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Learning in Games

How do people get to play equilibrium?
Main question of interest in ‘learning in games’ (̸= games with learning)

Goals
Provide foundations for existing equilibrium concepts.
Capture lab behaviour.
Predict adjustment dynamics transitioning to new equilibrium.
(akin to ‘impulse response’ in macro; uncommon but definitely worth
investigating)

Select equilibria.
Algorithm to solve for equilibria.
Explain persistence of heuristics/nonequilibrium behaviour.
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Fictitious Play

Col Player
L R

Row Player L -1, -1 3, 0
R 0, 3 0, 0

Suppose play 1st time
Period 0: Say you choose best-response against uniform a1 = L.
Period 1: best-respond against empirical frequency of past play σ̄

1
–i(L) = 1,

σ
∗
i (σ̄

1
–i(L)) = R.

Period 2: best-respond against empirical frequency of past play σ̄
2
–i(L) = 1/2,

σ
∗
i (σ̄

2
–i(L)) = L. etc.
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Fictitious Play

(Stage) Game
Player i ∈ I; –i = I \ {i}.
Actions A = ×iAi. Mixed σi ∈ Σi = ∆(Ai). Strategies (whenever different) S = ×iSi.
Abuse notation: σ–i ∈ ∆(A–i) and σ–i ∈ ×j̸=iΣj.

Payoffs u = (ui), ui(a) = ui(ai, a–i) also ui(s).
Prior µi ∈ ×j̸=i∆(Aj), for each dimension Dirichlet with sum of parameters αi,0 and
mean σ̂

i
–i,0.

For simplicity, assume that marginals of i, j wrt ℓ are the same.
Correlation vs independence

Different from prior µi ∈ ∆(A–i), Dirichlet with sum of parameters αi,0 and
mean σ̂

i
–i,0.

Subjective beliefs about opponents; correlation reflecting strategic uncertainty
(Fudenberg and Kreps 1993 GEB).

Correlation has important implications for gameplay.
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Fictitious Play

Time t = 0, 1, 2, ....

Empirical Frequencies σ̄
t+1
i (ai) = 1

t+1
∑t

ℓ=0 1{si,ℓ=ai}.

Dirichlet Prior + Categorical observations =⇒ Dirichlet Posterior.

Mean σ̂
i
j,t+1(aj) =

αi,t
αi,t+1

σ̂
i
j,t(aj) +

1
αi,t+1

1{aj,t=aj} =
α0,i

α0,i+t+1 σ̂
i
j,0 + t+1

α0,i+t+1 σ̄j,t.

Weights αi,t+1 = αi,t + 1 = αi,0 + t + 1.

Empirical frequencies when αi,0 = 0 (limit case).

Best response argmaxσi
Eσ–i∼µi,tui(σi,σ–i) = argmaxai

ui(σi, σ̂i
–i,t).

σ
∗
i (µi,t) is selection from best-response correspondence (i.e., fix tie-breaking rule.)

Abuse notation σ
∗
i (σ̂

i
–i).

Induces dynamics of play: (σt).

Comments
Bayesian interpretation of fictitious play.
Players treat environment as stationary, but it’s only stationary if start at steady
state.
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Convergence of Strategies

Definition

σt converges if ∃σ∞ : σt → σ∞.
σt converges in time average if ∃σ∞ : σ̄t → σ∞.

Note: empirical frequencies converge if and only if posterior means converge;
σ̄t → σ∞ ⇐⇒ σ̂

i
–i,t → σ–i,∞ for all i.
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Nash Equilibrium as a Limit of Fictitious Play

Proposition 3.0 (Fudenberg and Kreps 1993 GEB)

Suppose that σ is a strict NE. Under fictitious play, if σt = σ for some t > 0, then σt+h = σ

for all h > 0.

Proof

Suppose σt = σ. Then ∀i, σ̂
i
–i,t : σi = σ

∗
i (σ̂

i
–i,t) =⇒ ui(σi, σ̂i

–i,t) – ui(σ′
i , σ̂

i
–i,t) ≥ 0, ∀σ

′
i .

Strict NE implies ui(σi,σ–i) – ui(σ′
i ,σ–i) > 0 ∀σ

′
i .

Then, ui(σi, σ̂i
–i,t+1)–ui(σ

′
i , σ̂

i
–i,t+1) =

1
αt+1

(ui(σi,σ–i)–ui(σ′
i ,σ–i))+ αt

αt+1
(ui(σi, σ̂i

–i,t)–ui(σ
′
i , σ̂

i
–i,t)) >

0 for all σ
′
i .

=⇒ σ
∗
i (µi,t+1) = σi.
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Nash Equilibrium as a Limit of Fictitious Play

Proposition 3.0 (Fudenberg and Kreps 1993 GEB)

Suppose that σ is a strict NE. Under fictitious play, if σt = σ for some t > 0, then σt+h = σ

for all h > 0.

Proposition 3.1 (Fudenberg and Kreps 1993 GEB)

Under fictitious play, if σt = σ for all but a finite set of periods, then σ is a NE.

Proposition 3.2 (Fudenberg and Kreps 1993 GEB)

Under fictitious play, if σ̄t → σ∞, then product of marginals (σi,∞, i ∈ I) is a Nash
equilibrium.
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Nash Equilibrium as a Limit of Fictitious Play

Proposition 3.2 (Fudenberg and Kreps 1993 GEB)

Under fictitious play, if σ̄t → σ∞, then product of marginals (σi,∞, i ∈ I) is a Nash
equilibrium.

Proof

Suppose σ∞ not NE. Then, ∃ai, a′i : σi(ai) > 0 and ui(a′i ,σ∞) > ui(ai,σ∞).

Hence, ∃T > 0 : ∀t > T, ui(a′i , σ̂
i
–i,t) > ui(ai, σ̂i

–i,t).

This implies that ai not a best response ∀t > T and so ∀t > T σi,t(ai) = 0.

Finally, σ̄i,t(ai) = T
t σi,T(ai) → 0 < σ∞(ai), a contradiction.
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(Non)-Convergence of Strategies

Col Player
L R

Row Player L 0, 0 1, 1
R 1, 1 0, 0

Symmetric. α0 = 1 +
√
2, σ̂0(L) = 1/(1 +

√
2).

Never indifference (irrational prior mean).
Period 0: σ̂0(L) = 1/(2 +

√
2) < 1/2, both play L.

Period 1: σ̂1(L) = 2/(2 +
√
2) > 1/2, both play R.

Period 2: σ̂0(L) = 2/(3 +
√
2) < 1/2, both play L.

Alternating sequence (L, L), (R,R), (L, L), (R,R), ...

Insights:
1. Strategies don’t converge. σt never converges and keeps cycling.
2. Empirical frequencies converge but violate independence assumption. σt does

converge in time average to σ∞ and marginals of empirical distribution do
converge to a NE (1/2,1/2), but σ∞ is not NE due to correlation.
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Limit Cycles
Player R

a b c

Player C
a 1, 0 0, 0 0, 1
b 0, 1 1, 0 0, 0
c 0, 0 0, 1 1, 0

Version of Rock-Paper-Scissors from Shapley (1964).
Initial values: αC,0 = αR,0 =

√
210–10, σ̂

R
C,0 = (3/4, 1/4,0), and σ̂

C
R,0 = (0, 3/4, 1/4).

Period 0: at = (a, a). 1-period run.
Period 1-2: at = (a, c). 1+1=2-period run.
Period 3-6: at = (c, c). 2+1+1=4-period run.
Period 7-13: at = (c, b). 4+2=6-period run.
Period 13-24: at = (b, b). 6+4=10-period run.
Period 25-43: at = (b, a). 10+6=16-period run.
Period 44-: at = (a, a). 16+10+1=27-period run.
Spend longer playing at the same action profile, but still switch quickly enough.
Also: Jordan (1993 GEB).

Insights:
3. Empirical frequencies may never converge; get stuck in limit cycle.
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Non-Convergence

If fictitious play converges, we get a Nash equilibrium. But...

Insights from examples (Jordan 1991 GEB, Shapley 1964)
1. Strategies σt don’t necessarily converge anc can cycle forever.
2. Empirical frequencies may converge to a but violate independence assumption. σt

does converge in time average to σ∞ and marginals of empirical distribution do
converge to a NE (1/2,1/2), but σ∞ is not NE due to correlation.

3. Empirical frequencies may never converge at all, and instead get stuck in limit
cycle.

Bad news for learning foundations of NE.
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Convergence of Strategies

Proposition 2.3 (Fudenberg and Levine, 1998)

Under fictitious play, if the stage game (i) is 2 × 2 with 1 or 3 NE (Robinson, 1951 Ann-
Math), or zero-sum (Miyasawa, 1961WP), or dominance-solvable (Nachbar, 1951 IJGT),
the σ̄t converges to some σ∞.

We’ll see a proof later.
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Independence vs Correlation
Player R

a b c

Player C
a 1, 0 1/2, 1/2 0, 1
b 0, 1 1, 0 1/2, 1/2
c 1/2, 1/2 0, 1 1, 0

New version of Rock-Paper-Scissors from Shapley (1964). Example taken from
Fudenberg and Levine (1998, §2.9).

Constant-sum game: empirical frequencies converge and need to converge to NE.

Exact same dynamics as before, but changes how long spend at each profile.

Add 3rd player O that gets to bet on the play:
if chooses In gets 10 if red outcomes arise ((a,b),(b,c),(c,a)), and otherwise gets -1;
if chooses Out gets 0.

Unique correlated equilibrium (hence ! NE): (1/3,1/3,1/3) for R, C, and In for O.

Marginals of empirical frequencies of R and C converge to uniform (1/3,1/3,1/3).

If O’s prior doesn’t allow for correlation, beliefs converge to (1/3,1/3,1/3) and chooses In.
FP converges to NE.

If O’s prior does allow for correlation, beliefs converge to assigning prob. zero to red
outcomes and chooses Out. FP converges to non-NE.
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Convergence of Payoffs

Definition

Fictitious play is ε-consistent along a history if ∃T : ∀t ≥ T, ūi,t + ε ≥ ū∗i,t, where ūi,t :=
1
t
∑t–1

ℓ=0 ui(ai,ℓ, a–i,ℓ) and ū∗i,t := maxai ui(ai, σ̄–i,t).

Definition

Fictitious play exhibits infrequent switches along a history if ∀ε > 0,∃T : ∀t ≥ T,
ξi,t ≤ ε for all i, where ξi,t denotes the fraction of player i’s action switches by time t,
ξi,t := 1

t
∑

ℓ≤t 1{ai,t ̸=ai,t–1}.

Proposition 2.4 (Fudenberg and Levine, 1998)

If fictitious play exhibits infrequent switches along a history, then it is ε-consistent along
that history, for every ε > 0.
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Convergence of Payoffs
Proof

Let σ̄
∗
i,t := σ

∗
i (σ̄–i,t). Then,

ū∗i,t = ui(σ̄
∗
i,t, σ̄–i,t) ≥ ui(σ̄

∗
i,t+1, σ̄–i,t) =

αi,t+1ui(σ̄∗
i,t+1, σ̄–i,t+1) – ui(σ̄∗

i,t+1, a–i,t)
αi,t

⇐⇒ ū∗i,t+1 = ui(σ̄
∗
i,t+1, σ̄–i,t+1) ≤

αi,t
αi,t+1

ui(σ̄
∗
i,t, σ̄–i,t) +

1
αi,t+1

ui(σ̄
∗
i,t+1, a–i,t) ≤ · · ·

≤ 1
αi,t+1

ui(σ̄
∗
i,0, σ̄–i,0) +

1
αi,t+1

t∑
ℓ=0

ui(σ̄
∗
i,ℓ+1, a–i,ℓ)

≤ 1
αi,t+1

ui(σ̄
∗
i,0, σ̄–i,0) +

1
αi,t+1

t∑
ℓ=0

ui(σ̄
∗
i,ℓ, a–i,ℓ)

+ 1
αi,t+1

t∑
ℓ=0

[ui(σ̄
∗
i,ℓ+1, a–i,ℓ) – ui(σ̄

∗
i,t, a–i,t)]

≤ 1
αi,t+1

ū∗i,0 + t + 1
αi,t+1

ūi,t+1 +
t

αi,t+1
∥ui∥∞ξi,t ≤ ūi,t+1 + εi,t, εi,t ↓ 0
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Convergence of Payoffs

Proposition 2.4 (Fudenberg and Levine, 1998)

If fictitious play exhibits infrequent switches along a history, then it is ε-consistent along
that history, for every ε > 0.

Proposition 2.5 (Fudenberg and Levine, 1998)

∃εi,t ↓ 0 s.t. ū∗i,t ≥ ūi,t + εi,t.

Note however, that ūt needn’t converge to NE payoffs....
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Convergence of Payoffs

Col Player
L R

Row Player L 0, 0 1, 1
R 1, 1 0, 0

Symmetric. α0 = 1 +
√
2, σ̂0(L) = 1/(1 +

√
2).

Never indifference (irrational prior mean).
Period 0: σ̂0(L) = 1/(2 +

√
2) < 1/2, both play L.

Period 1: σ̂1(L) = 2/(2 +
√
2) > 1/2, both play R.

Period 2: σ̂0(L) = 2/(3 +
√
2) < 1/2, both play L.

Alternating sequence (L, L), (R,R), (L, L), (R,R), ...
σt never converges and keeps cycling, but it converges in time average.

Already seen this example, but note: payoffs are always exactly zero < payoffs from any
NE.

Gonçalves (UCL) Fictitious Play and Replicator Dynamic 17



Overview

1. Learning in Games

2. Fictitious Play
– Setup
– Asymptotic Behaviour of Fictitious Play
– Convergence of Strategies
– Convergence of Payoffs
– Extensions of Fictitious Play
– Potential Games
– Brown’s Original Fictitious Play
– Supermodular Games
– Fictitious Play in Extensive-Form Games

3. Stability and Stochastic Approximation

4. Evolutionary Game Theory and Replicator Dynamic



Extensions of Fictitious Play

History ht = (aℓ, ℓ ≤ t – 1), at = (ai,t, i ∈ I). Histories Ht = At–1, H1 = {∅}, H = ∪tHt.

Behavioural strategy: bi = (bi,1, bi,2, ...) where bi,t : Ht → Σi.

Assessment at t σ̂–i,t : Ht → Σ–i.
(Think σ̂–i,t(ht) = Eµi [σ–i | ht]. Also: note implied independence.)

Definition

Given assessments (σ̂–i,t), bi is myopic relative to (σ̂–i,t) if for every t and ht, bi,t(ht) ∈
argmaxσi

ui(σi, σ̂–i,t(ht)).
bi is asymptotically myopic if for some εi,t ↓ 0, for every t and ht, bi,t is εi,t-optimal, i.e.,
ui(bi,t(ht), σ̂–i,t(ht)) ≥ maxσi ui(σi, σ̂–i,t(ht)).
bi is strongly asymptotically myopic if for any selection si,t(ht) ∈ supp bi,t(ht) of its
support, si,t is asymptotically myopic.

Myopia for repeated interaction hard to rationalise for small groups.

Large group interpretation: large populations of players with anonymous rematching
(one each period + observable actions, all each period + aggregate statistics,
different populations each period).
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Extensions of Fictitious Play

Definition

Assessments (σ̂–i,t) are adaptive if ∀ε > 0 and t, there is T(ε, t) s.t. ∀t′ > T(ε, t) and
histories ht′ , σ̂–i,t′ (ht′ )(a–i) ≤ ε for all pure strategies a–i not played between t and t′.

Definition

Assessments (σ̂–i,t) are asymptotically empirical if limt→∞ ∥σ̂–i,t(ht) – σ̄–i,t(ht)∥ = 0.

Assign low probability to strategies not chosen for a long enough time.

Fictitious play has adaptive, asymptotically empirical assessments and is myopic.
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Nash Equilibrium as a Limit of Extended Fictitious Play

Proposition 4.1 (Fudenberg and Kreps 1993 GEB)

Under adaptive assessments and strongly asymptotically myopic behaviour, if at = a
for all t ≥ T, then a is a Nash equilibrium.

Proposition 4.2 (Fudenberg and Kreps 1993 GEB)

Under asymptotically empirical assessments and strongly asymptotically myopic be-
haviour, if empirical frequencies converge to σ∞, then product of marginals (σi,∞, i ∈ I)
is a Nash equilibrium.
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Potential Games
Cournot competition

Firms i = 1, . . . , n choose qi ≥ 0; Q =
∑

i qi.
Profit ui(q) = F(Q)qi – ci(qi).
Two canonical potentials (Monderer and Shapley 1996 GEB):

Symmetric linear cost ci(qi) = cqi: ordinal potential

P(q) =
( n∏

j=1
qj
)(

F(Q) – c
)
.

For each i and fixed q–i, ui(qi, q–i) > ui(q′i , q–i) ⇐⇒ P(qi, q–i) > P(q′i , q–i).
Linear inverse demand F(Q) = a – bQ, arbitrary ci differentiable: exact potential

P∗(q) = a
n∑
j=1

qj – b
n∑
j=1

q2
j – b

∑
1≤i<j≤n

qiqj –
n∑
j=1

cj(qj).

Then, for each i and fixed q–i,

ui(qi, q–i) – ui(q
′
i , q–i) = P∗(qi, q–i) – P∗(q′i , q–i).

Consequences
Maximiser(s) of P∗ are (pure) Cournot equilibria.
For the ordinal potential P, the set of pure equilibria is unchanged.
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Potential Games

Definition (exact/ordinal/weighted potential game)

A game admits
(i) an exact potential Φ : A → R if for all i, a–i and ai, a′i ,

ui(ai, a–i) – ui(a
′
i , a–i) = Φ(ai, a–i) – Φ(a′i , a–i).

(ii) an ordinal potential Φ if for all i, a–i and ai, a′i ,
ui(ai, a–i) > ui(a

′
i , a–i) ⇐⇒ Φ(ai, a–i) > Φ(a′i , a–i).

(iii) a w/weighted-potential Φ if for all i, a–i and ai, a′i ,
ui(ai, a–i)–ui(a

′
i , a–i) = wi

(
Φ(ai, a–i)–Φ(a′i , a–i)

)
, for somew = (wi)i∈I withwi > 0.

Interpretation: wi rescales player i’s payoff units so that all players share the same
potential scale.

Any exact potential is a w-potential with wi ≡ 1; conversely, divide ui by wi to obtain an
exact potential game with potential Φ.
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Potential Games and Equilibria

Proposition (Lemma 2.1 and Corollary 2.2Monderer and Shapley 1996 GEB)

Let Φ be an ordinal potential for a finite game (Ai, ui). Then:

a is (pure) NE iff for every i, Φ(a) ≥ Φ(a–i, a′i ) for all a
′
i ∈ Ai.

Hence, every finite ordinal potential game has a pure-strategy equilibrium.

Proof

If a is NE, no profitable unilateral deviation =⇒ no unilateral move raises ordinal Φ.

If no unilateral move raises Φ, ordinality =⇒ no profitable deviation =⇒ a is NE.

Finite A =⇒ Φ attains a maximiser â; (1) yields that â is NE.
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Fictitious Play Property

Definition (Fictitious Play Property)

A game has fictitious play (FP) property if, for all initial beliefs, any limit point of ficti-
tious play empirical frequencies is NE.

Theorem2.4 (Monderer andShapley 1996GEB; see alsoMonderer andShap-
ley 1996 JET)
Every finite weighted potential game has fictitious play property. In particular, finite
identical-interest games (ui ≡ U) have FP property and converge to maximisers of U.

Implications for convergence of FP
Empirical frequencies converge to the NE set; in identical interests, play settles at a
pure maximiser of U under fixed tie-breaking.

Selection: among multiple maximisers, FP path/tie-breaking determines limiting
equilibrium.
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Finite Improvement Property

Definition (Finite Improvement Property)

A finite game has FIP if every path of unilateral strict improvements is finite.

Definition (generalised ordinal potential)

A function Φ is a generalised ordinal potential if for any unilateral move a → a′ =
(a′i , a–i), ui(a

′) > ui(a) =⇒ Φ(a′) > Φ(a).

Proposition (Lemma 2.5 and Corollary 2.6Monderer and Shapley 1996 GEB)

For finite games:
(i) FIP ⇐⇒ existence of generalised ordinal potential.

(ii) If, in addition, for all i and a–i we have ui(ai, a–i) ̸= ui(a′i , a–i) whenever ai ̸= a′i , then
existence generalised ordinal potential =⇒ existence ordinal potential.
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Finite Improvement Property

Proposition (Lemma 2.5 and Corollary 2.6Monderer and Shapley 1996 GEB)

For finite games:
(i) FIP ⇐⇒ existence of generalised ordinal potential.

(ii) If, in addition, for all i and a–i we have ui(ai, a–i) ̸= ui(a′i , a–i) whenever ai ̸= a′i , then
existence generalised ordinal potential =⇒ existence ordinal potential.

Proof Idea

(FIP =⇒ GOP) Define x > y if there exists a finite improvement path from y to x. FIP
=⇒ transitive, acyclic. Extend to a ranking Φ with x > y =⇒ Φ(x) > Φ(y).

(FIP ⇐= GOP) Any strict improvement increases Φ; finiteness of the state space
forbids infinite ascent.

Under no-indifference, ui-increase ⇐⇒ Φ-increase =⇒ Φ is ordinal.
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Potential Games: Best-Reply Dynamics

Proposition (Lemma 2.5 and Corollary 2.6Monderer and Shapley 1996 GEB)

For finite games:
(i) FIP ⇐⇒ existence of generalised ordinal potential.

(ii) If, in addition, for all i and a–i we have ui(ai, a–i) ̸= ui(a′i , a–i) whenever ai ̸= a′i , then
existence generalised ordinal potential =⇒ existence ordinal potential.

Interpretation: In any finite ordinal potential game, every sequence of strict better
replies is finite and terminates at a (pure) NE.
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Potential Games: Logit QRE

Logit (quantal response) choice: σi(ai) ∝ exp
(
ui(ai,σ–i)/λ

)
; λ > 0 noise.

Fact: In potential games, logit equilibria coincide with maximisers of

Ψ(σ) = Eσ[Φ(a)] + λ

∑
i

H(σi),

where H is Shannon entropy.

Implication: as λ ↓ 0, stationary points select maximisers of Φ; connects to stochastic
fictitious play.
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Brown’s Original Fictitious Play (Berger 2007 JET)

Key point: what we called fictitious play is simultaneous FP (SimFP);
Brown (1951) analysed alternating FP (AltFP).

AltFP: players update and best respond alternately;
gives clean convergence in a broad class.

Main result: in nondegenerate ordinal potential games, AltFP converges to a (pure) NE.

Setup and Notation
Players i ∈ {1, 2}; actions Ai (finite).
Payoffs ui : A → R; mixed strategies σi ∈ ∆(Ai).
Best replies: BR1(σ2) = argmaxa1∈A1 u1(a1,σ2), BR2(σ1) = argmaxa2∈A2 u2(σ1, a2).
NE σ

∗ = (σ∗
1 ,σ

∗
2): if σ

∗
1 (a1) > 0 then a1 ∈ BR1(σ∗

2), and symmetrically for player 2.
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Nondegeneracy and Improvement Steps

Definition (Nondegenerate Two-Player Game)

The game is nondegenerate if for each player i and any two distinct actions ai ̸= a′i , we
have ui(ai, a–i) ̸= ui(a′i , a–i) for every opponent’s pure action a–i ∈ A–i.

Definition (improvement step/path/cycle; FIP)

a → a′ is an improvement step if a′ differs from a in one player’s action and deviator’s
payoff strictly increases.
An improvement path is chain of such steps; a cycle returns to its start.
The game has finite improvement property (FIP) if there are no cycles.

Nondegenerate two-player games: ordinal potential ⇐⇒ FIP
(Monderer and Shapley 1996 GEB).
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Alternating vs Simultaneous Fictitious Play

Definition (empirical beliefs)

Let at = (a1,t, a2,t) be play in period t ∈ {1, 2, . . . }. Empirical frequencies are

σ̄i,t+1(ai) = t
t+1 σ̄i,t(ai) + 1

t+1 1{ai,t=ai}, i = 1, 2,

with some initial σ̄i,0 ∈ ∆(Ai).

Definition (AltFP and SimFP)

AltFP (alternating FP): players best respond in turn using current empirical belief:
for odd t, a1,t ∈ BR1(σ̄2,t) and a2,t = a2,t–1; for even t, a2,t ∈ BR2(σ̄1,t) and a1,t = a1,t–1.

SimFP (simultaneous FP): at each t, both choose ai,t ∈ BRi(σ̄–i,t) simultaneously.
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Improvement Lemma

Lemma (Berger 2007 JET, Lemma 9)

In a nondegenerate game, if an AltFP process switches from a = (a1, a2) to a′ = (a′1, a
′
2)

at time t, then there exists an improvement path from a to a′.

Proof

Suppose t is odd. Then a′1 ∈ BR1(σ̄2,t) and a1 ∈ BR1(σ̄2,t–1);
note σ̄2,t(a2) = t–1

t σ̄2,t–1(a2) + 1
t 1{a2,t–1=a2}.

Hence u1(a′1, a2,t–1) ≥ u1(a1, a2,t–1), and by nondegeneracy the inequality is strict when
a switch occurs: (a1, a2) → (a′1, a2).

Even t gives analogous step for player 2.
Concatenating yields an improvement path from a to a′.
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Convergence of AltFP

Theorem (Berger 2007 JET, Theorem 10)

In nondegenerate ordinal potential games, every AltFP process converges to a (pure)
Nash equilibrium.

Proof

Suppose not. Then AltFP switches infinitely often. Finiteness ofA implies some profiles
recur infinitely many times.

Lemma =⇒ repeated switches among recurrent profiles generate improvement cycle.

Contradiction with FIP (equivalently, existence of an ordinal potential). Hence conver-
gence to a pure NE.
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Discussion and Contrast with SimFP

AltFP tracks improvement paths; ordinal potentials forbid cycles =⇒ convergence.

SimFP may fail to track improvement paths when both players switch; global
convergence under SimFP is not guaranteed in the ordinal class.

Weighted/identical-interest potential games: FP property also for SimFP (earlier slides);
AltFP extends convergence to broader ordinal class under nondegeneracy.
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Supermodular Games

Definition (Games with Strategic Complementarities; Section 5, Milgrom
and Shannon 1994 Ecta)
A normal-form game Γ = (I,A, u) has (ordinal) strategic complementarities if ∀i:

- Ai is non-empty compact complete lattice (order ≤). Write A := ×iAi and a = (ai, a–i).

- ui is upper semicontinuous in ai for fixed a–i, and continuous in a–i for fixed ai.

- ui is quasisupermodular in ai and has the single-crossing property in (ai; a–i).

Consequences (under the above): (i) best reply Bi(a–i) := argmaxai∈Ai
ui(ai, a–i) is

nonempty and nondecreasing; (ii) equilibrium set is non-empty complete lattice.

Smooth special case: if Ai ⊆ R and ui ∈ C2, single crossing in (ai; a–i) is implied by
∂
2ui/∂ai∂aj ≥ 0 for j ̸= i.

Extremal equilibria notation: a∗ = (ai,∗)i∈I (least), a∗ = (a∗i )i∈I (greatest).
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Supermodular Games

Theorem 12 (Milgrom and Shannon 1994 Ecta)

In games with strategic complementarities, for each player i there exist smallest and
largest serially undominated strategies ai,∗ and a∗i . Profiles a∗ = (ai,∗)i and a∗ = (a∗i )i
are (pure) Nash equilibria.

Theorem 13 (Milgrom and Shannon 1994 Ecta)

For parameterised familywith strategic complementarities and ui(ai, a–i, θ) having single-
crossing property in (ai; a–i, θ), smallest and largest NE a∗(θ) and a∗(θ) are nondecreas-
ing in t.

Proof Sketch (Refresher)
Monotone Bi =⇒ isotone B(a) := ×iBi(a–i) on product lattice.
Tarski =⇒ complete lattice of fixed points; least/greatest fixed points a∗, a∗ exist.
Single crossing in (·; t) =⇒ monotone comparative statics of a∗, a∗ in θ.
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Supermodular Games

Definition (Adaptive Learning)

Sequence of actions {at}t is consistent with adaptive learning if for all ε > 0 and all
dates T there exists T′ > T such that for all t > T′ and all i and ai, a′i ∈ Ai,

ui(ai, a–i,s) + ε < ui(a
′
i , a–i,s) ∀s ∈ [T, t] =⇒ ai,t ̸= ai.

Equivalently: eventually, each player avoids any strategy that is strictly and uniformly
outperformed on the window [T, t] by some alternative against every observed a–i,s.

Theorem 14 (Milgrom and Shannon 1994 Ecta)

In finite games with strategic complementarities, if {at} is consistent with adaptive
learning, then for all large t, a∗ ≤ at ≤ a∗. In finite or infinite games, if pure NE is
unique, then {at} is consistent with adaptive learning iff at → a∗.

Implications for fictitious play
FP-type rules eliminate uniformly inferior actions on sliding windows

=⇒ consistency.
Hence at enters the equilibrium band [a∗, a∗]; uniqueness =⇒ convergence.
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Supermodular Games

Connection with fictitious play
FP uses empirical beliefs; persistently inferior actions vanish under window rules
=⇒ adaptive-learning consistency.

Strategic complementarities yield order-preserving best replies =⇒ convergence
to [a∗, a∗]; unique equilibrium =⇒ convergence to that equilibrium.

With extremal tie-breaking, monotone best-reply dynamics converge to a∗ from
below and to a∗ from above.
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Applications

Bertrand with differentiated products
Prices pi ∈ Ai ⊆ R; demands Di(p) decreasing in pi; logDi has SCP in (pi; p–i).
Profit ui(p) = (pi – ci)Di(p) is quasisupermodular in pi and has SCP in (pi; p–i).
Extremal equilibria p∗, p∗ exist; upward demand shift θ =⇒ p∗(θ), p∗(θ)
nondecreasing. Adaptive pricing → [p∗, p∗]; uniqueness =⇒ pt → p∗.

Cournot with network effects
Outputs qi ∈ R+; inverse demand P(Q, θ) with ∂

2P/∂Q∂θ ≥ 0.
ui(q) = qiP(Q, θ) – Ci(qi) has single crossing in (qi; (q–i, θ)).
Extremal equilibria q∗(θ), q∗(θ) monotone in θ; adaptive learning → [q∗, q∗].
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Applications

Network adoption
ai ∈ {0, 1}; payoff increasing in neighbours’ adoption

∑
j̸=i aj =⇒ single crossing in

(ai;
∑

j̸=i aj) and quasisupermodularity in ai.
Extremal equilibria a∗, a∗; subsidies shift thresholds monotonically; adaptive
diffusion converges within [a∗, a∗].

Gross substitutes exchange (market-maker game)
Prices as actions; gross substitutes: own-demand decreases in own price and is
nondecreasing in other prices.

Single crossing holds; extremal price equilibria p∗, p∗; tatonnement-like adaptive
rules converge into [p∗, p∗]; endowment shifts move p∗, p∗ up.
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Fictitious Play in Extensive-Form Games

Main punchline: with (generalised) fictitious play + only learn about reached
information sets, stable steady states ‘if and only if’ self-confirming equilibria.

For rulying out non-NE steady states, need ‘enough’ experimentation.

Great summary: Fudenberg and Levine (1998 Chs. 6-7).

Key references: Fudenberg Kreps 1988 WP, 1995 GEB; Fudenberg and Levine 1993a
Ecta, 1993b Ecta, 1998.

Gonçalves (UCL) Fictitious Play and Replicator Dynamic 41



Overview

1. Learning in Games

2. Fictitious Play

3. Stability and Stochastic Approximation
– Stability
– Stochastic Approximation
– Stochastic Fictitious Play

4. Evolutionary Game Theory and Replicator Dynamic



Overview

1. Learning in Games

2. Fictitious Play

3. Stability and Stochastic Approximation
– Stability
– Stochastic Approximation
– Stochastic Fictitious Play

4. Evolutionary Game Theory and Replicator Dynamic



Definitions of Stability

X ⊆ Rn; F : Rn → Rn.

Dynamic system: discrete time xt+1 = F(xt); or continuous time ẋ = F(x).

Steady state: discrete time x = F(x); continuous time F(x) = 0.

Invariant set: ∀x0 ∈ S, xt ∈ S∀t. Discrete time F(S) ⊆ S.

Periodic point: ∃t : xt = x0 = x.

Gonçalves (UCL) Fictitious Play and Replicator Dynamic 42



Definitions of Stability

Definition

(Lyapunov) stable point x∗: ∀ε > 0, ∃δ > 0 s.t. x0 ∈ Nδ(x∗) =⇒ xt ∈ Nε(x∗)∀t.

Stable set of steady state x∗: W(x∗) = {x|x0 = x, limt→∞ xt = x∗}.

Locally asymptotically stable x∗ (or sink/attractor): steady state x∗ : ∃ε > 0 s.t.
Nε(x∗) ⊆ W(x∗).
If start near enough steady state, will converge to steady state. Or: if perturb steady
state, will return to it.

Globally asymptotically stable x∗: steady state x∗ : W(x∗) = X.
Converge to x∗ no matter where one starts from.

Unstable x∗: not stable point.

Repeller x∗: ∃ε > 0 s.t. ∀x0 ̸= x∗, ∃t : xt /∈ Nε(x∗).
Always move away from x∗.
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Stability Criteria

Discrete-Time Stability

Steady state x∗ is locally asymptotically stable if spectral radius (largest eigenvalue in
absolute terms) of Jacobian of F at x∗ is strictly smaller than 1, ρ(JF(x∗)) < 1.
If, moreover, (i) F is linear or (ii) X ⊆ R and |F′| < 1, then x∗ is globally asymptotically
stable.

Continuous-Time Stability

Steady state x∗ is locally asymptotically stable if all eigenvalues of the Jacobian of F
at x∗, JF(x∗), have strictly negative real parts.
If, moreover, (i) F is linear or (ii) X ⊆ R2 and all eigenvalues of the Jacobian of F are
have strictly negative real parts at any x ∈ X, then x∗ is globally asymptotically stable.
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Lyapunov Function

Lyapunov Direct Method

For ẋ = F(x) and steady state x∗, V is Lyapunov function for x∗ if for a neighbourhood
U of x∗:
(1) V(x) > V(x∗) for x ∈ U \ {x∗} and V(x∗) = 0; and

(2) V̇(x) := ∇V(x)F(x) ≤ 0 for x ∈ U.

Theorem

(i) If x∗ is a steady state and there is a Lyapunov function V for x∗, then x∗ is Lya-
punov stable.

(ii) If, in addition to (i), V̇ < 0, then x∗ is locally asymptotically stable.

(iii) If, in addition to (i) and (ii), V is a Lyapunov function for x∗ with conditions (1) and
(2) satisfied for U = X and (a) V is radially unbounded, V(x) → ∞ as ∥x∥ → ∞,
or (b) X is bounded, then x∗ is globally asymptotically stable.
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Relating Discrete- and Continuous-Time Systems

For FP, we used something like

σ̄t+1 = αt
αt+1

σ̄t +
1

αt+1
σ
∗(σ̄t).

In many papers and textbooks you’ll see a “continuous-time approximation”
˙̄σt = σ

∗(σ̄t) – σ̄t.

Where is this coming from? When is this okay?
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Stochastic Approximation

Definition

Let the discrete-time system be given by xt+1 = xt + at(F(xt) + Mt+1 + et) where
(1) F : Rn → Rn is Lipschitz continuous;

(2) at satisfy
∑

t at = ∞,
∑

t a
2
t < ∞,

(3) Mt is amartingalewrtFt = σ({xs,Ms, s < t}), i.e.,E[Mt+1|Ft] = 0 a.s. andE[∥Mt+1∥2 |
Ft] ≤ K(1 + ∥xt∥2) a.s.

(4) supt ∥xt∥ < ∞ a.s.; and

(5) et is a deterministic or random bounded sequence with is o(1).
Let the (associated) continuous-time system be given by ẋt = F(xt).
Define Φt : Rn → Rn denote the map taking x0 to xt according to the continuous-time
system.

F Lipschitz =⇒ ∀t > 0, Φt Lipschitz and, indeed, homeomorphism (continuous
bijection with continuous inverse).
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Stochastic Approximation

Definition

Closed set A ⊆ Rn is
(i) invariant if x0 ∈ A =⇒ xt ∈ A for all t, i.e., Φt(A) = A ∀t; and

(ii) internally chain transitive if it is invariant and, for any x, y ∈ A and any ε > 0,T > 0,
∃n ≥ 1 and elements x0 = x, x1, ..., xn–1, xn = y in A such that ∀t < T, Φt(xi) ∈
Bε(xi+1), i.e., the trajectory initiated at xi stays within ε-neighbourhood of xi+1.

Elements of internally chain transitive set can be connected by sequence of points
(“chain”) within that set which can be made arbitrarily close to actual system’s
trajectories.

Stable points are internally chain transitive sets; but limit cycles also define internally
chain transitive sets...
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Stochastic Approximation

Theorem (Borkar 2008 Theorem 2; Benaim 1996)

(1) Sequence {xt} generated by dynamic-time system converges a.s. to compact,
connected and internally chain transitive invariant set of continuous-time dy-
namic system.

(2) Furthermore, if internally chain transitive invariant sets correspond to isolated
equilibriumpoints, then {xt} a.s. converges to (possibly sample path-dependent)
steady state.

Corollary

Let W(x∗) := {x ∈ X| limt→∞ Φt(x) = x∗} and suppose ∃ finite X∗ s.t. X = ∪x∗∈X∗W(x∗).
Then sequence {xt} generated by dynamic-time system converges a.s. to some x∗ ∈
X∗.

Incredibly useful: can learn about discrete time asymptotic behaviour via
continuous-time system.

Also allows for further convergence results via stochastic FP.

Gonçalves (UCL) Fictitious Play and Replicator Dynamic 49



Stochastic Approximation

What about FP? F is not continuous there...

Can relax F continuous with X compact, modulo dealing adequately with tie-breaking.
Bottom line: it works.

Can use continuous-time approx. of FP ( ˙̄σt = σ
∗(σ̄t) – σ̄t) to examine asymptotic

behaviour!

Technicalities follow:
- Replace F with Filippov convexification G(x) := ∩δ>0co(F(Bδ(x) \ N)),

where N is a set of measure zero containing the discontinuities of F.
- Study differential inclusion ẋt ∈ G(xt).
- See Benaim, Hofbauer, Sorin (2005 SIAMCON, 2006 MOR).
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Stochastic Fictitious Play

Motivation for stochastic fictitious play (Fudenberg and Levine 2016 JEL): Exact best
response of fictitious play
(i) easier to exploitation by a clever opponent (Blackwell 1956; Fudenberg and
Kreps 1993)

(ii) small change in beliefs can lead to discontinuous change in response
probabilities (not good for stochastic approximation).

Gonçalves (UCL) Fictitious Play and Replicator Dynamic 51



Stochastic Fictitious Play

APU: Additive iid perturbed payoffs ηi,t, absolutely continuous and full support on real
line; qi(σ–i)(ai) := P(ai ∈ argmaxa′i ui(a

′
i ,σ–i) + ληi,t(a′i )).

Logit QR: qi(σ–i)(ai) :=
exp(ui(ai ,σ–i)/λ)∑
a′i

exp(ui(a′i ,σ–i)/λ)
. λ ↓ 0, convergence to NE.

Gives rise to σ̄t+1 = σ̄t + 1
αt+1

Q(σ̄t) + Mt+1 + et,
with Q smooth over compact set (hence Lipschitz), Mt+1 = 1

αt+1
(at+1 – Q(σ̄t)) (as

at+1 ∼ Q(σ̄t)), and
et = – 1

αt+1
σ̄t+ differences arising from considering empirical frequencies rather than

posterior beliefs (vanishing with large t).

Note Q inherits nice properties (regular quantal response function; Goeree, Holt, and
Palfrey 2005 EE):
Monotonicity: ui(ai,σ–i) > ui(a′i ,σ–i) =⇒ qi(σ–i)(ai) > qi(σ–i)(a′i ).
Responsiveness: ∂

∂ui(ai ,σ–i)
qi(σ–i)(ai) > 0.

Interiority: 1 > qi(σ–i) > 0.
(Lipschitz) continuity in σ–i.
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Stochastic Fictitious Play

Some results in the literature using SFP:
(1) Fudenberg and Kreps (1993 GEB): If ! NE in 2×2 game global, then for any η, as

λ ↓ 0 limit of SFP empirical frequencies converges to ! NE.
(2) Hofbauer and Sandholm (2002 Ecta): stability of limit SFP in zero-sum games and

potential games via Lyapunov function.
(3) But... can get limit cycle even with smooth (logit) stochastic fictitious play.

(Hommes and Ochea, 2012 GEB)

SFP useful, but not going to solve fundamental nonconvergence problems of learning in
games.
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Evolutionary Models

Originally used a simplified model of biological evolution (Maynard Smith 1974).

Basic Setup
Large anonymous populations; random matching each period.
Phenotypes = pure actions; inheritance of behaviour.
Each individual lives one period; genetically programmed to play single action.
Individuals leave offspring inheriting same phenotype (action) as parent.

Selection rule: relative payoff 7→ differential growth/reproduction/imitation.
Survival of the fittest.

Payoff-monotonicity: if a yields higher payoff than b, then growth rate of a higher
than b.

(Can be expanded with random mutations/experimentation.)

Objectives:
Steady states: surviving traits and their shares in population.
Stability: selection among equilibria; degree of resistence relative to
‘invaders’/innovations.

Applications: diffusion/adoption of valuable innovation, imitation of successful agents.
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Replicator Dynamic

Setup (symmetric population game)
Action space A. Payoffs u : A2 → R.
Measure of agents playing action a: q(a). Fraction σ(a) = q(a)/

∑
a′ q(a

′).
Expected payoff: u(a,σ). Average payoff in population: ū(σ) ≡ u(σ,σ).
Fitness (material payoff) u(a,σ) – u(σ,σ).

Discrete-time replicator
If u > 00, update by proportional fitness:

σt+1(a) = σt(a)
u(a,σt)
u(σ,σ)

.

Exact difference form:

σt+1(a) – σt(a) = σt(a)
u(a,σt) – u(σ,σ)

u(σ,σ)
.

Steady state (discrete): σt+1 = σt =: σ.

Continuous-time replicator

σ̇(a) = σ(a)
(
u(a,σ) – u(σ,σ)

)
.

Steady state (continuous): σ̇ = 0.
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Discrete → Continuous Approximation

Time-change (Fudenberg and Levine 1998):

From σt+1 – σt = σt
u – ū
ū

, set sT :=
∑

t<T ū(σt)–1.

Interpolate σ(sT) ≈ σT ; difference quotient σT+1 – σT
sT+1 – sT

→ σ (u – ū).

Limit ODE: σ̇ = σ (u – ū).

Small-step (Nachbar 1990 IJGT):
Take σt+1 = σt + ηt σt

(
u(·,σt) – ū(σt)1

)
, ηt ↓ 0,

∑
t ηt = ∞.

Affine reparametrisation of time yields the same ODE: σ̇ = σ (u – ū).

Remark: equal-payoff characterisation of steady states is identical in discrete and
continuous time.
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Hawk-Dove Game

Player R
H D

Player C H V–C
2 , V–C

2 V, 0
D 0, V V

2 ,
V
2

Parameters: C > V > 0.

Mixed NE: p∗ = σ
∗(H) = V

C ∈ (0, 1).
u(H,σ∗) = V(C–V)

2C = u(D,σ∗).

Replicator Dynamic:

Discrete: pt+1 – pt =
pt(1 – pt)

(
u(H,σt) – u(D, pt)

)
ū(pt)

. p∗ is steady state.

Continuous: ṗt = pt(1 – pt)
(
u(H, pt) – u(D, pt)

)
. p∗ globally stable.
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Replicator Dynamic Steady States

Proposition 3.1 (Fudenberg and Levine 1998)

For the discrete or continuous replicator dynamic:
(i) σ is a steady state iff u(a,σ) = ū(σ) for all a ∈ suppσ and u(b,σ) ≤ ū(σ) for all

b /∈ suppσ.

(ii) If σ is stable steady state, then σ is NE.

(iii) If σ is strict symmetric NE, then σ is locally asymptotically stable steady state.

Proof Sketch

(i) Immediately implied by fixed point identity: ∀a′, σt+1(a′) – σt(a′) = σt(a′)(u(a′,σt) –
u(σt,σt))/u(σt,σt) = 0 or σ̇t(a′) = σt(a′)(u(a,σt) – u(σt,σt)) = 0.

(ii) If it is not NE, then ∃a : u(a,σ) > u(σ,σ). Perturbing σ a bit will see it move away from
σ, not stable.

(iii) Let a∗ : σ = 1{a=a∗}. Strictness implies ∃ε > 0 : ∀σ
′ ∈ Bε(σ), u(a∗,σ′) > u(a′,σ′),

∀a′ ̸= a∗ =⇒ local contraction.
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Replicator Dynamic Steady States

Proposition 3.1 (Fudenberg and Levine 1998)

For the discrete or continuous replicator dynamic:
(i) σ is a steady state iff u(a,σ) = ū(σ) for all a ∈ suppσ and u(b,σ) ≤ ū(σ) for all

b /∈ suppσ.

(ii) If σ is stable steady state, then σ is NE.

(iii) If σ is strict symmetric NE, then σ is locally asymptotically stable steady state.

Proof Sketch (v2)

(iii) Using Lyapunov in continuous-time for asymptotic stability of strict NE: Near strict
NE σ

∗ = 1{a=a∗}: V(σ) := DKL(σ∗||σ) =
∑

a σ
∗(a) ln

(
σ
∗(a)

σ(a)

)
is Lyapunov function with

V(σ∗) = 0 and V(σ) > 0 ∀σ ̸= σ
∗, V̇(σ) ∝ –(u(a∗,σ) – u(σ,σ))/σ(a∗) < 0 in neighbour-

hood of σ
∗.
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Replicator Dynamic Steady States

Proposition 3.2 (Fudenberg and Levine 1998; Bomze 1986 IJGT)

Under the discrete or continuous replicator dynamic, any asymptotically stable steady
state corresponds to an isolated THPE.

Proof Sketch

2-player game: THPE iff no weakly dominated strategies. If not THPE, cannot be stable
(small perturbation leads to moving farther away). If not isolated, then cannot be
asymptotically stable (won’t come back after small perturbation).

Note: Generically, asymptotically stable steady states are strict NE in discrete-time
version of replicator dynamic.
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Evolutionary Stable Strategies

Definition

σ ∈ ∆(A) is an evolutionary stable strategy (ESS) if ∀σ
′ ̸= σ, ∃ ε̄ > 0 s.t. ∀ ε ∈ (0, ε̄),

u
(
σ, (1 – ε)σ + εσ

′) > u
(
σ
′, (1 – ε)σ + εσ

′).
Intuition: biological resistance against invaders; require equilibrium to resist against

‘invaders’/mutants/disruptors.

Remark

σ is ESS if and only if ∀σ
′ ̸= σ, (a) u(σ,σ) > u(σ′,σ) or (b) u(σ,σ) = u(σ′,σ) and u(σ,σ′) >

u(σ′,σ′).

Definition

σ ∈ ∆(A) is a weak ESS if ∀σ
′ ̸= σ, (a) u(σ,σ) > u(σ′,σ) or (b) u(σ,σ) = u(σ′,σ) and

u(σ,σ′) ≥ u(σ′,σ′).

Intuition: invader is not driven out, but does not grow either.
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Evolutionary Stable Strategies

Application ESS: (outside learning proper)
Take simple 2× 2 symmetric coordination game with two PSNE, Pareto dominant
and Pareto inferior.

Allow for cheap talk à la Crawford-Sobel (1982 Ecta). Turns game into extensive
form, but standard refinements can’t rule out inferior outcome.

ESS suggest tendency for coordinating on Pareto superior (see e.g., Blume, Kim,
and Sobel 1993 GEB)
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Evolutionary Stable Strategies

Proposition 3.3 (Fudenberg and Levine 1998)

If σ
∗ is ESS, then it is asymptotically stable steady state of continuous replicator dy-

namic.

Proof Sketch

By definition, ESS implies ∃ε > 0 : ∀σ ∈ Bε(σ∗), u(σ,σ) – u(σ∗,σ) < 0.

Let V(σ) = DKL(σ∗||σ). Then, V̇(σ) = –
∑

a σ
∗(a) d ln σ(a)

dt = –
∑

a σ
∗(a)σ(a)(u(a,σ)–u(σ,σ))

σ(a) =
u(σ,σ) – u(σ∗,σ) < 0.

V Lyapunov function with V̇ < 0 in neighbourhood of σ
∗. Done.
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Evolutionary Stable Strategies

Remark

Not all asymptotically stable steady state of continuous replicator dynamic is ESS.

Player R
T M B

Player C
T 0 1 1
M -2 0 4
B 1 1 0

Counterexample from van Damme (1987) via Fudenberg and Levine (1998).

F(σ) = (σ(a)(u(a,σ) – u(σ,σ)), a ∈ A).

! symNE: σ
∗ = (1/3, 1/3, 1/3); payoff 2/3.

JF(σ∗) has only negative eigenvalues, hence σ
∗ asymptotically stable.

But σ
∗ not ESS: can be invaded by strategy σ = (0, 1/2, 1/2) with payoff 2/3 when

matched with σ
∗ and payoff 5/4 when matched with itself.
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Evolutionary Stable Strategies

Proposition 3.3 (Fudenberg and Levine 1998)

If σ
∗ is ESS, then it is asymptotically stable steady state of continuous replicator dy-

namic.

Remark

Not all asymptotically stable steady state of continuous replicator dynamic is ESS.

Absence of converse due to replicator dynamic only allowing inheritance of pure
stratgies.

If extend replicator to mixed strategies, then ESS is equivalent to asymptotic stability
under replicator dynamic (Bomze 1986 IJGT).
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Asymmetric Replicator Dynamic

Populations i ∈ I; states σi ∈ ∆(Ai).

Replicator for population i:

σ̇i(ai) = σi(ai)
(
ui(ai,σ–i) – ūi(σ)

)
, ūi(σ) :=

∑
ai

σi(ai)ui(ai,σ–i).

Issue: non-degenerate strategies generically cannot be asymptotically stable... See
Fudenberg and Levine §3.5.
Big problem when ! NE is in mixed strategies.

Example: symmetric BoS: if agree get 0; if disagree get 1. Unique symmetric NE is
unique interior NE.
One population: no asymmetry between players; no way to coordinate on one of
the pure strategy equilibria. ṗ = p(u(L, p) – u(p, p)) = p(1 – p)(1 – 2p).
V(p) = (1 – 2p)2. V̇(p) = –4(1 – 2p)ṗ = –4p(1 – p)(1 – 2p)2 < 0 for any p ̸= 1/2.
p∗ = 1/2 is globally asymptotically stable.

Two populations: p∗ = (1/2, 1/2) is not asymptotically stable; perturbing p∗ toward
(0,1) or (1,0) won’t be self-correcting. Players use labels as coordinating device.
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Generalisations of the Replicator Dynamic

Samuelson and Zhang (1992 JET); Hofbauer and Weibull (1996 JET).

2 player game.

Dynamic system σ̇ = σF(σ) is regular (i) F is Lipschitz continuous, (ii)
∑

ai
σ̇i(ai) = 0, and

(iii) σi(ai) = 0 =⇒ σ̇i(ai) ≥ 0.

Write σ̇i(ai) = σi(ai)fi,ai (σ).

Note: fi,ai (σ) =
σ̇i(ai)
σi(ai)

, growth rate.

Definition (Swinkels 1993 GEB)

Dynamic system is myopic adjustment dynamic if
∑

ai
ui(ai,σ–i)σ̇i(ai) ≥ 0.

Share of more successful strategies expands in population (weakly) more than share of
less successful strategies.

Nests replicator dynamic and best-response dynamics, i.e. σ̇i = BRi(σ–i) – σi
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Generalisations of the Replicator Dynamic

Definition (Samuelson and Zhang 1992 JET)

Dynamic system ispayoffmonotone if for∀ interior points, ui(ai,σ–i) ≥ (>)ui(a′i ,σ–i) =⇒
fi,ai (σ) ≥ (>)fi,a′i (σ).

Weak but rules out best-response dynamics ∵ growth-rate for non-best responses
identical at -1 regardless of payoffs.

Proposition (Samuelson and Zhang 1992 JET; via FL98 Proposition 3.4)

Under any regular, payoff monotone dynamic system, if ai does not survive iterated
pure-strategy strict dominance elimination, then, starting in any interior point, in any
path, σi(ai) converges to 0 asymptotically.

Note: weaker than IESDS: require strictly dominated by pure strategy to be eliminated.

Examples exist s.t. payoff monotone dynamics yields strict superset of IESDS.
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Generalisations of the Replicator Dynamic

Definition (Samuelson and Zhang 1992 JET)

Dynamic system is aggregate monotone if ∀ interior points, ui(σi,σ–i) > ui(σ′
i ,σ–i) =⇒∑

ai
(σi(ai) – σ

′
i (ai))fi,ai (σ) > 0.

Definition (Hofbauer and Weibull 1996 JET)

Dynamic system is convex monotone if ∀ interior points, ui(σ′
i ,σ–i) > ui(a′i ,σ–i) =⇒∑

ai
σ
′
i (ai)fi,ai (σ) > fi,a′i (σ).

Aggregate monotone =⇒ Convex monotone =⇒ Payoff monotone =⇒ Myopic
adjustment.

Proposition (Hofbauer and Weibull 1996 JET; via FL98 Proposition 3.5)

Under any regular, convexmonotone dynamic system, if ai is eliminated by IESDS, then,
starting in any interior point, in any path, σi(ai) converges to 0 asymptotically.
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Further Generalisations of the Replicator Dynamic

Easy to consider further extensions:
- Embedding noise in dynamics, random mutations/innovations (e.g., Kandori

Mailath Rob 1993 Ecta; Young 1993 Ecta).
- Death and birth rate/ evolving population size (Weibull 1995).
- Non-random matching in population, e.g., assortative

matching/affiliation/homophily (e.g., Alger and Weibull 2013 Ecta).
- Types as payoffs ̸= fitness function (e.g., Dekel, Ely and Yilankaya 2007 REStud).
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Further Generalisations of the Replicator Dynamic

Some reference textbooks:
More introductory but thought-provoking:
Bowles (2006), Microeconomics: Behavior, Institutions, and Evolution;
Gintis (2009), Game Theory Evolving.

Weibull (1995), Evolutionary Game Theory.
Vega-Redondo (1996), Evolution, Games, and Economic Behaviour.
Samuelson (1997), Evolutionary Games and Equilibrium Selection.
Hofbauer and Sigmund (1998), Evolutionary Games and Population Dynamics.
Young (1998), Individual Strategy and Social Structure: An Evolutionary Theory of
Institutions.

Sandholm (2009), Population Games and Evolutionary Dynamics.

My take: Huge literature with lots of fundamental results out there...
but somehow feels like there is lots of space for applications.
(Especially since fundamental results semi-forgotten.)
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