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Learning in Games

How do people get to play equilibrium?
Main question of interest in ‘learning in games’ (̸= games with learning)

Goals
Provide foundations for existing equilibrium concepts.
Capture lab behaviour.
Predict adjustment dynamics transitioning to new equilibrium.
(akin to ‘impulse response’ in macro; uncommon but definitely worth
investigating)

Select equilibria.
Algorithm to solve for equilibria.
Explain persistence of heuristics/nonequilibrium behaviour.
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Papers:
Kalai and Lehrer (1993, Ecta) "Rational Learning Leads to Nash Equilibria"
Kalai and Lehrer (1993 Ecma) "Subjective Equilibrium in Repeated Games"
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Model and Notation

Stage game: finite players i ∈ I = {1, . . . , n}; actions Ai; A = ×iAi; payoffs ui : A → R.

Infinite horizon repeated game: discount δi ∈ (0, 1); perfect monitoring.

Histories: ht = (a0, . . . , at–1) ∈ At, with Ht = At, H = ∪t≥0Ht; empty history ∅.

Behavioural strategies: σi = (σi,t)t≥0, σi,t : Ht → ∆(Ai); strategy profile σ = (σi)i.

Outcome measure: for a fixed σ, let µ
σ be the induced probability on infinite play paths

Ω = AN.

Subjective beliefs: each player i has a prior belief νi over opponents’ strategies σ–i;
induces a belief over play paths Πi.

Absolute continuity (truth-compatibility): µ
σ ≪ Πi for all i (no path of positive

µ
σ-probability is assigned zero by Πi).

Objective: players maximise expected discounted payoffs given their posteriors and
choose best responses period by period.

Gonçalves (UCL) Sophisticated Learning 3



Bayesian Updating and Merging

Posterior on play paths: after ht, player i updates Πi(· | ht) by Bayes’ rule (well-defined
by absolute continuity).

Merging (KL notion): posteriors become close on all tail events: for every ε > 0, ∃T s.t.
∀s ≥ T,
|Πi(A | hs) – µ

σ(A | hs)| ≤ ε for all A in a large (probability-1) class of events.

Relation to Blackwell–Dubins: KL’s closeness ⇐⇒ BD merging; KL give an elementary
proof and equivalence of topologies.
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Subjective Equilibrium

Definition (Subjective equilibrium)

A history-dependent strategy profile σ is a subjective equilibrium if, along µ
σ-almost all

paths, players’ posteriors about future play coincide with the truth (merging), and each
σi is a best response to the posterior over σ–i.

Interpretation: learning exhausted; disagreements (if any) are off path and never
observed.

Consequence: from some finite time T, actions follow best responses to
(approximately) correct forecasts of future play.
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Main Result: Rational Learning =⇒ Nash Equilibrium

Theorem 1 (Kalai and Lehrer 1993)

Suppose µ
σ ≪ Πi for all i (absolute continuity). Under Bayesian updating and optimal

control of expected discounted utility:

Posteriors merge with the truth along the realised path.

From some finite time, play is ε-optimal against correct forecasts.

Limit behaviour constitutes a Nash equilibrium of the repeated game.

Proof Sketch

Merging: apply KL’s merging theorem to obtain posterior convergence on tail events.

Optimality: best responses w.r.t. posteriors =⇒ ε-optimality w.r.t. truth for large t.

Equilibrium: mutual best responses along the limit set =⇒ Nash equilibrium of the
repeated game.
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Corollaries and Immediate Implications

Corollary 2 (Kalai and Lehrer 1993; BD 1962)

For µ
σ-a.e. path, the posterior probabilities Πi(· | ht) converge uniformly on the large

class of events to µ
σ(· | ht). (Version of Blackwell–Dubins’ merging.)

Corollary (Incomplete information; Bayesian Nash equilibrium)

In a discounted repeated game with a finite/countable type space for payoffs, if play
starts at a Bayesian Nash equilibrium of the incomplete-information repeated game,
then eventually players play a Nash equilibrium of the realised complete-information
repeated game.

Intuition: at BNE of the incomplete-information repeated game, priors imply absolute
continuity on play paths; merging =⇒ players act as if types were known.
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Meaning and Interpretation

What converges? Posteriors about future play; best responses to (nearly) correct
forecasts =⇒ Nash play in the repeated game.

Role of absolute continuity: rules out dogmatic priors that assign zero to realised
events; ensures Bayes can learn from data.

Why repeated games? Stationarity of opponents’ strategies (not actions) makes
learning feasible despite strategic feedback.

Experimentation: endogenous via dynamic optimisation of discounted utility; no ad hoc
trembles needed.
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Additional Details (Notation as in §3.1)

Spaces: Ω = AN with product σ-algebra; cylinders generated by finite histories.

Outcome law: µ
σ(·) = Pσ(·) over Ω; filtration Ft from Ht.

Beliefs on strategies → beliefs on paths: priors νi over σ–i induce Πi over Ω (via
mapping σ–i 7→ µ

(σi ,σ–i)).

Absolute continuity on Ω: µ
σ ≪ Πi; equivalently, every cylinder C(ht) with µ

σ(C(ht)) > 0
has Πi(C(ht)) > 0.

Payoffs: Ui(σ) = Eµσ

[∑
t≥0 δ

t
i ui(a

t)
]
.
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Critiques (Fudenberg and Levine 1998)

Endogeneity of absolute continuity: AC must hold for the realised play path =⇒
fixed-point flavour; as hard as equilibrium selection.

Grain of truth: desirable to ensure AC regardless of opponents’ play is impossible on
uncountable history spaces; weaker classes of priors may work only in
truncated/favourable settings.

Example (Chicken): plausible sets “insist n periods then yield”; symmetric beliefs =⇒
optimal stopping leads to paths of measure 0 under priors ⇒ AC fails.

Interpretation: best seen as a descriptive result on eventual consensus, not as a
learning path to equilibrium with exogenously specified priors.
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Takeaways

Under absolute continuity, Bayesian learning merges beliefs with the truth on play paths.

Optimal control with merged beliefs =⇒ eventual play of a Nash equilibrium of the
repeated game.

Application to Bayesian Nash equilibria with incomplete information: eventually play NE
of the realised complete-information game.

AC is strong/endogenous; caution interpreting KL as a general path-to-equilibrium
theory.
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