Common p-belief as ‘almost CK’. Common p-belief vs CK:
C = currency attack starts at 9:00.
E=At 9:00, on a phone call, there is an announcement among traders that currency
attack starts.

If everyone sees announcement, E is evident and C is CK.
But if there is a small chance not everyone is paying attention, E is not evident
(may even not be p-evident for high p).
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Common p-Belief

Definition

E is evident p-believed if it is mutually p-believed, E ⊆ Bp,1(E).

Evident p-belief event: whenever E occurs, everyone assigns probability of at least p to
its occurrence.

Proposition (Monderer and Samet, 1989 GEB)

C is common p-believed at ω if and only if there is an evident p-belief event E s.t. ω ∈ E
and E ⊆ Bp,1(C).

Proof

If: E ⊆ Bp,1(C) =⇒ ω ∈ E ⊆ Bp,1(E) ⊆ Bp,∞(C).

Only if: Let E := Bp,∞(C). Then, E = Bp,1(E) = Bp,∞(C). By transparency, E = Bp,∞(C) ⊆
Bp,1(C).
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Common Learning: Attacking a Currency
Coordinating on a Currency Attack

Two traders coordinate on when to attack currency A or B.
Every day, each trader simultaneously decides to attack currency A, B, or wait.
They only stand to gain if both attack the weaker currency and at the same time.
Every day, each receives a private signal about if it’s best to attack A or B (the
state).

Signals are iid conditional on the state, but possibly correlated across traders.

Coordination Requirements
Coordination requires traders to be sufficiently convinced if state is A or B.
With fixed state, if traders will a.s. learn the state this is not an issue.
But also need to believe other is sufficiently convinced. And that other is
sufficiently convinced that they are sufficiently convinced. etc.

Choosing action A is optimal for a trader in some period t only if the trader assigns
probability at least q to the joint event that the state is A and the other chooses A
too. (which will depend on their beliefs about a symmetric event)

Is the attack ever carried out? When does individual learning imply common learning?

Trivial case: public signals (perfect correlation). Anything else?
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- Discrete time t = 0, 1, 2, ...

- Common Prior Assumption: θ ∈ Θ, Θ finite, according to (prior distribution) p.

- Two players; ℓ, ℓ̂ ∈ {1, 2}; results hold for arbitrary finite number of agents.

- Signal Process: ξ
θ ≡ {ξθ

t }
∞
t=0 ≡ {ξθ

1t, ξ
θ

2t}
∞
t=0, conditional on θ. ξ

θ iid across t.
ξ

θ
t takes values zt = (z1t, z2t) ∈ Z1 × Z2 =: Z.
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- States Ω ≡ Θ × Z∞; state ω: parameter and sequence signal profiles

- P measure on Ω induced by prior p and signal processes
(

ξ
θ
)

θ∈Θ

E[·] expectation wrt P

- Pθ measure p conditional on θ ∈ Θ; Eθ[·] expectation wrt Pθ

- Period-t history for agent ℓ: hℓt ≡ (zℓ0, zℓ1, ..., zℓt–1)
Hℓt ≡ (Zℓ)

t space period-t histories for ℓ
{Hℓt}∞t=0 filtration induced on Ω by agent ℓ’s histories

- Filtration {Ft}t≥0
Given measurable space (Ω,F ), filtration is a sequence of (sub)σ-algebras {Ft}t≥0 s.t. F ⊂ Ft ∀t and increasing wrt set
inclusion, Ft ⊂ Ft′ ∀t ≤ t′

Filtered Prob. Space or Stochastic Basis is a Prob. Space + Filtration of its σ-algebra
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Player i ∈ {1, ..., I} with knowledge operator Ki.

Definition

A knowledge hierarchy among players at ω
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Syntactic Knowledge

In the words of Aumann (1999 IJGT, I)
One question that often arises is, what do the players know about the [semantic]
formalism itself? Does each know the others’ partitions? If so, from where does
this knowledge derive? If not, how can the formalism indicate what each player
knows about the others’ knowledge?
(...) More generally, the whole idea of “state of the world,” and of a partition struc-
ture that accurately reflects the players’ knowledge about other players’ knowl-
edge, is not transparent. What are the states? Can they be explicitly described?
Where do they come from? Where do the information partitions come from?
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Syntactic Knowledge Model

Main Ingredients
Symbols: including Letters from an alphabet X := {x, y, z, ...} taken as fixed, and
∨,¬, (), and κi.

Formula (or Propositions): finite string of symbols.
1. Every letter is a formula.
2. If f and g are formulas, so is (f) ∨ (g).
3. If f is a formula, so are ¬(f) and κi(f) for each i.

Interpretation
κif : “i knows f”.
∨,¬: ‘or’, ‘it is not true that’.
Formula f : a finite concatenation of natural occurrences, using operators and
connectives of propositional logic plus the knowledge operators.
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Lists of Formulas

Lists
f =⇒ g means (¬f) ∨ g.
f ⇐⇒ g means f =⇒ g and g =⇒ f .
List is set of formulas.

Properties of List L
- logically closed if (f ∈ L and f =⇒ g ∈ L) implies g ∈ L.
- epistemically closed if f ∈ L implies κif ∈ L.
- strongly closed if logically and epistemically closed.

Strong closure of L is smalles strongly clost list that includes L.
- coherent if ¬f ∈ L implies f /∈ L.
- complete if f /∈ L implies ¬f ∈ L.
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Tautologies

Tautology is statement commonly believed by everyone. Formally:

Tautology: a formula in strong closure of the list of all formulas having one of the
following forms:

(i) (f ∨ f) =⇒ f .
(ii) f =⇒ (f ∨ g).
(iii) (g ∨ f) =⇒ (f ∨ g).
(iv) (f =⇒ g) =⇒ ((h ∨ f) =⇒ (h ∨ g)).
(v) κif =⇒ f .
(vi) κi(f =⇒ g) =⇒ ((κif) =⇒ (κig)).
(vii) ¬κif =⇒ κi¬κif .

T : list of all tautologies.

(Theorems are tautologies!)

g is consequence of f if f =⇒ g is a tautology.

Syntax S: set of all formulas with given population I and alphabet X , countable.

Gonçalves (UCL) Common Learning 41



Towards an Isomorphism for Syntactic-Semantic Knowledge

Canonical Semantic Knowledge System: For given syntax S ,
State ω:= a closed, coherent, complete list of formulas containing all tautologies.
Ω: set of all states.
Information function: ki : Ω → 2Ω s.t. ki(ω) is set of formulas in ω starting with κi.
Events Ef := {ω ∈ Ω : f ∈ ω}.

For any list L, let L∗ denote the strong closure of L ∪ T .

L is consistent if f ∈ L∗ implies ¬f /∈ L∗.

Proposition: A list is a state iff it is complete and consistent.

Syntactic and semantic approaches isomorphic (under conditions)
– Aumann (1999 IJGT I, §9).
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So What?

Contractual complexity, intrincate financial derivatives, and failures of contigent
reasoning: issues in dealing with logical deduction (costly, confusing).

Vague and complex contracts: e.g., Jakobsen (2020 AER), Piermont (2024 wp).

Expanding state space via introducing new concepts/possibilities.

(Fun fact: modern concept of concept originated mainly in Kant’s work in 18th century.)
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