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Pandora

Directed Search/Info Acquisition
Before: when to stop.
Now: which info to acquire.

Setup (Weitzman 1979 Ecta)
T < ∞ alternatives, t ∈ [T] = {1, ...,T} and an outside option 0;
Payoffs Xt ∼ Ft, independent;
DM can pay cost ct to learn Xt;
Recall: DM can stop at any time and pick best alternative explored thus far.

Motivation:
Firm interviewing applicants;
Consumer searching for a product.
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Pandora

What changes?
Given an order of search, problem is exactly the same as before.
Main difficulty: deciding what to learn about next.
Simplifying assumption: independence of payoffs across alternatives

=⇒ focus on history-independent search orders WLOO (why?).
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Ordering Alternatives

Feasible orderings Π:

Π := {π ∈ NN0
0 | π is bijective and π(t) = t ∀t /∈ [T]}.

π: permutation of elements in [T] = {1, ...,T}; defines an order of search.
π makes use only of time t.
π(t): alternative DM searches/learns about if they haven’t yet stopped by time t.
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Ordering Alternatives

Fixing order π, problem as before: i.e. optimal stopping and choosing:
Xπ(t) ≡ Xπ

t as the (gross) payoff associated to alternative π(t) = n;
cπ(t) associated search cost;
Mπ

t := maxs≤t Xπ
s : highest (gross) payoff thus far;

Yπ

t := Mπ

t –
∑

s≤t cπ(t), t ≤ T; Xπ

t = Yπ

t = –∞ for t > T; X0 = Y0 given;
Tπ: stopping times taking values in N0 adapted to natural filtration given {Xπ

t }.

Pandora’s Problem

max
π∈Π

max
τ∈Tπ

E[Yπ
τ ] (W)
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Optimal Stopping

Leveraging what we know:
∀π, there is optimal stopping time; Π finite =⇒ there is solution.
WLOO focus on earliest optimal stopping time for each order.
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Solving Pandora’s Problem

Start with simple stopping rules:
If problem were monotone, it’d suffice to consider 1-sla/threshold policy

xt := inf{x ∈ R | x ≥ E[(Xt ∨ x)] – ct}.
Whether problem monotone or not depends on order of search π.

Given π, define following stopping time:

τ
π := min

{
t ≥ 0 | Mπ

t ≥ max
s>t

xπ(s)

}
.
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Solving Pandora’s Problem

If DM stops at t it better be that

Yπ

t ≥ E[Yπ

t+1 | Fπ

t ] ⇐⇒ Mπ

t ≥ E[Mπ

t ∨ Xπ(t+1) | F
π

t ] – cπ(t+1),
(i.e. not profitable to continue)

More, since DM can choose continuation order, we must also have

Mπ

t ≥ E[Mπ

t ∨ Xπ(t+h) | F
π

t ] – cπ(t+h),∀h > 0,

i.e. DM can choose to search not only Xπ(t+1) but any of remaining unsearched
alternatives, Xπ(t+h), h > 0.
If they’re optimally stopping, it must not be profitable to continue and try out any of
the remaining alternatives.
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Solving Pandora’s Problem

Under optimal π and (earliest) optimal stopping time τ, on {τ = t} (stopping at t)

Mπ

t –
∑
s≤t

cπ(s) ≥ E[Mπ

t ∨ Xπ

t+h] –
∑
s≤t

cπ(s) – cπ(t+h), ∀h > 0

⇐⇒Mπ

t ≥ E[Mπ

t ∨ Xπ

t+h] – cπ(t+h), ∀h > 0

⇐⇒Mπ

t ≥ xπ(t+h), ∀h > 0

⇐⇒Mπ

t ≥ max
s>t

xπ(s).

Compare to τ
π := min

{
t ≥ 0 | Mπ

t ≥ maxs>t xπ(s)

}
.

Implies τ ≥ τ
π.

Natural conjecture to check: τ
π is optimal.
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Pandora’s Optimal Stopping Time

Proposition

Suppose (π, τ) solve Pandora’s problem. Then, E[Yπ
τ ] = E[Yπ

τπ ], τ
π is regular, and τ

π ≤ τ.

Proof

WL take τ regular and earliest optimal stopping time.

By the above, {τ ≤ t} ⊆ {τπ ≤ t} ⊆ {τπ ≤ t + 1}.

WTS {τπ ≤ t} ⊆ {τ ≤ t} =⇒ {τπ ≤ t} = {τ ≤ t}.

Step 1. τ
π ≤ T–1 =⇒ Yπ

T–1 ≥ E[Yπ

T ] =⇒ τ ≤ T–1; therefore {τπ ≤ T–1} = {τ ≤ T–1}.

Step 2. Induction: assume s ≥ t + 1, {τπ ≤ s} = {τ ≤ s} =⇒ {τπ = s + 1} = {τ = s + 1}.

Since {t ≥ τ
π} ∩ {τ > t} ⊆ {t + 1 ≥ τ

π} ∩ {τ > t} = {τ = t + 1}, on {t ≥ τ
π} ∩ {τ > t},

then E[Yπ
τ | τ > t ≥ τ

π] = E[Yπ

t+1 | τ > t ≥ τ
π] ≤ Yπ

t =⇒ τ ≤ t.
Contradicts regularity of τ. Hence, {t ≥ τ

π} ∩ {τ > t} = ∅ and {τπ ≤ t} = {τ ≤ t}.

Conclude: τ
π = τ. More: ∀ optimal stopping time τ

′, E[Yπ

τ′ ] = E[Yπ
τ ] = E[Yπ

τπ ] and τ
′ ≥ τ

π.

Regularity of τ
π follows from definition
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π} ∩ {τ > t} = ∅ and {τπ ≤ t} = {τ ≤ t}.

Conclude: τ
π = τ. More: ∀ optimal stopping time τ

′, E[Yπ

τ′ ] = E[Yπ
τ ] = E[Yπ

τπ ] and τ
′ ≥ τ

π.

Regularity of τ
π follows from definition
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Pandora’s Optimal Search Order

We found out the optimal stopping time for the optimal order π

But we still don’t know π

If for all t, xπ(t) ≥ xπ(t+1) problem would be monotone, since

Mπ

t ≥ max
s>t

xπ(s) = xπ(t+1) =⇒ Yπ

t ≥ E[Yπ

t+1 | Fπ

t ]

Then τ
π would simply correspond to the 1-sla rule!
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Pandora’s Optimal Search Order

Claim: There’s beauty and order in the universe. Should check for simple solutions.

Conjecture: if π were not inducing a decreasing sequence of xπ(t), rearranging π so that
{xπ(t)}t is decreasing sequence improves payoffs.

Turns out it’s true:

Proposition

If (π, τπ) solve Pandora’s problem, then {xπ(s)}s≤t is nonincreasing for all t : P(τπ ≥ t) > 0

Gonçalves (UCL) Searching 11
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Pandora’s Optimal Search Order

Proof

Suppose xπ(s) nonincreasing for s ≥ t + 1, but xπ(t) < xπ(t+1).

Assume that τ
π ≥ t occurs with positive prob., as ow it is WL to rearrange the order

following t (no impact on payoffs).

Define new order δ: same as π except it swaps t-th and (t + 1)-th alternatives.

Define stopping time τ := min{s ≥ 0 | Mδ
s ≥ maxn>s xπ(s)}

Then {τ ≤ s} = {τπ ≤ s}, ∀s ̸= t; i.e. only difference between τ
π and τ is if they disagree

in stopping at t.

A long derivation (here) reveals that E[Yπ
τπ – Yδ

τ ] < 0, contradicting optimality of π

(not contradicting optimality of τ
π — we’ve seen that if π were an optimal order, τ

π is
an optimal stopping time).

Iterating argument optimal order π sat. {xπ(s)}s≤t nonincreasing.
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Pandora’s Optimal Search Order

Proposition

If (π, τπ) solve Pandora’s problem, then {xπ(s)}s≤t is nonincreasing for all t : P(τπ ≥ t) > 0

We find out that the solution to Pandora’s problem is s.t. (1) optimal order is simply to
order alternatives according to xπ(t); (2) use 1-sla stopping rule!
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Variations to Pandora’s Problem

Pandora’s rule doesn’t generalise easily.

Breaking Independence
All hell breaks loose: now optimal order may depend on history of observed
payoffs.

Learning Xn changes beliefs about Xm!

Choosing without Search
Things go a bit awry, but Doval (2018 JET) provides sufficient conditions for
Pandora’s rule to remain optimal except for last alternative.

Also shows how for simple setting (binary outcomes) breaking independence
leads to spectacular failure of Pandora’s rule to be optimal.
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Variations to Pandora’s Problem

Pandora’s rule doesn’t generalise easily.

Payoffs depend on values of all {Xn}
E.g. alternatives as different components of research project.
DM decides if to work on them.
Total payoff depends on what is ultimately included in paper.

Olszewski & Weber (2015 JET): sufficient conditions for Pandora’s rule to remain
optimal.

Flexible Learning
I haven’t checked thoroughly, but I think an open problem is to retain independence
and characterise the optimal solution when allowing for more flexible learning.
Hope for something nice/tractable that would do well in applications.
E.g., when assessing candidates, scan some CVs, then dig into some good ones
and interview them; if turn out not great, go back to pile.
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Application: R&D and Project Selection

T different research projects

Project n:
- Ex-ante prob succsess pn ∈ (0, 1) and payoff rn > 0; ow payoff 0.
- Associated cost cn.
- DM only considers projects with positive exp. value: pnrn – cn > 0.
- Outside option yields 0.

Solution

xn := inf{x ∈ R | x ≥ E[rn ∨ x] – cn} = rn – cn
pn

,

DM trades off expected net reward and prob success:
- Explore first projects with high potential reward net of cost scaled by prob success.
- Stop myopically (1-sla).
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Martingales and etc.

We’ll do a quick detour to recall some fundamental results about martingales.

Martingales and etc.

Let X = {Xt}t∈[T] be an adapted process.

X is a supermatingale if E[X–
t ] < ∞ ∀t ∈ T and E[Xt | Fs] ≤ Xs a.s. for all s ≤ t,

s, t ∈ [T].

X is a submartingale if –X is a supermatingale.

X is a martingale if it is both a super- and submartingale. Specifically, a martingale
satisfies E[Xt | Fs] = Xs for s ≤ t.

X is a predictable process if Xt is Ft–1-measurable.
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Doob’s Decomposition Theorem

Doob’s Decomposition Theorem

If X is an F-adapted process satisfying E[sups≥t |Xs|] < ∞, then ∃ martingale Z : Z0 =
0 and an integrable predictable process A : A0 = 0 s.t. Xt = X0 + Zt + At ∀t, with
decomposition being unique a.s.

Implication: super/martingale = martingale + a.s. de/increasing predictable process.
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Doob’s Martingale Convergence Theorem

Doob’s Martingale Convergence Theorem

If X is supermartingale s.t. supt>0 E[X–
t ] < ∞, then Xt converges pointwise to X∞,

Xt(ω) → X∞(ω), and X∞ < ∞ a.s.
Moreover, if X is martingale, it is uniformly integrable if and only if Xt converges a.s. and
in L1 to X∞ satisfying Xt = E[X∞ | Ft] for all t.

Recall, (i) X is uniformly integrable if lima→∞ supt E[|Xt|1{|Xt |>a}] = 0; (ii)

Xt
L1
→ X∞ ⇐⇒ E[|Xt – X∞|] → 0.

Doob’s Optional Stopping Theorem

Let X be supermartingale (resp. submartingale) and τ a stopping time. Suppose one of
the following holds:
(i) ∃c < ∞ : τ ≤ c a.s.

(ii) E[τ] < ∞ and ∃c < ∞ : ∀t, E[|Xt+1 – Xt| | Ft] ≤ c on {τ > t}.

(iii) ∃c < ∞ : ∀t, |Xt∧τ| ≤ c a.s.
Then, Xτ is a.s. well-defined r.v. and E[Xτ] ≤ (resp. ≥)E[X0].
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Doob’s Martingale Convergence Theorem

Counterexample

Wealth after sequence of iid fair bets, St =
∑

s≤t Xs, where Xs = ±1 wp 1/2 and X0 = 0.
τ := inf{t ≥ 0 | St = 1}. Then Sτ is martingale.
E[τ] = ∞ and optional stopping theorem doesn’t apply: E[Sτ] = 1 > 0 = E[St].
St doesn’t converge in mean. Also, {St} not u.i.
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Wald’s Equations

Wald’s Equation

Let X be s.t. (i) E[Xt] < ∞, (ii) ∀t E[Xt1{τ ≥ t}] = E[Xt]P(τ ≥ t), and (iii)
∑

t∈N E[|Xt|1{τ ≥
t}] < ∞. Define Sτ :=

∑τ

t=1 Xt and Tτ :=
∑τ

t=1 E[Xt].
Then E[Sτ] = E[Tτ] < ∞. If, moreover, E[Xt] = m ∀t and E[τ] < ∞, then E[Sτ] = E[τ]m.

Gonçalves (UCL) Searching 21



Wald’s Equations

There are a number of versions of this result typically labeled Wald’s First/ Second/ Third
Identity which follow from the optional stopping theorem:

Wald’s First/Second/Third Identities

Let {Xt}t∈N be a stochastic process such that Xt are independent, with F denoting its
natural filtration, and τ be an adapted stopping time with E[τ] < ∞. Define (i) St :=∑t

ℓ=1 Xt; (ii) mt :=
∑t

ℓ=1 E[Xℓ]; (iii) vt :=
∑t

ℓ=1 V(Xℓ); (iv) φ(θ) := E[exp(θX1)]; (v) M1
t :=

St – mt; (vi) M2
t := (St – mt)2 – vt; and (vii) M3

t := φ(θ)–t exp(θSt).
1. If supt E[|Xt|] < ∞, then M1

t is a martingale and E[M1
τ] = E[M1

1] = 0. In particular, if
Xt are iid with mean E[Xt] = m, then E[Sτ] = mE[τ].

2. If supt E[X2
t ] < ∞, then M2

t is a martingale and E[M2
τ ] = E[M2

1 ] = 0. In particular, if
Xt are iid with variance V(Xt) = σ

2, then E[(Sτ – mτ)2] = σ
2E[τ].

3. If Xt are iid, the moment generating function φ(θ) < ∞, and τ is a.s. bounded or
M3

t 1{τ ≥ t} ≤ δ < ∞ for all t, then M3
t is a martingale and E[φ(θ)–τ exp(θSτ)] = 1.
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Multi-Armed Bandit Problems

Setup:
Each period t = 0, 1, ...,
DM (‘gambler’) chooses one action (‘arm’) at ∈ A := {1, ...,K}
receives a random payoff xat

t

whose distribution Fat (·; skt ) depends on the state st = (s1t , ..., s
K
t ),

and the state evolves according to a Markov chain s.t. skt+1 = φk(x
k
t , s

k
t ) if at = k and

skt+1 = skt if at ̸= k. (‘restless’ bandit when allowing skt+1 ̸= skt even if at ̸= k)
Payoffs are discounted by δ ∈ [0, 1).

Motivation: learning-by-doing + choosing what to do.
Choosing and switching streaming platform subscription.
Learning about job match value and decide to switch to another job.
Learning about effects of enacted policy.
Joining a queue and switching to another another.
Draw-down retirement savings by depleting different assets.
Seller learning demand by experimenting with prices.
Scheduling of experiments (e.g., Pandora’s boxes!)
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Multi-Armed Bandit Problems
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K
t ),

and the state evolves according to a Markov chain s.t. skt+1 = φk(x
k
t , s

k
t ) if at = k and

skt+1 = skt if at ̸= k. (‘restless’ bandit when allowing skt+1 ̸= skt even if at ̸= k)
Payoffs are discounted by δ ∈ [0, 1).

Example of Learning Framing:
Unknown parameters: θ

k ∈ Θ
k , θ

k ∼ µ
k
0 ∈ ∆(Θk).

θ = (θ1, ..., θk) and µ0 = ×kµ
k
0 (independence; product measure).

Objective payoff distributions: Xk
t ∼ Gk(· | θ

k) iid.
Posterior beliefs: µ

k
t+1 = µ

k
t | Xk

t if at = k and µ
k
t+1 = µ

k
t if at ̸= k (our Markovian

‘state’).
Subjective payoff distributions: Fk(· | µ

k
t ) := E

µk
t
[Gk(· | θ

k)].
Actions entail payoffs and learning about payoff distribution.
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Multi-Armed Bandit Problems

Setup:
Histories: ht := (s0, s1, ..., st) ∈ Ht and H := ∪∞

t=0Ht.
Strategies: α ∈ AH.
Payoffs E[

∑∞
t=0 δ

tXαt
t ].

Goal: V(s0) := supα E[
∑∞

t=0 δ
tXαt

t ].

Denote Xk(skt ) ∼ Fk(·; skt ).

Theorem (Gittins & Jones, 1974)

The optimal policy satisfies α(st) ∈ argmaxa∈A ma(sat ), where

(1 – δ)mk(sk0) := sup
τ

E[
∑τ–1

t=0 δ
kXk(skt )]

E[
∑τ–1

t=0 δk]
.

Comments:
Decomposes K-dimensional problem to solve K 1-dimensional problems.
Formulation very general: with transition can capture use-costs of arm, countable
number of arms, etc.
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The optimal policy satisfies α(st) ∈ argmaxa∈A ma(sat ), where

(1 – δ)mk(sk0) := sup
τ

E[
∑τ–1

t=0 δ
kXk(skt )]

E[
∑τ–1

t=0 δk]
.

Seminal papers: Gittins & Jones (1974, 1979), Gittins (1979), Weber (1992).
Also Gittins (1989), Karatzas (1984; Brownian bandits), Banks & Sundaram (1994;
switching costs).

Applications: Pricing and learning demand: Rothschild (1974); McLennan (1984);
Rustichini & Wolinsky (1995); Keller & Rady (1999); Bergemann & Välimäki (2006),
Bonatti (2010). Strategic experimentation: Bolton & Harris (1999); Keller, Rady, &
Cripps (2005); Strulovici (2010), etc.
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Multi-Armed Bandit Problems

Where does the Gittins-Jones index come from?

Consider two actions: pull arm k or get lump-sum reward M.

Lump-sum reward optimal =⇒ skt+1 = skt =⇒ Lump-sum reward remains optimal.

Effectively optimal stopping problem: when to stop pulling arm k.

V(sk0,M) := sup
τ

E

 τ–1∑
t=0

δ
tXk(skt ) + δ

τM

 (SP)

= max{M,Xk(sk0) + δE[V(sk1 ,M) | sk0]} (DP)

Note: (i) V increasing in M,
(ii) convex in M (maximising over linear functions of M), and
(iii) ∃M′ : V(sk0,M) = M ⇐⇒ M ≥ M′ (both stopping and continuation region are
intervals).
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Multi-Armed Bandit Problems

Where does the Gittins-Jones index come from?

V(sk0,M) := sup
τ

E

 τ–1∑
t=0

δ
tXk(skt ) + δ

τM

 = max{M,Xk(sk0) + δE[V(sk1 ,M) | sk0]} (DP)

mk(sk) := inf{M | V(sk ,M) = M} is smallest lump-sum prize that DM will take to stop
pulling arm k in state sk.

Experimentation suboptimal if M = mk(sk). Hence, ∀τ,

mk(sk0) ≥ E

 τ–1∑
t=0

δ
tXk(skt ) + δ

τmk(sk0)

 ⇐⇒ mk(sk0)(1 – E[δτ]) ≥ E

 τ–1∑
t=0

δ
tXk(skt )

 .

Since
∑t–1

s=0 δ
s = 1–δ

t

1–δ
, mk(sk0)(1 – E[δτ]) = (1 – δ)mk(sk0)E[

∑τ–1
t=0 δ

t]. Then,

(1 – δ)mk(sk0) ≥
E
[∑τ–1

t=0 δ
tXk(skt )

]
E[
∑τ–1

t=0 δt]
, ∀τ,

with equality at optimal stopping:

(1 – δ)mk(sk0) = sup
τ

E
[∑τ–1

t=0 δ
tXk(skt )

]
E[
∑τ–1

t=0 δt]
.
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Multi-Armed Bandit Problems

Why does the Gittins-Jones index solve the optimisation problem?

Intuition from Weber (1992):
- Suppose seller rents arms out to competitive market of operators, all risk neutral

with common discount factor.

- Optimal to obtain high rental incomes in early periods.
- Rental market operated as descending price auction: fee for operating an arbitrary

arm is lowered until an operator accepts price.
- At accepted price, operator can operate arm while they want.
- Since market for operators is competitive, price is s.t. under optimal stopping rule,

operator breaks even. Hence, highest acceptable price for arm k is its
Gittins-Jones index mk(skt ).

- Operator runs arm until Gittins-Jones index falls below price, i.e. its original
Gittins-Jones Index.

- Once arm is abandoned, restart process of lowering the price offer.
- Since operators get zero surplus and they are operating under optimal rules, this

method of allocating arms results in maximal surplus to owner, solving the
original MAB problem.
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Multi-Armed Bandit Problems

Theorem (Gittins & Jones, 1974)

The optimal policy satisfies α(st) ∈ argmaxa∈A ma(sat ), where

(1 – δ)mk(sk0) := sup
τ

E[
∑τ–1

t=0 δ
kXk(skt )]

E[
∑τ–1

t=0 δk]
.

Very nice result. Hard to compute index in closed-form other than in special cases.

Fragility: result breaks with minor variations.
- non-geometric discounting, e.g., fixed time horizon;
- arms with correlated priors;
- actions affecting more than one arm at a time;
- payoffs depending on state of 2 or more arms;
- delayed feedback;
- ‘restless’ arms that change state without being pulled;
- switching costs; etc.
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Pricing with Pandora Consumers

Pricing with search (Choi, Dai, & Kim, 2018 Ecta)

Sellers
N sellers; each supplies product n at price pn ≥ 0; marginal cost cn.
p: vector of prices; p–n: prices of n’s competitors.
Demand for n given prices: Dn(p).
Sellers maximise profit: πn(p) := Dn(p)(pn – cn).
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Pricing with Pandora Consumers

Consumers
Consumer i’s valuation of n: Xn = Vn + Wn – pn.
Vn is known; Wn is idiosyncratic-value component revealed only when consumer
learns about n.

Cost to acquire info and learn Wn: kn > 0.
Outside option X0; search with recall.
Vn and Wn are independently drawn from Fn and Gn, both smooth.
Independence allows use of Pandora’s rule.
If consumer stops after searching sellers A ⊆ [N], the consumer accrues a payoff
maxn∈A∪{0} Xi,n –

∑
m∈A km, where p0 = k0 = 0.

Consumers know p.
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Consumer Behaviour

Pandora’s Rule
Define wn: kn = E[(Wn – wn)+]
Given Vn define xn := Vn + wn – pn
Given order π ∈ Π, let Mπ

t := maxs≤t Xπ(t) = maxs≤t Vπ(t) + Wπ(t) – pπ(t)

Proposition

Given a price vector p and realization V, it is optimal for the consumer
(1) to learn about sellers in decreasing order of xn, with the optimal order of search
being given by π ∈ Π such that xπ(t) ≥ xπ(t + 1); and
(2) to stop whenever Mπ

t ≥ xπ(t+1), with the earliest optimal stopping time being given
by τ := min{t ≥ 0 | Mπ

t ≥ xπ(t+1)}

Proof

This is just Pandora’s rule.
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t ≥ xπ(t+1), with the earliest optimal stopping time being given
by τ := min{t ≥ 0 | Mπ

t ≥ xπ(t+1)}

Proof

This is just Pandora’s rule.
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Consumer Behaviour

Theorem 1

Given a price vector p and realizations V,W, consumer i chooses product n if Xn ∧ xn >
maxm̸=n(Xm ∧ xm) ∨ X0 and only if Xn ∧ xn ≥ maxm ̸=n(Xm ∧ xm) ∨ X0

We’ve already proved a version of this for the satisficing setup.
(A proof for this specific setup is here.)

Write consumers’ expected payoff given V as E[maxn(Xn ∧ xn) ∨ X0 | V]!

Intuition
Let M := maxn∈[T] Xn ∧ xn ∨ X0:
(1) n is chosen if Xn ∧ xn > M, and
(2) the consumer learns about n whenever xn > M, incurring in cost
kn = E[(Xn – xn)+].
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Market Equilibrium

Let (1) Hn be s.t. Xn ∧ xn ∼ Hn;
(2) Hn be s.t. maxm ̸=n Xm ∧ xm ∨ X0 ∼ Hn.

Demand for n:

Dn(p) = P(max
m̸=n

Xm ∧ xm ∨ X0 ≤ x < Xn ∧ xn) =
∫

(1 – Hn(xn))dHn(xn).

p is eqm price if ∀n,
pn ∈ argmax

p′n
Dn(p′n, p–n)(p′n – cn).

FOC:
1

pn – cn
= – dDn(p)/ dpn

Dn(p)
.

Assumption 1: Hn and 1 – Hn are log-concave ∀n.

Assumption 2: suppHn has no upper bound ∀n.
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Market Equilibrium

Theorem

Under Assumption 1, Dn(p) is log-concave in pn and logDn(p) has strictly increasing
differences in (pn, pm).

Under Assumptions 1 and 2, there is a unique Nash equilibrium of the pricing game,
and this equilibrium is in pure strategies.

Intuition
Existence of PSNE from game being supermodular (assumed away).
Uniqueness is due to particular structure of quasilinear preferences.

Beautiful result; ties-in:
(i) learning-based discrete choice with (ii) imperfect competition
within an eqm pricing model.

Issue: Hn is endogenous!
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Market Equilibrium

Theorem 2

Under Assumption 1, Dn(p) is log-concave in pn and logDn(p) has strictly increasing
differences in (pn, pm).

Under Assumptions 1 and 2, there is a unique Nash equilibrium of the pricing game,
and this equilibrium is in pure strategies.

Sufficient conditions for uniqueness
(i) fn and gn log-concave and sup supp Fn = +∞ =⇒ 1 – Hn log-concave.
(ii) Fn entails sufficiently high variance and (fn(vn) = 0 or inf supp Fn = –∞) =⇒ Hn

log-concave.
(iii) f ′n(X0 + cn – wn) ≤ 0 =⇒ Hn log-concave on relevant part of its support.
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Horizontal Differentiation

Imperfect Price Competition
Always exist some consumers who value n much more than others.
Typically this is assumed, e.g. loyal buyers vs shoppers, horizontal differentiation.
Here: degree of horizontal differentiation depend on V (and W).

How to speak of more or less horizontal differentiation in this setting?
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Horizontal Differentiation

Imperfect Price Competition

How to speak of more or less horizontal differentiation in this setting?

Distribution H2 is more dispersed than H1 above w if H–1
2 (b) – H–1

2 (a) ≥ H–1
1 (b) – H–1

1 (a)
for any H1(w) < a ≤ b < 1.

H2 is more dispersed than H1 if more dispersed for any w.
Higher values more dispersed.

Simplifying assumption: symmetric environment; i.e. for all n,m ∈ [T]
F ≡ Fn = Fm, G ≡ Gn = Gm, and k ≡ kn = km (implying H ≡ Hn = Hm), and
c ≡ cn = cm.
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Comparative Statics

Proposition 3

In symmetric environments, eqm price increases as H becomesmore dispersed above
X0 + c and H(X0 + c) weakly decreases.

Intuition
With higher preference heterogeneity (horizontal differentiation), sellers can
charge higher mark-ups.

Proposition 4

In symmetric environments, either condition is sufficient for H to become more dis-
persed above X0 + c:
(1) G (match values) becomes more dispersed and f is log-concave, or
(2) F (prior/common values) becomesmore dispersed, g is log-concave, f is decreasing
above X0 + c – w, and inf supp F ≤ X0 + c – w.

Gonçalves (UCL) Searching 41



Comparative Statics

Proposition 3

In symmetric environments, eqm price increases as H becomesmore dispersed above
X0 + c and H(X0 + c) weakly decreases.

Intuition
With higher preference heterogeneity (horizontal differentiation), sellers can
charge higher mark-ups.

Proposition 4

In symmetric environments, either condition is sufficient for H to become more dis-
persed above X0 + c:
(1) G (match values) becomes more dispersed and f is log-concave, or
(2) F (prior/common values) becomesmore dispersed, g is log-concave, f is decreasing
above X0 + c – w, and inf supp F ≤ X0 + c – w.

Gonçalves (UCL) Searching 41



Comparative Statics

Proposition 3

In symmetric environments, eqm price increases as H becomesmore dispersed above
X0 + c and H(X0 + c) weakly decreases.

Intuition
With higher preference heterogeneity (horizontal differentiation), sellers can
charge higher mark-ups.

Proposition 4

In symmetric environments, either condition is sufficient for H to become more dis-
persed above X0 + c:
(1) G (match values) becomes more dispersed and f is log-concave, or
(2) F (prior/common values) becomesmore dispersed, g is log-concave, f is decreasing
above X0 + c – w, and inf supp F ≤ X0 + c – w.

Gonçalves (UCL) Searching 41



Comparative Statics

Proposition 4

In symmetric environments, either condition is sufficient for H to become more dis-
persed above X0 + c:
(1) G (match values) becomes more dispersed and f is log-concave, (...)

Intuition for (1):

+ preference heterogeneity (+ differentiation) =⇒ sellers can charge higher
mark-ups.

Not sufficient to have higher ‘ex-post’ preference heterogeneity: heterogeneity
depends on how much consumers learn about their valuations.
‘Effective’ (or post-learning) preference heterogeneity.

+ dispersion in G =⇒ + dispersion ‘ex-post’ valuations; and
+ dispersion in G =⇒ + value to learning.
Combined, both reinforce + effective heterogeneity.
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Comparative Statics

Proposition 4

In symmetric environments, either condition is sufficient for H to become more dis-
persed above X0 + c: (...)
(2) F (prior/common values) becomesmore dispersed, g is log-concave, f is decreasing
above X0 + c – w, and inf supp F ≤ X0 + c – w.

Intuition for (2):
F + dispersed ≡ + ex-ante heterogeneity.

Implies higher ex-post heterogeneity, but may also preclude learning.
Learning is source of effective heterogeneity, no conflicting forces.
Conditions in (2) ensure stronger incentives to learning, so that we have both
forces going in same direction.
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Comparative Statics

Proposition 5

In symmetric environments, if f is log-concave, both eqm price and profit decrease in
cost to learning k.

Counter-Intuitive!

Expect higher learning costs to be exploited by sellers! (e.g. Diamond paradox)
Why do we get this then?
Intuition relies on presumption that prices not known to consumers prior to
learning.
Here: prices known; it’s valuations that are not known.
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Comparative Statics

Proposition 5

In symmetric environments, if f is log-concave, both eqm price and profit decrease in
cost to learning k.

Intuition: Prices known in advance.

If seller lowers price, + consumers learning about seller’s product, + demand.
When learning costs are higher, consumers less willing to learn and demand +
sensitive to prices.

Thus: ↑ learning costs =⇒ + price competition =⇒ ↓ eqm price =⇒ ↓ profits.
(this last bit is not immediate: outside option)
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Summary

Search as flexible framework for directed info acquisition
a lot to be done...
Directed job search from first principles;
Market entry with learning;
Structural estimation of consumer demand;
Manipulation/obfuscation via search costs;
Uncertainty about prices and valuations;
Dynamic pricing;
Inference based on decision times (see Choi & Smith for comparative statics);
Optimal R&D funding design.
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Pandora’s Optimal Search Order

Proof (Back)

Suppose xπ(s) nonincreasing for s ≥ t + 1, but xπ(t) < xπ(t+1).

Assume that τ
π ≥ t occurs with positive prob., as ow it is WL to rearrange the order

following t (no impact on payoffs).

Define new order δ: same as π except it swaps t-th and (t + 1)-th alternatives.

Define stopping time τ := min{s ≥ 0 | Mδ
s ≥ maxn>s xπ(s)}

Then {τ ≤ s} = {τπ ≤ s}, ∀s ̸= t; i.e. only difference between τ
π and τ is if they disagree

in stopping at t.

{τ ∈ {t, t + 1}} = {τπ ∈ {t, t + 1}} = {Mπ

t–1 < xπ(t+1) and Mπ

t+1 ≥ xπ(t+2)}.

{τπ = t} = {Mπ

t–1 < xπ(t+1) = maxs>t–1 xπ(s) and Xt = Mt ≥ xπ(t+1) = maxs>t–1 xπ(s)},
whereas {τ = t} = {Mπ

t–1 < xπ(t+1) = maxs>t–1 xπ(s) and Xt+1 = Mδ

t ≥ xπ(t+1) =
maxs>t–1 xπ(s)}.

E[Yπ
τπ – Yδ

τ ] = E[1{τ∈{t,t+1}}(Y
π
τπ – Yδ

τ )]
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Pandora’s Optimal Search Order

Proof (Back)

{τ ∈ {t, t + 1}} = {τπ ∈ {t, t + 1}} = {Mπ

t–1 < xπ(t+1)} ∩ {Mπ

t+1 ≥ xπ(t+2)}. Furthermore,

{τπ = t} = {Mπ

t–1 < maxs>t–1 xπ(s) = xπ(t+1)} ∩ {Xπ

t = Mπ

t ≥ maxs>t–1 xπ(s) = xπ(t+1)};

{τ = t} = {Mδ

t–1 = Mπ

t–1 < maxs>t–1 xπ(s) = xπ(t+1)} ∩ {Xπ

t+1 = Mδ

t ≥ maxs>t–1 xπ(s) = xπ(t+1)}.

{τπ = t+1} = {Xπ

t ≤ Mπ

t < maxs>t xπ(s) = xπ(t+1)}∩ {Mπ

t+1 = Mδ

t+1 ≥ maxs>t+1 xπ(s) = xπ(t+2)};

{τ = t + 1} = {Xπ

t+1 ≤ Mδ

t < maxs>t xπ(s) = xπ(t+1)} ∩ {Mπ

t+1 = Mδ

t+1 ≥ maxs>t xπ(s) = xπ(t+2)}.
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Pandora’s Optimal Search Order

Proof (Back)

Note that

1{τ∈{t,t+1}}1{Xπ

t ∧Xπ

t+1≥xπ(t+1)}(Y
π
τπ – Yδ

τ )

= 1{τ∈{t,t+1}}1{Xπ

t ∧Xπ

t+1≥xπ(t+1)}((X
π

t – Xπ

t+1) – (cπ(t) – cπ(t+1)))

1{τ∈{t,t+1}}1{Xπ

t ≥xπ(t+1)>Xπ

t+1}
(Yπ

τπ – Yδ
τ )

= 1{τ∈{t,t+1}}1{Xπ

t ≥xπ(t+1)>Xπ

t+1}
((Xπ

t – Xπ

t ) – (cπ(t) – cπ(t+1) – cπ(t)))

= 1{τ∈{t,t+1}}1{Xπ

t ≥xπ(t+1)>Xπ

t+1}
cπ(t+1)

1{τ∈{t,t+1}}1{Xπ

t+1≥xπ(t+1)>Xπ

t }
(Yπ

τπ – Yδ
τ )

= 1{τ∈{t,t+1}}1{Xπ

t+1≥xπ(t+1)>Xπ

t }
((Xπ

t+1 – Xπ

t+1) – (cπ(t) + cπ(t+1) – cπ(t+1)))

= –1{τ∈{t,t+1}}1{Xπ

t+1≥xπ(t+1)>Xπ

t }
cπ(t)

1{τ∈{t,t+1}}1{xπ(t+1)>Xπ

t ∨Xπ

t+1}
(Yπ

τπ – Yδ
τ )

= 1{τ∈{t,t+1}}1{xπ(t+1)>Xπ

t ∨Xπ

t+1}
((Mπ

t–1 – Mπ

t–1) – (cπ(t) + cπ(t+1) – cπ(t+1) – cπ(t))) = 0
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Pandora’s Optimal Search Order

Proof (Back)

Since 1 = 1{Xπ

t ∧Xπ

t+1≥xπ(t+1)} + 1{Xπ

t ≥xπ(t+1)>Xπ

t+1}
+ 1{Xπ

t+1≥xπ(t+1)>Xπ

t }
+ 1{Xπ

t ∨Xπ

t+1<xπ(t+1)} we get:

E[Yπ
ρπ – Yδ

τ ]

= E

[
1{τ∈{t,t+1}}

(
1{Xπ

t ≥xπ(t+1)}1{Xπ

t+1≥xπ(t+1)}((X
π

t – Xπ

t+1) – (cπ(t) – cπ(t+1)))

+ 1{Xπ

t ≥xπ(t+1)>Xπ

t+1}
cπ(t+1) – 1{Xπ

t+1≥xπ(t+1)>Xπ

t }
cπ(t)

)]

= E

[
1{τ∈{t,t+1}}

(
1{Xπ

t ≥xπ(t+1)}1{Xπ

t+1≥xπ(t+1)}(X
π

t – Xπ

t+1) + 1{Xπ

t ≥xπ(t+1)}cπ(t+1) – 1{Xπ

t+1≥xπ(t+1)}cπ(t)

)]
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Pandora’s Optimal Search Order

Proof (Back)

Recalling that cπ(t) := E[(Xπ

t – xπ(t))
+] and xπ(t) < xπ(t+1), we get

E[Yπ
ρπ – Yδ

τ ]

= E

[
1{τ∈{t,t+1}}

(
1{Xπ

t ≥xπ(t+1)}1{Xπ

t+1≥xπ(t+1)}(X
π

t – Xπ

t+1)

+ 1{Xπ

t ≥xπ(t+1)}E[(Xπ

t+1 – xπ(t+1))
+] – 1{Xπ

t+1≥xπ(t+1)}E[(Xπ

t – xπ(t))
+]

)]

< E

[
1{τ∈{t,t+1}}

(
1{Xπ

t ≥xπ(t+1)}1{Xπ

t+1≥xπ(t+1)}(X
π

t – Xπ

t+1)

+ 1{Xπ

t ≥xπ(t+1)}E[(Xπ

t+1 – xπ(t+1))
+] – 1{Xπ

t+1≥xπ(t+1)}E[(Xπ

t – xπ(t+1))
+]

)]
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Pandora’s Optimal Search Order

Proof (Back)
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(
1{Xπ

t ≥xπ(t+1)}1{Xπ

t+1≥xπ(t+1)}(X
π

t – Xπ

t+1)

+ 1{Xπ

t ≥xπ(t+1)}E[(Xπ

t+1 – xπ(t+1))
+] – 1{Xπ

t+1≥xπ(t+1)}E[(Xπ

t – xπ(t+1))
+]

)]

= E

[
1{τ∈{t,t+1}}

(
1{Xπ

t ≥xπ(t+1)}1{Xπ

t+1≥xπ(t+1)}(X
π

t – Xπ

t+1)

+ 1{Xπ

t ≥xπ(t+1)}1{Xπ

t+1≥xπ(t+1)}(X
π

t+1 – xπ(t+1)) – 1{Xπ

t ≥xπ(t+1)}1{Xπ

t+1≥xπ(t+1)}(X
π

t – xπ(t+1))

)]
= 0

Gonçalves (UCL) Searching 52



Consumer Behaviour

Theorem

Given a price vector p and realizations V,W, consumer i chooses product n if Xn ∧ xn >
maxm̸=n(Xm ∧ xm) ∨ X0 and only if Xn ∧ xn ≥ maxm ̸=n(Xm ∧ xm) ∨ X0.

Proof (Back)

Only if:
• Case 1: Xn ∧ xn < maxm ̸=n(Xm ∧ xm) ∨ X0.

– Case 1a: Xn ∧ xn = Xn.

If Xn < X0, consumer will never purchase n.

If Xn < Xm ∧ xm and consumer stops after π
–1(m), they will never choose n.

If Xn < Xm ∧ xm and stops at t < π
–1(m), thenMπ

t > xm ≥ Xm ∧ xm > Xn and so they
will not choose n.
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Consumer Behaviour

Theorem

Given a price vector p and realizations V,W, consumer i chooses product n if Xn ∧ xn >
maxm̸=n(Xm ∧ xm) ∨ X0 and only if Xn ∧ xn ≥ maxm ̸=n(Xm ∧ xm) ∨ X0.

Proof (Back)

Only if:
• Case 1: Xn ∧ xn < maxm ̸=n(Xm ∧ xm) ∨ X0.

– Case 1b: Xn ∧ xn = xn < Xn.

If π
–1(m) < π

–1(n), then Mπ

π–1(n)–1 ≥ (Xm ∧ xm)∨X0 > xn and so τ calls for stopping
and consumer never learns about product n and thus never buys it.

If π
–1(m) > π

–1(n) and (Xm∧xm) ≥ X0, then Xn > xn ≥ xm ≥ Xm∧xm > Xn∧xn = xn,
a contradiction.

If Xn∧xn = maxm(Xm∧xm) < X0, then if stop at t (but not earlier) X0 ≤ Mπ

s–1 < xπ(s).

This implies X0 ≥ Xπ(s), for all s = 1, ..., t, therefore Mπ

t = X0.

By assumption, xn < Xn, and so if π
–1(n) ≤ t, X0 > Xn and n cannot be chosen.
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Consumer Behaviour

Theorem

Given a price vector p and realizations V,W, consumer i chooses product n if Xn ∧ xn >
maxm̸=n(Xm ∧ xm) ∨ X0 and only if Xn ∧ xn ≥ maxm ̸=n(Xm ∧ xm) ∨ X0.

Proof (Back)

If:
• Case 2: Xn ∧ xn > maxm ̸=n(Xm ∧ xm) ∨ X0.

– Case 2a: Xn ≥ xn.

Then Mπ–1(n) ≥ Xn ≥ xn ≥ xπ–1(n)+1 and therefore τ ≤ π
–1(n).

As xn > Xm ∧ xm, for all m : π
–1(m) < π

–1(n),
=⇒ xm ≥ xn and Xn ≥ xn > Xm
=⇒ n must be chosen.
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Consumer Behaviour

Theorem

Given a price vector p and realizations V,W, consumer i chooses product n if Xn ∧ xn >
maxm̸=n(Xm ∧ xm) ∨ X0 and only if Xn ∧ xn ≥ maxm ̸=n(Xm ∧ xm) ∨ X0.

Proof (Back)

If:
• Case 2: Xn ∧ xn > maxm ̸=n(Xm ∧ xm) ∨ X0.

– Case 2b: Xn < xn.

Then xm ≥ xn > Xn > Xm ∧ xm for all m : π
–1(m) < π

–1(n) and τ ≥ π
–1(n).

If the consumer stops at t > π
–1(n), then

xs > Xn > Xs ∧ xs for all s ≤ t such that s ̸= π
–1(n) and Mπ

t = Xn
=⇒ n is chosen.
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