Sophisticated Learning

Duarte Gonçalves
University College London

Topics in Economic Theory

Overview

Overview

Learning in Games

How do people get to play equilibrium?

Main question of interest in 'learning in games' (7 games with learning)

Goals

Provide foundations for existing equilibrium concepts.

Capture lab behaviour.

Predict adjustment dynamics transitioning to new equilibrium.

(akin to 'impulse response' in macro; uncommon but definitely worth investigating)

Select equilibria.

Algorithm to solve for equilibria.

Explain persistence of heuristics/nonequilibrium behaviour.

Overview

Overview

Papers:

Kalai and Lehrer (1993, Ecta) "Rational Learning Leads to Nash Equilibria" Kalai and Lehrer (1993 Ecma) "Subjective Equilibrium in Repeated Games"

Model and Notation

Stage game: finite players $i \in I = \{1, ..., n\}$; actions A_i ; $A = \times_i A_i$; payoffs $u_i : A \to \mathbb{R}$.

Infinite horizon repeated game: discount $\delta_i \in (0,1)$; perfect monitoring.

Histories: $h^t = (a^0, \dots, a^{t-1}) \in A^t$, with $H^t = A^t$, $H = \bigcup_{t>0} H^t$; empty history \emptyset .

Behavioural strategies: $\sigma_i = (\sigma_{i,t})_{t \geq 0}$, $\sigma_{i,t} : H^t \to \Delta(A_i)$; strategy profile $\sigma = (\sigma_i)_i$.

Outcome measure: for a fixed σ , let μ^{σ} be the induced probability on infinite play paths $\Omega = A^{\mathbb{N}}$

Subjective beliefs: each player *i* has a prior belief v_i over opponents' strategies σ_{-i} ; induces a belief over play paths Π_i .

Absolute continuity (truth-compatibility): $\mu^{\sigma} \ll \Pi_i$ for all *i* (no path of positive μ^{σ} -probability is assigned zero by Π_i).

Objective: players maximise expected discounted payoffs given their posteriors and choose best responses period by period.

Bayesian Updating and Merging

Posterior on play paths: after h^t , player i updates $\Pi_i(\cdot \mid h^t)$ by Bayes' rule (well-defined by absolute continuity).

Merging (KL notion): posteriors become *close* on all tail events: for every $\varepsilon > 0$, $\exists T$ s.t. $\forall s > T$.

 $|\Pi_i(A \mid h^s) - \mu^{\sigma}(A \mid h^s)| \le \varepsilon$ for all A in a large (probability-1) class of events.

Relation to Blackwell–Dubins: KL's closeness \iff BD merging; KL give an elementary proof and equivalence of topologies.

Subjective Equilibrium

Definition (Subjective equilibrium)

A history-dependent strategy profile σ is a **subjective equilibrium** if, along μ^{σ} -almost all paths, players' posteriors about future play coincide with the truth (merging), and each σ_i is a best response to the posterior over σ_{-i} .

Interpretation: learning exhausted; disagreements (if any) are off path and never observed.

Consequence: from some finite time T, actions follow best responses to (approximately) correct forecasts of future play.

Main Result: Rational Learning \implies Nash Equilibrium

Theorem 1 (Kalai and Lehrer 1993)

Suppose $\mu^{\sigma} \ll \Pi_i$ for all *i* (absolute continuity). Under Bayesian updating and optimal control of expected discounted utility:

Posteriors merge with the truth along the realised path.

From some finite time, play is $\epsilon\text{-optimal}$ against correct forecasts.

Limit behaviour constitutes a Nash equilibrium of the repeated game.

Proof Sketch

Merging: apply KL's merging theorem to obtain posterior convergence on tail events.

Optimality: best responses w.r.t. posteriors $\implies \epsilon$ -optimality w.r.t. truth for large t.

Equilibrium: mutual best responses along the limit set \implies Nash equilibrium of the repeated game.

Corollaries and Immediate Implications

Corollary 2 (Kalai and Lehrer 1993; BD 1962)

For μ^{σ} -a.e. path, the posterior probabilities $\Pi_i(\cdot \mid h^t)$ converge uniformly on the large class of events to $\mu^{\sigma}(\cdot \mid h^t)$. (Version of Blackwell–Dubins' merging.)

Corollaries and Immediate Implications

Corollary 2 (Kalai and Lehrer 1993; BD 1962)

For μ^{σ} -a.e. path, the posterior probabilities $\Pi_i(\cdot \mid h^t)$ converge uniformly on the large class of events to $\mu^{\sigma}(\cdot \mid h^t)$. (Version of Blackwell–Dubins' merging.)

Corollary (Incomplete information; Bayesian Nash equilibrium)

In a discounted repeated game with a finite/countable type space for payoffs, if play starts at a **Bayesian Nash equilibrium** of the incomplete-information repeated game, then eventually players play a Nash equilibrium of the realised complete-information repeated game.

Intuition: at BNE of the incomplete-information repeated game, priors imply absolute continuity on play paths; merging \implies players act as if types were known.

Meaning and Interpretation

- What converges? Posteriors about future play; best responses to (nearly) correct forecasts ⇒ Nash play in the repeated game.
- **Role of absolute continuity**: rules out dogmatic priors that assign zero to realised events; ensures Bayes can learn from data.
- **Why repeated games?** Stationarity of opponents' *strategies* (not actions) makes learning feasible despite strategic feedback.
- **Experimentation**: endogenous via dynamic optimisation of discounted utility; no ad hoc trembles needed.

Additional Details (Notation as in §3.1)

Spaces: $\Omega = A^{\mathbb{N}}$ with product σ -algebra; cylinders generated by finite histories.

Outcome law: $\mu^{\sigma}(\cdot) = \mathbb{P}_{\sigma}(\cdot)$ over Ω ; filtration \mathcal{F}_t from H^t .

Beliefs on strategies \rightarrow beliefs on paths: priors v_i over σ_{-i} induce Π_i over Ω (via mapping $\sigma_{-i} \mapsto \mu^{(\sigma_i,\sigma_{-i})}$).

Absolute continuity on Ω : $\mu^{\sigma} \ll \Pi_i$; equivalently, every cylinder $C(h^t)$ with $\mu^{\sigma}(C(h^t)) > 0$ has $\Pi_i(C(h^t)) > 0$.

Payoffs: $U_i(\sigma) = \mathbb{E}_{\mu^{\sigma}} \left[\sum_{t>0} \delta_i^t u_i(a^t) \right].$

Critiques (Fudenberg and Levine 1998)

- **Endogeneity of absolute continuity**: AC must hold for the *realised* play path ⇒ fixed-point flavour; as hard as equilibrium selection.
- **Grain of truth**: desirable to ensure AC *regardless* of opponents' play is impossible on uncountable history spaces; weaker classes of priors may work only in truncated/favourable settings.
- **Example (Chicken)**: plausible sets "insist n periods then yield"; symmetric beliefs \implies optimal stopping leads to paths of measure 0 under priors \Rightarrow AC fails.
- **Interpretation**: best seen as a descriptive result on eventual consensus, not as a *learning path* to equilibrium with exogenously specified priors.

Takeaways

 $\label{thm:continuity} \mbox{ Under absolute continuity, Bayesian learning merges beliefs with the truth on play paths.}$

Optimal control with merged beliefs \implies eventual play of a Nash equilibrium of the repeated game.

Application to *Bayesian Nash equilibria* with incomplete information: eventually play NE of the realised complete-information game.

AC is strong/endogenous; caution interpreting KL as a general path-to-equilibrium theory.

Model and Notation

Stage game: finite players $i \in I = \{1, ..., n\}$; actions A_i ; $A = \times_i A_i$; payoffs $u_i : A \to \mathbb{R}$.

Infinite horizon repeated game: discount $\delta_i \in (0,1)$; perfect monitoring.

Histories: $h^t = (a^0, \dots, a^{t-1}) \in A^t$, with $H^t = A^t$, $H = \bigcup_{t>0} H^t$; empty history \emptyset .

Behavioural strategies: $\sigma_i = (\sigma_{i,t})_{t \geq 0}$, $\sigma_{i,t} : H^t \to \Delta(A_i)$; strategy profile $\sigma = (\sigma_i)_i$.

Outcome measure: for a fixed σ , let μ^{σ} be the induced probability on infinite play paths $\Omega = A^{\mathbb{N}}$.

Subjective beliefs: each player *i* has a prior belief v_i over opponents' strategies σ_{-i} ; induces a belief over play paths Π_i .

Absolute continuity (truth-compatibility): $\mu^{\sigma} \ll \Pi_i$ for all *i* (no path of positive μ^{σ} -probability is assigned zero by Π_i).

Objective: players maximise expected discounted payoffs given their posteriors and choose best responses period by period.

Bayesian Updating and Merging

Posterior on play paths: after h^t , player i updates $\Pi_i(\cdot \mid h^t)$ by Bayes' rule (well-defined by absolute continuity).

Merging (KL notion): posteriors become *close* on all tail events: for every $\varepsilon > 0$, $\exists T$ s.t. $\forall s > T$.

 $|\Pi_i(A \mid h^s) - \mu^{\sigma}(A \mid h^s)| \le \varepsilon$ for all A in a large (probability-1) class of events.

Relation to Blackwell–Dubins: KL's closeness \iff BD merging; KL give an elementary proof and equivalence of topologies.

Subjective Equilibrium

Definition (Subjective equilibrium)

A history-dependent strategy profile σ is a **subjective equilibrium** if, along μ^{σ} -almost all paths, players' posteriors about future play coincide with the truth (merging), and each σ_i is a best response to the posterior over σ_{-i} .

Interpretation: learning exhausted; disagreements (if any) are off path and never observed.

Consequence: from some finite time T, actions follow best responses to (approximately) correct forecasts of future play.

Main Result: Rational Learning ⇒ Nash Equilibrium

Theorem 1 (Kalai and Lehrer 1993)

Suppose $\mu^{\sigma} \ll \Pi_i$ for all *i* (absolute continuity). Under Bayesian updating and optimal control of expected discounted utility:

Posteriors merge with the truth along the realised path.

From some finite time, play is $\epsilon\text{-optimal}$ against correct forecasts.

Limit behaviour constitutes a Nash equilibrium of the repeated game.

Proof Sketch

Merging: apply KL's merging theorem to obtain posterior convergence on tail events.

Optimality: best responses w.r.t. posteriors $\implies \epsilon$ -optimality w.r.t. truth for large t.

Equilibrium: mutual best responses along the limit set \implies Nash equilibrium of the repeated game.

Corollaries and Immediate Implications

Corollary 2 (Kalai and Lehrer 1993; BD 1962)

For μ^{σ} -a.e. path, the posterior probabilities $\Pi_i(\cdot \mid h^t)$ converge uniformly on the large class of events to $\mu^{\sigma}(\cdot \mid h^t)$. (Version of Blackwell–Dubins' merging.)

Corollaries and Immediate Implications

Corollary 2 (Kalai and Lehrer 1993; BD 1962)

For μ^{σ} -a.e. path, the posterior probabilities $\Pi_i(\cdot \mid h^t)$ converge uniformly on the large class of events to $\mu^{\sigma}(\cdot \mid h^t)$. (Version of Blackwell–Dubins' merging.)

Corollary (Incomplete information; Bayesian Nash equilibrium)

In a discounted repeated game with a finite/countable type space for payoffs, if play starts at a **Bayesian Nash equilibrium** of the incomplete-information repeated game, then eventually players play a Nash equilibrium of the realised complete-information repeated game.

Intuition: at BNE of the incomplete-information repeated game, priors imply absolute continuity on play paths; merging \implies players act as if types were known.

Meaning and Interpretation

- What converges? Posteriors about future play; best responses to (nearly) correct forecasts ⇒ Nash play in the repeated game.
- **Role of absolute continuity**: rules out dogmatic priors that assign zero to realised events; ensures Bayes can learn from data.
- **Why repeated games?** Stationarity of opponents' *strategies* (not actions) makes learning feasible despite strategic feedback.
- **Experimentation**: endogenous via dynamic optimisation of discounted utility; no ad hoc trembles needed

Additional Details (Notation as in §3.1)

Spaces: $\Omega = A^{\mathbb{N}}$ with product σ -algebra; cylinders generated by finite histories.

Outcome law: $\mu^{\sigma}(\cdot) = \mathbb{P}_{\sigma}(\cdot)$ over Ω ; filtration \mathcal{F}_t from H^t .

Beliefs on strategies \rightarrow beliefs on paths: priors \mathbf{v}_i over $\mathbf{\sigma}_{-i}$ induce Π_i over Ω (via mapping $\mathbf{\sigma}_{-i} \mapsto \mathbf{\mu}^{(\mathbf{\sigma}_i, \mathbf{\sigma}_{-i})}$).

Absolute continuity on Ω : $\mu^{\sigma} \ll \Pi_i$; equivalently, every cylinder $C(h^t)$ with $\mu^{\sigma}(C(h^t)) > 0$ has $\Pi_i(C(h^t)) > 0$.

Payoffs: $U_i(\sigma) = \mathbb{E}_{\mu^{\sigma}} \left[\sum_{t>0} \delta_i^t u_i(a^t) \right]$.

Critiques (Fudenberg and Levine 1998)

- **Endogeneity of absolute continuity**: AC must hold for the *realised* play path ⇒ fixed-point flavour; as hard as equilibrium selection.
- **Grain of truth**: desirable to ensure AC *regardless* of opponents' play is impossible on uncountable history spaces; weaker classes of priors may work only in truncated/favourable settings.
- **Example (Chicken)**: plausible sets "insist n periods then yield"; symmetric beliefs \implies optimal stopping leads to paths of measure 0 under priors \Rightarrow AC fails.
- **Interpretation**: best seen as a descriptive result on eventual consensus, not as a *learning path* to equilibrium with exogenously specified priors.

Takeaways

 $\label{thm:continuity} \mbox{ Under absolute continuity, Bayesian learning merges beliefs with the truth on play paths.}$

Optimal control with merged beliefs \implies eventual play of a Nash equilibrium of the repeated game.

Application to *Bayesian Nash equilibria* with incomplete information: eventually play NE of the realised complete-information game.

AC is strong/endogenous; caution interpreting KL as a general path-to-equilibrium theory.

Sophisticated Learning

Duarte Gonçalves
University College London

Topics in Economic Theory