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Job Search

Accept offer Yt, continue searching with a per period cost of c.

Interpretation:
Job search (McCall 1970 QJE): TIOLI salary offers Yt, cost to search c.
Selling a house/asset: TIOLI offers Yt, council tax/management fees c.

Yt ∼ F, iid; F continuous, strictly increasing.

Assume E[1Yt≥0Yt] < ∞; Y0 = 0; P(Yt > c) > 0.
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Job Search

Accept and get Yt (present value of getting same wage forever);
Refuse and get z and face same problem tomorrow

Markov problem; state variable = Yt

Set up Bellman equation; V(Yt) = max{Yt,E[V(Yt+1)] – c}
(iid =⇒ stationary problem)

Value: V(Yt)
(handwavy: this presumes a solution and we don’t know yet if/why we can do this)

Define Vt := V(Yt) and V̄ = E[V(Yt)]

Define ỹ := V̄ – c

Take expectations and get ỹ + c = E[max{Yt, ỹ}] ⇐⇒ c = E[(Yt – ỹ)+] =
∫∞
ỹ y dF(y)

F continuous and strictly increasing: ∃!ỹ : c = E[(Yt – ỹ)+]

ỹ: reservation value

Optimal rule: continue if and only if Yt < ỹ
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Job Search with Discounting

Accept offer Yt, continue searching and receive z; discount factor β ∈ (0, 1).

Interpretation:
Job search: TIOLI salary offers Yt, unemployment subsidy z, cost of time β.
Selling a house/asset: TIOLI offers Yt, rent acrued z, interest rate r, discount factor

β = (1 + r)–1.

Yt ∼ F, iid; F continuous, strictly increasing.

Assume E[1Yt≥0Yt] < ∞; Y0 = 0; P(Yt > c) > 0.
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Job Search with Discounting

Define Ŷt :=
β
t

1–β
Yt (present value).

Accept and get Yt forever ≡ Accept and get Ŷt
Refuse, get z, and face same problem tomorrow but discounted by β.

Markov problem; state variable = Ŷt

Set up Bellman equation; V(Ŷt) = max{Ŷt, z + βE[V(Ŷt+1)]}

Value: V(Ŷt)

Brief refresher...
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Refresher

Definition

T : X → X is a contraction on (X, d) if ∃δ ∈ [0, 1) : d(T(x),T(y)) ≤ δd(x, y) ∀x, y ∈ X.

Banach Fixed-Point Theorem

Let (X, d) be a non-empty completemetric space and T a contractionmapping on (X, d).
Then, ∃!x∗ ∈ X : T(x∗) = x∗. Moreover, for any x0 ∈ X, x∗ = limn→∞ Tn(x0), where
Tn+1 := T ◦ Tn and T1 := T.

Proof

Let xn := Tn(x0). Then d(xn+1, xn) = d(Tn(x1),Tn(x0)) ≤ δ
nd(x1, x0), hence {xn}n is a Cauchy

sequence.
(X, d) complete ≡ Cauchy sequences converge =⇒ xn converges to some x∗ = T(x∗).
Take any y0 ∈ X \ {x0}; define yn := Tn(y0); yn → y∗.
If x∗ ̸= y∗, then d(y∗, x∗) = d(Tn(y∗),Tn(x∗)) = δ

nd(y∗, x∗) < d(y∗, x∗), a contradiction.
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Refresher

Blackwell’s Conditions for Contraction Mapping

Let B(X) denote the set of bounded real functions on some nonempty set X endowed
with the sup-metric d∞. Suppose T : B(X) → B(X) satisfies (i) ∀f , g ∈ B(X) : f ≥ g =⇒
T(f) ≥ T(g), and (ii) ∃δ ∈ [0, 1) s.t. T(f + α) ≤ T(f) + δα ∀f ∈ B(X) and ∀α ∈ R+. Then T
is a contraction.

Proof

For any f , g ∈ B(X) and x ∈ X, f(x) – g(x) ≤ |f(x) – g(x)| ≤ d∞(f , g).
(i) and (ii): f ≤ g + d∞(f , g) =⇒ T(f) ≤ T(g) + δd∞(f , g)
and, symmetrically, T(g) ≤ T(f) + δd∞(f , g).
This implies d∞(T(f),T(g)) ≤ δd∞(f , g).
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Job Search with Discounting

Define Ŷt :=
β
t

1–β
Yt (present value).

Accept and get Yt forever ≡ Accept and get Ŷt
Refuse, get z, and face same problem tomorrow but discounted by β.

Markov problem; state variable = Ŷt

Set up Bellman equation; V(Ŷt) = max{Ŷt, z + βE[V(Ŷt+1)]}

Value: V(Ŷt), well-defined

Define Vt := V(Ŷt) and V̄ = E[V(Ŷt)]

Take expectations and get
V̄ = E[max{Ŷt, z + βV̄}] ⇐⇒ V̄(1 – β) = z + E[(Ŷt – (z + βV̄))+] =

∫∞
z+βV̄

1
1–β

y dF(y)

F continuous: ∃!V̄ : V̄(1 – β) = z + E[(Ŷt – (z + βV̄))+]

ỹ := (1 – β)(z + βV̄): reservation value

Optimal rule: continue if and only if Yt < ỹ
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ỹ := (1 – β)(z + βV̄): reservation value

Optimal rule: continue if and only if Yt < ỹ
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Going Beyond the Basic Setting

Yt may not be iid
- Depend on time of unemployment
- Result from underlying dynamic game between recruiting firms
- Uncertain market conditions (hence perception of F evolves over time depending
on past Yℓ)
...

Introduce general tools to tackle the problem
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Setup and Assumptions
{X0,X1,X2, ...} rv whose joint distribution is assumed to be known; write Xt := (Xℓ)ℓ=1,...,t.

Sequence of functions xt 7→ yt(xt) ∈ R; write Yt := yt(xt).

Filtration F = {Ft} = σ(Xt).

Adapted payoff process {Yt}; terminal Y∞ (possibly –∞).

Stopping time τ: {τ ≤ t} ∈ Ft for all t; feasible set T.

Objective: maximise value of Y by adequately choosing stopping time, sup
τ∈T

E[Yτ].

Two questions:
1. When is there actually an optimal stopping time? (Is sup actually a max?)
2. If so, what does it look like?

Previous applications: guess and verify or use specific structural assumptions.
Now: use very general assumptions.

Standing assumptions
(A1) E

[
supt≥0 Yt

]
< ∞.

(A2) limt→∞ E[Yt] ≤ Y∞ a.s.

Note: (A1) implies supτ E[Yτ] < ∞
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Regular Stopping Times

Definition (Regularity)

τ is regular if for all t, E[Yτ | Ft] > Yt a.s. on {τ > t}.

Lemma 1 (Regularity is wloo)

Under (A1), for any stopping time τ there exists a regular stopping time ρ ≤ τ with
E[Yρ] ≥ E[Yτ].

Lemma 2 (Regularity is closed under ∨)

Under (A1), if τ and ρ are regular, then ξ := τ∨ρ is regular and E[Yξ] ≥ max{E[Yτ],E[Yρ]}.
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Proof of Lemma 1 (Regularity wloo)
Proof

Fix τ with E[|Yτ|] < ∞ (true by (A1) since Yτ ≤ sups Ys).

Define Zt := E[Yτ | Ft] and let ρ := inf{t ≥ 0 : Zt ≤ Yt}.

On {ρ > t}: Yt < Zt = E[Yτ | Ft], so ρ is regular.

On {ρ = t}: Yρ = Yt ≥ Zt = E[Yτ | Ft]. On {ρ = ∞}: Yρ = Y∞ = Yτ a.s.

Hence

E[Yρ] =
∞∑
t=0

E[1{ρ=t}Yt] + E[1{ρ=∞}Y∞]

≥
∞∑
t=0

E[1{ρ=t}E[Yτ | Ft]] + E[1{ρ=∞}Yτ]

≥
∞∑
t=0

E[1{ρ=t}Yτ] + E[1{ρ=∞}Yτ]

= E[Yτ].

Suppose ¬(ρ ≤ τ); note that, at {ρ > τ = t}, Zt = Zτ = Yτ < Zt, a contradiction.
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Proof of Lemma 2 (Regularity is closed under ∨)
Proof

1. Proving ξ is regular:

{ξ > t} = {ξ = τ > t} ∪ {ξ = ρ > t}.

On {ξ = τ > t}, E[Yξ | Ft] = E[Yτ | Ft] > Yt a.s. ∵ τ is regular.

Symmetrically, on {ξ = ρ > t}, E[Yξ | Ft] = E[Yρ | Ft] > Yt a.s. ∵ ρ is regular.

2. Proving E[Yξ] ≥ E[Yτ] ∨ E[Yρ]:

On {ξ = τ = t}, Yξ = Yτ = Yt.

On {ξ = ρ > τ = t}, ξ = ρ and E[Yξ | Ft] = E[Yρ | Ft] > Yt = Yτ a.s.

Hence

E[Yξ] =
∞∑
t=0

E[1{τ=t}Yξ] + E[1{τ=∞}Yξ] =
∞∑
t=0

E[1{τ=t}E[Yξ | Ft]] + E[1{τ=∞}Yξ]

≥
∞∑
t=0

E[1{τ=t}Yτ] + E[1{τ=∞}Yτ] = E[Yτ].

By a symmetric argument, E[Yξ] ≥ max{E[Yτ],E[Yρ]}.
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Existence

Theorem (Existence)

Under (A1) and (A2), there is a regular τ such that E[Yτ] = supρ∈T E[Yρ].

Proof

Take the case V∗ := supρ∈T E[Yρ] > –∞.

By definition of sup, ∃ sequence τ̂1, τ̂2, ... such that E[Yτ̂n ] → V∗.

Define regularised ρn := inf{t ≥ 0 : E[Yτ̂n | Ft] ≤ Yt}; let τn := max{ρ1, ρ2, ..., ρn}, regular.

By the lemmas, V∗ ≥ E[Yτn ] ≥ maxℓ=1,...,n E[Yρn ] ≥ E[Yτ̂n ] → V∗.

Define τ∞ := supn∈N ρn. τn pointwise increasing =⇒ pointwise converges to τ∞.
Moreover, lim supn→∞ Yτn ≤ Yτ∞ a.s. (from (A2)).

Note: by construction, E[lim supn Yτn ] ≤ E[Yτ∞ ]. Since Yτn ≤ supn Yn, by Fatou’s lemma
and (A1), E[lim infn→∞ supm Ym – Yτn ] ≤ lim infn→∞ E[supm Ym – Yτn ] =⇒ V∗ =
lim supn→∞ E[Yτn ] ≤ E[lim supn→∞ Yτn ] ≤ E[Yτ∞ ].

Conclude: V∗ = supρ∈T E[Yρ] ≥ E[Yτ∞ ] ≥ V∗.
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Assumptions

Example

Let Xt ∼Bernoulli(1/2) iid; Y0 := 0, Yt := (2t – 1)
∏t

ℓ=1 Xℓ for t ∈ N, Y∞ := 0.

Fails (A1): Note supk≤t Yk = 2k – 1 with probability 2–(k+1) for k = 0, 1, ..., t – 1 and with
probability 2–t for k = t. Hence E[supt Yt] =

∑∞
t=0(2

t – 1)2–(t+1) = ∞.

Satisfies (A2): Yt → 0 a.s.

Indeed, no optimal stopping time. Conditional on reaching twithYt > 0 ⇐⇒
∏t

ℓ=1 Xℓ =
1, then don’t want to stop: Yt = 2t – 1 < 2t – 1/2 = (1/2)(2t+1 – 1) = E[Yt+1|Yt > 0].
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Assumptions

Example

Let Y0 := 0, Yt := 1 – 1/t for t ∈ N, Y∞ := 0.

Satisfies (A1): Yt ≤ 1.

Fails (A2): Yt → 1 > 0 = Y∞.

Indeed, no optimal stopping time as Yt < Yt+1.
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Dynamic Programming Principle
Want something like Bellman equation/DPP: stop today or continue assuming optimal

stopping from then on

Need some definitions first...

Definition

Let (Xt)t∈T be a collection of rv. Z rv is essential supremumof (Xt)t∈T , Z = ess supt∈T Xt,
if (i) P(Z ≥ Xt) = 1 ∀t ∈ T (‘probabilistic upper bound’), and (ii) ∀Z′ : P(Z′ ≥ Xt) = 1
∀t ∈ T, P(Z′ ≥ Z) = 1 (smallest probabilistic upper bound).

Lemma 3

Let (Xt)t∈T be any collection of rv.
An essential supremum always exists.
Furthermore, ∃ a countable C ⊂ T : supt∈C Xt = ess supt∈T Xt.

Let U ∼ U(0, 1), T = [0, 1], and Xt = 1{c=t}. supt∈T Xt = 1 ̸= ess supt∈T Xt = 0.
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Need some definitions first...

Definition

Let (Xt)t∈T be a collection of rv. Z rv is essential supremumof (Xt)t∈T , Z = ess supt∈T Xt,
if (i) P(Z ≥ Xt) = 1 ∀t ∈ T (‘probabilistic upper bound’), and (ii) ∀Z′ : P(Z′ ≥ Xt) = 1
∀t ∈ T, P(Z′ ≥ Z) = 1 (smallest probabilistic upper bound).

Lemma 3

Let (Xt)t∈T be any collection of rv.
An essential supremum always exists.
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Regularity from T Onward

Notation:
“X ≥ Y” ≡ P(X ≥ Y) = 1.
“X ≥ Y on A” ≡ P({X ≥ Y} ∩ A) = P(A).

Definition (Regularity from T onward)

τ ≥ T is regular from T onward if for all t ≥ T, E[Yτ | Ft] > Yt a.s. on {τ > t}.

Lemma 1’ (Regularity is wloo)

Under (A1), for any stopping time τ ≥ T there exists a regular stopping time from T
ρ ≥ T such that on ρ ≤ τ with E[Yρ] ≥ E[Yτ].

Lemma 2’ (Regularity is closed under ∨)

Under (A1), if τ ≥ T and ρ ≥ T are regular from T onward, then ξ := τ∨ρ is regular from
T onward and E[Yξ] ≥ max{E[Yτ],E[Yρ]}.

Gonçalves (UCL) Stopping and Choosing 17



Regularity from T Onward

Notation:
“X ≥ Y” ≡ P(X ≥ Y) = 1.
“X ≥ Y on A” ≡ P({X ≥ Y} ∩ A) = P(A).

Definition (Regularity from T onward)

τ ≥ T is regular from T onward if for all t ≥ T, E[Yτ | Ft] > Yt a.s. on {τ > t}.

Lemma 1’ (Regularity is wloo)

Under (A1), for any stopping time τ ≥ T there exists a regular stopping time from T
ρ ≥ T such that on ρ ≤ τ with E[Yρ] ≥ E[Yτ].

Lemma 2’ (Regularity is closed under ∨)

Under (A1), if τ ≥ T and ρ ≥ T are regular from T onward, then ξ := τ∨ρ is regular from
T onward and E[Yξ] ≥ max{E[Yτ],E[Yρ]}.

Gonçalves (UCL) Stopping and Choosing 17



Regularity from T Onward

Notation:
“X ≥ Y” ≡ P(X ≥ Y) = 1.
“X ≥ Y on A” ≡ P({X ≥ Y} ∩ A) = P(A).

Definition (Regularity from T onward)

τ ≥ T is regular from T onward if for all t ≥ T, E[Yτ | Ft] > Yt a.s. on {τ > t}.

Lemma 1’ (Regularity is wloo)

Under (A1), for any stopping time τ ≥ T there exists a regular stopping time from T
ρ ≥ T such that on ρ ≤ τ with E[Yρ] ≥ E[Yτ].

Lemma 2’ (Regularity is closed under ∨)

Under (A1), if τ ≥ T and ρ ≥ T are regular from T onward, then ξ := τ∨ρ is regular from
T onward and E[Yξ] ≥ max{E[Yτ],E[Yρ]}.

Gonçalves (UCL) Stopping and Choosing 17



Regularity from T Onward

Notation:
“X ≥ Y” ≡ P(X ≥ Y) = 1.
“X ≥ Y on A” ≡ P({X ≥ Y} ∩ A) = P(A).

Definition (Regularity from T onward)

τ ≥ T is regular from T onward if for all t ≥ T, E[Yτ | Ft] > Yt a.s. on {τ > t}.

Lemma 1’ (Regularity is wloo)

Under (A1), for any stopping time τ ≥ T there exists a regular stopping time from T
ρ ≥ T such that on ρ ≤ τ with E[Yρ] ≥ E[Yτ].

Lemma 2’ (Regularity is closed under ∨)

Under (A1), if τ ≥ T and ρ ≥ T are regular from T onward, then ξ := τ∨ρ is regular from
T onward and E[Yξ] ≥ max{E[Yτ],E[Yρ]}.

Gonçalves (UCL) Stopping and Choosing 17



Dynamic Programming Principle
Define:

V∗
t := ess sup

τ≥t
E[Yτ | Ft]

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), V∗
t = max{Yt,E[V∗

t+1 | Ft]}.
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Dynamic Programming Principle
Define:

V∗
t := ess sup

τ≥t
E[Yτ | Ft]

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), V∗
t = max{Yt,E[V∗

t+1 | Ft]}.

Proof

1. WTS V∗
t ≤ max{Yt,E[V∗

t+1 | Ft]}.

Take any stopping time τ. On {τ > t}, E[Yτ | Ft+1] ≤ V∗
t+1.

=⇒ E[Yτ | Ft] = E[E[Yτ | Ft+1] | Ft] ≤ E[V∗
t+1 | Ft].

=⇒ E[Yτ | Ft] = 1{τ=t}Yt + 1{τ>t}E[Yτ | Ft] ≤ max{Yt,E[V∗
t+1 | Ft]}.

=⇒ V∗
t ≤ max{Yt,E[V∗

t+1 | Ft]}.
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Dynamic Programming Principle
Define:

V∗
t := ess sup

τ≥t
E[Yτ | Ft]

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), V∗
t = max{Yt,E[V∗

t+1 | Ft]}.

Proof

2. WTS V∗
t ≥ max{Yt,E[V∗

t+1 | Ft]}.

By Lemma 3, ∃ sequence τ̂1, τ̂2, ... with τ̂n ≥ t + 1 such that E[Yτ̂n | Ft] → V∗
t+1.

Define regularised from t+1onwardρn := inf{ℓ > t | E[Yτ̂n ] ≤ Yℓ}; let τn := max{ρ1, ρ2, ..., ρn},
regular from t onward.

By the lemmas 1’ and 2’,

V∗
t ≥ E[Yτn | Ft] = E[E[Yτn | Ft+1] | Ft] ≥ E

[
max
ℓ=1,...,n

E[Yτ̂ℓ
| Ft+1]

∣∣∣Ft

]
→ E[V∗

t+1 | Ft]

Since, trivially, V∗
t ≥ Yt, we get V∗

t ≥ max{Yt,E[V∗
t+1 | Ft]}.
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Dynamic Programming Principle

V∗
t := ess sup

τ≥t
E[Yτ | Ft] = max{Yt,E[V∗

t+1 | Ft]}; τ
∗ := inf{t ≥ 0 | Yt = V∗

t }

Example

Let Y0 := 0, Yt := 1 – 1/t for t ∈ N, Y∞ := 0.

Satisfies (A1): Yt ≤ 1.

Fails (A2): Yt → 1 > 0 = Y∞.

Indeed, no optimal stopping time as Yt < Yt+1.

Note: τ
∗ = ∞ and Yτ∗ = 0 < V∗

t .
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Characterising Optimal Stopping Time

V∗
t := ess sup

τ≥t
E[Yτ | Ft] = max{Yt,E[V∗

t+1 | Ft]}; τ
∗ := inf{t ≥ 0 | Yt = V∗

t }

Lemma

Take any stopping time τ. Under (A1), E[Yτ∧τ∗ ] ≥ E[Yτ].

Stopping whenever τ
∗ says to stop can only improve the expected payoff.
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Characterising Optimal Stopping Time

V∗
t := ess sup

τ≥t
E[Yτ | Ft] = max{Yt,E[V∗

t+1 | Ft]}; τ
∗ := inf{t ≥ 0 | Yt = V∗

t }

Lemma

Take any stopping time τ. Under (A1), E[Yτ∧τ∗ ] ≥ E[Yτ].

Proof

On {τ∗ = t < τ}, Yτ∗ = Yt = V∗
t ≥ E[Yτ | Ft].

Hence,

E[Yτ∧τ∗ ] = E[1{τ∗<τ}Yτ∗ ] + E[1{τ∗≥τ}Yτ]

= E

[ ∞∑
t=0

1{τ∗=t<τ}Yt

]
+ E[1{τ∗≥τ}Yτ]

= E

[ ∞∑
t=0

1{τ∗=t<τ}V
∗
t

]
+ E[1{τ∗≥τ}Yτ]

≥ E

[ ∞∑
t=0

1{τ∗=t<τ}E[Yτ | Ft]

]
+ E[1{τ∗≥τ}Yτ] = E[Yτ].
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Characterising Optimal Stopping Time

V∗
t := ess sup

τ≥t
E[Yτ | Ft] = max{Yt,E[V∗

t+1 | Ft]}; τ
∗ := inf{t ≥ 0 | Yt = V∗

t }

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, τ
∗ is optimal.

Proof

Let τ be an optimal stopping time.

By Lemma 4, τ
′ := τ ∧ τ

∗ must also be optimal.

By Lemma 1, there is a regular τ
′′ : E[Yτ′′ ] ≥ E[Yτ′ ] and τ

′′ ≤ τ
′ ≤ τ

∗. Hence, τ
′′ must

also be optimal.

Finally, by Lemma2, τ′′∨τ
∗ must also be optimal. Note that τ

′′∨τ
∗ = τ

∗ by construction.
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′′ ≤ τ
′ ≤ τ

∗. Hence, τ
′′ must

also be optimal.

Finally, by Lemma2, τ′′∨τ
∗ must also be optimal. Note that τ

′′∨τ
∗ = τ

∗ by construction.
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t and an improvement can be reached)
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It can be shown that τ
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∗∗ ∀ optimal τ.
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Satisticing

Oftentimes DM don’t consider all items (virtually impossible in online shopping...).

DM knows there is a large set of feasible items but doesn’t quite known what they are.
Upon stopping their search, pick best item available.

When to stop searching?

Setup
DM faces a large choice set A with T items.
Parsing through the item list bears a cost c > 0.

Prior about the value of each option Xt
iid∼ F, absolutely continuous, strictly

increasing.

Proposition

Let Mt := maxs≤t Xt and x̄ : c =
∫∞
x̄ (X – x̄) dF(X). Then, τ

∗
T := inf{t ≥ 0 | Mt ≥ x̄} ∧ T is

optimal.
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Satisticing
Solving the Problem (Backwards induction intuition)

At T – 1: stop and get MT–1 – (T – 1)c or continue and get E[MT | FT–1] – Tc.

MT–1 – (T – 1)c ≤ E[MT | FT–1] – Tc =
∫ MT–1
–∞ MT–1 dF(X) +

∫∞
MT–1

X dF(X) – Tc ⇐⇒
c ≤

∫∞
MT–1

(x – MT–1) dF(X). x̄ : c =
∫∞
x̄ (X – x̄) dF(X).

Stop at T – 1 if MT–1 ≥ x̄.
At T –2: stop and getMT–2 – (T –2)c or continue and get E[MT–1 | FT–2] – (T – 1)c.
Suppose MT–2 ≥ x̄. Then upon continuing would stop at T – 1 and get
max{MT–2,XT–1} – (T – 1)c.

Better to stop now and get MT–2 – (T – 2)c if

MT–2 – (T – 2)c ≤ E[MT–1 | FT–2] – (T – 1)c ⇐⇒ c ≤
∫ ∞

MT–2

(X – MT–2) dF(X)

⇐⇒ MT–2 ≥ x̄ (as is by assumption).

Suppose MT–2 < x̄. Then, if it were to end at T – 1 would anyway continue; more so
given the option value.

Conclusion: Stop at T – 2 if MT–2 ≥ x̄.
Induction: τ

∗
T := inf{t ≥ 0 | Mt ≥ x̄} ∧ T is optimal. (handwavy; rigorous proof later.)
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Satisticing

Satisficing solution: DM stops whenever has seen something “good enough”
τ
∗
T = inf{t ≥ 0 | Mt ≥ x̄} ∧ T.

Remark

τ
∗
T = t < T =⇒ Mτ∗T

= Xt.

Stop only if last item seen is best! τ
∗
T = t < T =⇒ Mτ∗T

= Xt.

Proposition

DM chooses Xt if Xt ∧ x̄ > maxs ̸=t Xs ∧ x̄ and only if Xt ∧ x̄ ≥ maxs̸=t Xs ∧ x̄.
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Satisticing

Proposition

DM chooses Xt if Xt ∧ x̄ > maxs ̸=t Xs ∧ x̄ and only if Xt ∧ x̄ ≥ maxs̸=t Xs ∧ x̄.

Proof

If part.

Suppose Xt ∧ x̄ > maxs̸=t Xs ∧ x̄.

Case 1. Xt ≥ x̄.

Then, x̄ > maxs̸=t Xs and DM won’t stop before t because Mt–1 ≤ maxs̸=t Xs < x̄.

At t, the DM stops (Xt ≥ x̄) and chooses t (Xt > Mt–1).

Case 2. x̄ > Xt > maxs̸=t Xs ∧ x̄. Never stop until T; after going through all the items,
choose Xt > maxs̸=t Xs.

Only if part.

Suppose Xt ∧ x̄ < maxs̸=t Xs ∧ x̄. Then Xt is never chosen.
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Satisticing

Proposition
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Satisticing

Satisficing solution: DM stops whenever has seen something “good enough”
τ
∗
T = inf{t ≥ 0 | Mt ≥ x̄} ∧ T.

Remark

τ
∗
T = t < T =⇒ Mτ∗T

= Xt.

Proposition

DM chooses Xt if Xt ∧ x̄ > maxs ̸=t Xs ∧ x̄ and only if Xt ∧ x̄ ≥ maxs̸=t Xs ∧ x̄.

Corollary

E[Xτ∗T
] = E[maxt≤T Xt ∧ x̄].

Dependence on c only through x̄.
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Satisticing

Remark

E[τ∗T ] =
1–F(x̄)T–1
1–F(x̄) .

Proof

SinceP(τ∗T ≥ t) = 1–P(τ∗T ≤ t–1) = 1–1{t≤T}
∑t–1

s=1(1–F(x̄))F(x̄)s–1 = 1–1{t≤T}(1–F(x̄)t–1).

Then, E[τ∗T ] =
∑T

t=1 P(τ∗T ≥ t) = 1–F(x̄)T–1
1–F(x̄) .

Note that
sign( ∂

∂x̄E[τ∗T ]) = sign(F(x̄)+F(x̄)T+1(T–1)–F(x̄)TT) = sign(1+F(x̄)T(T–1)–F(x̄)T–1T) > 0
for F(x̄) ∈ (0, 1).
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Comparative Statics

Remark

(i) ↑ c =⇒ ↓ x̄ =⇒ ↓ E[Xτ∗T
],E[τ∗T ];

(ii) F′ MPS of F =⇒ x̄′ ≥ x̄ (higher option value) =⇒ ↑ E[Xτ∗T
],E[τ∗T ];

(iii) F′(x) = F(x – µ) (shift in mean) =⇒ x̄′ = x̄ + µ

=⇒ E[X′
τ∗T
] = E[Xτ∗T

] + µ, E[τ∗T ] = E[τ∗T
′];

(iv) x̄ remains constant wrt T =⇒ so does E[Xτ∗T
],E[τ∗T ].
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Setup and Assumptions

{X0,X1,X2, ...} rv whose joint distribution is assumed to be known; write Xt := (Xℓ)ℓ=1,...,t.

Sequence of functions xt 7→ yt(xt) ∈ R; write Yt := yt(xt).

Filtration F = {Ft} = σ(Xt).

Adapted payoff process {Yt}; terminal Y∞ (possibly –∞).

Stopping time τ: {τ ≤ t} ∈ Ft for all t; feasible set T.

Truncation: T terminal time; Stopping times: TT = {τ ≤ T}.

Objective: maximise value of Y by adequately choosing stopping time,
V(T)
0 := sup

τ∈TT

E[Yτ].

Note: T finite ̸ =⇒ TT finite (not finite in general)

Backward Induction: V(T)
T := YT ; V

(T)
t := max{Yt,E[V(T)

t+1 | Ft]}, t = T – 1,T – 2, ...,0.

Guarantees existence of optimal stopping time.

For truncation in problems when continuing forever is valuable, replace
Y(T)
T := max{YT ,E[Y∞ | FT ]}
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Simple Stopping Rules

One-Stage Look-Ahead Stopping Time: τ1-sla := inf{t ≥ 0 | Yt ≥ E[Yt+1 | Ft]}.
Myopic stopping: stop as soon as it doesn’t pay off continuing for one more period.

k-Stage Look-Ahead Stopping Time: τk-sla := inf{t ≥ 0 | Yt ≥ E[V(t+k)
t+1 | Ft]}.

Stop if continuing for at most k more periods isn’t worthwhile.
Naive: not considering that next period will consider the following k periods
instead of k – 1.

Note: Yt ≥ E[V(t+k)
t+1 | Ft] ⇐⇒ Yt ≥ V(t+k)

t ∵ V(t+k)
t = max{Yt,E[V(t+k)

t+1 | Ft]}.

One-Time Look-Ahead Stopping Time: τ1-tla := inf{t ≥ 0 | Yt ≥ supℓ>0 E[Yt+ℓ | Ft]}.
Continue iff ∃ℓ > 0 : committing to continue ℓ periods more is better than stopping.
Naively committed: t + ℓ may decide to continue again.

τ1-sla ≤ τ1-tla, τk-sla ≤ τ
∗.

Moreover, E[Yτ1-sla ] ≤ E[Yτk-sla ],E[Yτ1-sla ] ≤ E[Yτ∗ ].
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Monotone Problems

1-sla is optimal in selling a house, satisficing.

When is myopic stopping optimal?

Definition

Let At := {Yt ≥ [Yt+1 | Ft]}. The stopping problem is monotone if At ⊆ At+1 a.s. for any
t = 0, 1, ...,T – 1, where T ∈ N ∪ {∞}.

Theorem

In finite horizon monotone stopping problems, τ1-sla is optimal.
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Monotone Problems

Theorem

In finite horizon monotone stopping problems, τ1-sla is optimal.

Proof

Let horizon be T. Earliest optimal stopping τ
∗ := inf{t ≥ 0 | Yt ≥ E[V(T)

t+1 | Ft]}, with
V(T)
T+1 = –∞ and V(T)

T = YT .

Bwd induction: V(T)
t = max{Yt,E[V(T)

t+1 | Ft]}.

Fix t < T. Note τ1-sla > t =⇒ τ
∗ > t. Suppose τ1-sla = t.

Since {τ1-sla = t} = {Yt ≥ E[Yt+1 | Ft]} = At and problem is monotone,
YT–1 ≥ E[YT | FT–1] =⇒ YT–1 = V(T)

T–1;
YT–2 ≥ E[YT–1 | FT–2] = E[V(T–1)

T–1 | FT–2] =⇒ YT–2 = V(T)
T–2;

· · ·
Yt ≥ E[Yt+1 | Ft] = E[V(T)

t+1 | Ft] =⇒ Yt = V(T)
t .

Hence, τ
∗ = t.
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Approximating Infinite Horizon by Finite Horizon

Goal: WT use finite horizon result to understand when myopic stopping is optimal in
infinite horizon problem.

Standing assumptions
(A1) E

[
supt≥0 Yt

]
< ∞.

(A2) limt→∞ E[Yt] ≤ Y∞ a.s.
(A3) limt→∞ Yt = Y∞ a.s.

Definition

{Xt} are uniformly integrable if supt E[|Xt|1{|Xt |>a}] → 0 as a → ∞.

Conditions for uniform integrability:
1. limt→∞ E[|Xt|] = 0, then {Xt}t is uniform integrable.
2. limt→∞ E[|Xt|] = ∞, then {Xt}t is not uniform integrable.
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Approximating Infinite Horizon by Finite Horizon

Standing assumptions: (A1) E
[
supt≥0 Yt

]
< ∞. (A3) limt→∞ Yt = Y∞ a.s.

Theorem

Assume (A1) and (A3). If Zt := supj≥t Yj – Yt is uniformly integrable, then V(T)
0 → V∗ as

T → ∞.

Proof

Let AT := {T < τ
∗ < ∞}.

0 ≤ V∗ – V(T)
0 ≤ E[Yτ∗ – Yτ∗∧T ] = E[1{AT }(Yτ∗ – YT)] + E[1{τ∗=∞}(Y∞ – YT)]

≤ E[1{AT }ZT ] + E[(Y∞ – YT)
+].
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Approximating Infinite Horizon by Finite Horizon
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Proof

Let AT := {T < τ
∗ < ∞}. 0 ≤ V∗ – V(T)

0 ≤ E[1{AT }ZT ] + E[(Y∞ – YT)+].

1st term goes to zero.
Let qT = P(AT) → 0. By uniform integrability of ZT ,

E[1{AT }ZT ] = E[1{AT }1{ZT≤q–1/2
T }ZT ] + E[1{AT }1{ZT>q–1/2

T }ZT ] ≤ q1/2
T + E[1{ZT>q–1/2

T }ZT ] → 0.

Let pT = P(Y∞ – YT > qT)–1/2 → ∞.
By uniform integrability of ZT , E[1{AT }ZT ] = E[1{AT }1{ZT≤qT }ZT ] + E[1{AT }1{ZT>qT }ZT ] ≤
qTP(AT) + E[1{ZT>qT }ZT ] → 0.
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Approximating Infinite Horizon by Finite Horizon

Standing assumptions: (A1) E
[
supt≥0 Yt

]
< ∞. (A3) limt→∞ Yt = Y∞ a.s.

Theorem

Assume (A1) and (A3). If Zt := supj≥t Yj – Yt is uniformly integrable, then V(T)
0 → V∗ as

T → ∞.

Corollary

Assume (A3). If Yt := Bt–Ct, where E[supt |Bt|] < ∞ and Ct ≥ 0 and nondecreasing a.s.,
then (A1) holds and V(T)

0 → V∗.

Proof

E
[
supt≥0 Yt

]
≤ E

[
supt≥0 |Bt|

]
< ∞ =⇒ (A1) holds.

For j ≥ t, Yj – Yt = Bj – Bt + (Ct – Cj) ≤ Bj – Bt.

0 ≤ Zt := supj≥t Yj – Yt ≤ 2 supt |Bt| =: B′.

E[B′] < ∞, hence E[1{|Zt |>a}|Zt|] ≤ E[1{B′>a}B
′] → 0 and Zt is uniformly integrable.
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Stopping and Choosing: Selling a House

Accept best offer Mt or continue waiting with a per period cost of c.

Interpretation:
Selling a house/asset: offers Xt ≥ 0 come in, council tax/management fees c;
Yt := Mt – ct, where Mt := maxs≤t Xt.

Same as satisficing, just take T = ∞.

Xt ∼ F, iid; F continuous, strictly increasing, with finite 2nd moment.
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Stopping and Choosing: Selling a House

Accept and get Mt – tc;
Refuse and pay c and wait for one more offer tomorrow.

Markov problem; state variable = Yt

Set up Bellman equation; V(Yt) = max{Yt,E[V(Yt+1)] – c}.

Define Vt := V(Yt); E[V(Yt)] now depends on t!
Simple derivation from before no longer works...

But this is a monotone problem:
Yt ≥ E[Yt+1 | Ft] ⇐⇒ Yt ≥ E[max{Yt,Xt+1 – tc} | Ft] – c ⇐⇒ c ≥

E[(X0 – (Yt + tc))+ | Ft].
Since Yt + tc is increasing in t, {Yt ≥ E[Yt+1 | Ft]} ⊆ {Yt+ℓ ≥ E[Yt+ℓ+1 | Ft+ℓ]} for any
t ≥ 0 and ℓ ≥ 0.

Check conditions for approximation: (A1), (A3), and UI...
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Stopping and Choosing: Selling a House

Theorem

Let X,X1,X2, ..., be iid, c > 0, and Yt = Xt – tc or Yt = maxs≤t Xs – tc.

If E[X+] < ∞, then supt Yt < ∞ a.s. and Yt → –∞ a.s.

If E[(X+)2] < ∞, then E[supt Yt] < ∞.

Proof

See the proof to Theorem 1 in Ferguson (2008, Ch. 4, Appendix).

(A1): E[X+] < ∞ =⇒ E
[
supt≥0 Yt

]
< ∞. Check.

(A3): Define Y∞ := –∞. E[X+] < ∞ =⇒ Yt → Y∞. Check.

Uniform integrability: Zt := supj≥t Yj – Yt = supj≥t(Mj – Mt)+ – jc.

Note E[Zt] = E
[
E
[
supj≥0 M′

j – jc | Mt

]]
where M′

j := maxs≤j X′
s and X′ := (X – Mt)+.

E[(X′+)
2
| Mt] = E[X′2 | Mt] < ∞ =⇒ E[supj≥0 M′

j – jc | Mt] < ∞ =⇒ E[Zt] < ∞.

(X – Mt)+
d→ δ0 as t → ∞ =⇒ E[Zt] → 0.

=⇒ supt E[Zt] < ∞ =⇒ supt E[Zt1{Zt>a}] → 0 as a → ∞. Check.

Conclude 1-sla is still optimal with infinite horizon!
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Stopping and Choosing: Selling a House

Theorem
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Stopping and Choosing: Selling a House

Selling a house with TIOLI offers:
Yt := Xt – tc, Xt ∼ F iid.
This is not a monotone problem!

Selling a house with distributional uncertainty:
Yt := Mt – tc, Xt ∼ F(· | θ) iid, but θ unknown, θ ∼ P.
Let E[1{Xt≤·} | Ft] = Ft and suppose that Ft = α0

α0+tF0 + t
α0+t F̂t, where F̂t is ECDF,

α0 > 0, and F0 has finite 2nd moment. (E.g., Dirichlet process prior.)
This is a monotone problem and 1-sla is still optimal. Prove it!
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The Diamond (1971 JPE) Model (adapted)
Foundational model of price search.

Environment
N identical sellers; homogenous good; zero marginal cost (normalisation).
Identical mass 1 of consumers; unit demand (generalises).
Known valuation v > 0. Value from purchase at price p̂ is v – p̂.

Timing
Sellers set prices p = {pn} ⊂ R+.
Consumer knows empirical distribution of prices,
but not which seller sets which price.

Consumer learns price of seller n only by visiting seller.
Visit bears a cost c > 0. (visit, browse, ask for a quote, etc.)

Sellers selected to visit uniformly at random (among those not yet visited).
Following each visit, consumer can either choose to buy good from one of the
sellers they visited or to learn the price of another seller.

Key Features
Uncertainty over prices, not match values.
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Solving for Equilibrium Prices

Notation
nt ∈ {1, ...,N}: seller sampled at t.
St := {n1, ..., nt}: sellers sampled by t (consideration set).
Nt := {1, ...,N} \ St: sellers not yet sampled by t.

nt ∼ U(Nt–1): sellers sampled uniformly at random.
pt := pnt ∼ Ft: price of sampled seller.
Xt := v – pt; Mt := maxs≤t v – ps; Yt := Mt – tc; Vt := ess supτ≥t E[Yτ | Ft].
Fix prices and label sellers: p = p1 ≤ · · · ≤ pN = p.
τ: optimal stopping by consumer.
Note: Yt = v – p – tc =⇒ τ ≤ t.

Claim

p = p ≤ v.
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Solving for Equilibrium Prices

Claim

p = p ≤ v.

Suppose not. If p > v, then seller N has strict incentive to lower price to v – ε for some
small enough ε > 0. Then p = p1 < pN = p.

WTS that seller 1 can increase profits by increasing the price.

Prob. purchase 1 = P(nt+1 = 1 and τ > t).

Case 1. At {nt+1 = 1} ∩ {τ ≤ t}, seller 1 gets zero, so increasing its price does not harm
profits.

Case 2. At {n1 = 1}, τ = 1. Seller 1 can increase price by c/2 while still deterring further
search:
continuation value is at best v – p – 2c < v – (p + c/2) – c = value of stopping and
paying p + c/.

Case 3. At {nt+1 = 1} ∩ {τ > t} t ≥ 1, it must be that Mt < v – p.
τ > t implies E[Vt+1 | Ft] – Yt =: ε(Mt; p) > 0.
More: conditional on τ > t, ∃ finitely many values possible for Mt ∈ M̂ := {v – p̂, p̂ ∈
{p1, ..., pN} \ {p}}.
Hence, seller 1 can increase the price by ε

′ = minM∈M̂ ε(M; p)/2 without deterring
further search and increase profits.

Increasing price never reduces profits for seller 1 and as Case 2 occurs wp> 0, found
strictly profitable deviation.
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Solving for Equilibrium Prices

Claim

p = p = v.

Suppose p = p < v. WTS that seller 1 can increase profits by increasing the price.

Purchase 1 only if n1 = 1.

Case 1. At {n1 ̸= 1}, seller 1 gets zero, so increasing its price does not harm profits.

Case 2. At {n1 = 1}. Seller 1 can increase price by c/2while still deterring further search:
continuation value is v – p – 2c < v – (p + c/2) – c = value of stopping and paying
p + c/.

Increasing price is strictly profitable deviation.
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Diamond’s Paradox

Implications
“Who cares about search costs in the digital age? Such costs are minute!”

The Paradox

Any arbitrarily small search cost (c > 0) causes the market outcome to jump discontin-
uously from competitive Bertrand outcome (p = 0) to full monopoly outcome (p = V)!
Slightest search friction destroys all price competition.
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Some jargon:
With recall: possibility of choosing any of the samples thus far. Without recall: can
only choose current element or sample again.

Without replacement: samples are all distinct. Without replacement: can resample
previously observed sample.

Undirected search: fixed order. Directed search: choose the order (more next
lecture).
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