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Overview

1. Why Economic Theory



Economic Theory

Goals
Studies behaviour
Understand how different forces interact and lead to different outcomes
Positive view: Explain patterns, make predictions
Normative view: Prescribe behaviour

Examples: consumer demand and firm pricing, student applications to university,
voting, technology adoption, hospital residency programsn management

(Not particular to theory: in essence, all science strives for generality)

Models as maps, simplified description of reality
Behavioural implications = Empirical content

This course
Develop building blocks
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Overview of the Course

This term: how people make decisions when faced with uncertainty, limited
information, and evolving opportunities

Topics

1. Stopping: accepting a job offer.
Stopping and choosing: selling a house.
Learning and Choosing: buying a computer.
Searching: shopping for clothes
Social Learning: checking neighbours’ crop yields.
Remembering: ordering at a restaurant.

N o gk W

Learning in Games: adjusting prices.
8. Common Learning: attacking a currency.

Very unlikely that we'll cover all the topics.
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Overview of the Course

Lectures provide fundamentals.

Presentations:
Every week starting from next week.
Everyone required to prepare a 15 minute presentation on an assigned paper.
One person will be selected at random to present.
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Overview

3. Stopping: Searching for a Job
— Job Search
— Job Search with Discounting



Job Search

Accept offer Y¢, continue searching with a per period cost of c.
Interpretation:
Job search (McCall 1970 QJE): TIOLI salary offers Y;, cost to search c.
Selling a house/asset: TIOLI offers Y;, council tax/management fees c.
Y; ~ F, iid; F continuous, strictly increasing.
Assume E[1y,>qYil < o0; Yo =0; P(Y;>¢) > 0.

Gongalves (UCL) Stopping



Job search

Accept and get Y; (present value of getting same wage forever);
Refuse and get z and face same problem tomorrow

Markov problem; state variable = Y;
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Job search

Accept and get Y; (present value of getting same wage forever);
Refuse and get z and face same problem tomorrow

Markov problem; state variable = Y;

Set up Bellman equation; V(Yy) = max{Y, E[V(Y¢1)] — ¢}
(iid = stationary problem)

Value: V(Y})
(handwavy: this presumes a solution and we don't know yet if/why we can do this)

Define V; := V(Y;) and V = E[V(Y;)]
Definej =V -c
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Job search

Accept and get Y; (present value of getting same wage forever);
Refuse and get z and face same problem tomorrow

Markov problem; state variable = Y;

Set up Bellman equation; V(Yy) = max{Y, E[V(Y¢1)] — ¢}
(iid = stationary problem)

Value: V(Y})
(handwavy: this presumes a solution and we don't know yet if/why we can do this)

Define V; := V(Y;) and V = E[V(Y;)]

Definej =V -c

Take expectations and get j + ¢ = E[max{Y;,#}] < c=E[(Y;-§)]= fyooyd/—"(y)
F continuous and strictly increasing: 31y : ¢ = E[(Y; - §)*]

y: reservation value

Optimal rule: continue if and only if Y; < ¥
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Job Search with Discounting

Accept offer Y;, continue searching and receive z; discount factor g € (0,1).
Interpretation:
Job search: TIOLI salary offers Y;, unemployment subsidy z, cost of time B.
Selling a house/asset: TIOLI offers Y, rent acrued z, interest rate r, discount factor
B=(1+n"".
Y: ~ F, iid; F continuous, strictly increasing.
Assume E[1y,>qYil < 00; Yo =0; P(Y;>¢) > 0.
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Job Search with Discounting

Define ¥; = %Yz (present value).

Accept and get Y; forever = Accept and get V;
Refuse, get z, and face same problem tomorrow but discounted by B.

Markov problem; state variable = \A/t
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Job Search with Discounting

Define ¥; = %Yz (present value).

Accept and get Y; forever = Accept and get V;
Refuse, get z, and face same problem tomorrow but discounted by B.

Markov problem; state variable = \A/t
Set up Bellman equation; V(¥;) = max{¥;, z + BE[V(Yys1)]}
Value: V(Vy)

Brief refresher...
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Refresher

Definition
T : X — Xis a contraction on (X, d) if 38 € [0,1) : d(T(x), T(y)) < &d(x,y) Vx,y € X.
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Refresher

Definition
T : X — Xis a contraction on (X, d) if 38 € [0,1) : d(T(x), T(y)) < &d(x,y) Vx,y € X.

{ Banach Fixed-Point Theorem

Let (X, d) be a non-empty complete metric space and T a contraction mapping on (X, d).
Then, Ix* € X : T(x*) = x*. Moreover, for any xg € X, x* = limp—oo T"(xg), where
T =ToT and T = T.
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Refresher

Definition
T : X — Xis a contraction on (X, d) if 38 € [0,1) : d(T(x), T(y)) < &d(x,y) Vx,y € X.

{ Banach Fixed-Point Theorem

Let (X, d) be a non-empty complete metric space and T a contraction mapping on (X, d).
Then, Ix* € X : T(x*) = x*. Moreover, for any xg € X, x* = limp—oo T"(xg), where
T =ToT and T = T.

Proof
Letxn = T"(xg). Then d(xn+1,Xn) = d(T"(xq), T"(xg)) < 8"d(x7,xg), hence {xn}n is a Cauchy
sequence.

(X, d) complete = Cauchy sequences converge = xp converges to some x* = T(x™).

Take any yo € X\ {xo}; define yn := T"(yo); yn — y*.
If x* #y*, then d(y*, x*) = d(T"(y*), T"(x*)) = §"d(y*, x*) < d(y*,x*), a contradiction.
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Refresher

{ Blackwell’s Conditions for Contraction Mapping

Let B(X) denote the set of bounded real functions on some nonempty set X endowed
with the sup-metric deo. Suppose T : B(X) — B(X) satisfies (i) Vf,g € BX) : f > g —
T(f) > T(g),and (i) 38 € [0,1) s.t. T(f + &) < T(f) + 8o Vf € B(X) and Vo € R+. Then T
is a contraction.
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Refresher

{ Blackwell’s Conditions for Contraction Mapping

Let B(X) denote the set of bounded real functions on some nonempty set X endowed
with the sup-metric deo. Suppose T : B(X) — B(X) satisfies (i) Vf,g € BX) : f > g —
T(f) > T(g),and (i) 38 € [0, 1) s.t. T(f + o) < T(f) + 8o Vf € B(X) and Voo € R+. Then T
is a contraction.

Proof

Foranyf,g € B(X) and x € X, f(x) — g(x) < If(x) - g(X)I < do(f, 9).
() and (ii): f < g+duo(f,g) = T(f) < T(q) + 8duo(f, )

and, symmetrically, T(g) < T(f) + 8doo(f, g).

This implies doo (T(f), T(g)) < 8deo(f, 9).
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Job Search with Discounting

Define ¥; = %Yt (present value).

Accept and get Y; forever = Accept and get ¥;

Refuse, get z, and face same problem tomorrow but discounted by f.

Markov problem; state variable = Vt

Set up Bellman equation; V(¥;) = max{¥;, z + BE[V(Ye1)]}
Value: V(¥;), well-defined

Define V; := V(¥;) and V = E[V(Y})]

Gongalves (UCL) Stopping



Job Search with Discounting

Define ¥; = %Yt (present value).

Accept and get Y; forever = Accept and get ¥;
Refuse, get z, and face same problem tomorrow but discounted by f.

Markov problem; state variable = Vt
Set up Bellman equation; V(¥;) = max{¥;, z + BE[V(Ye1)]}
Value: V(¥;), well-defined
Define V; := V(¥;) and V = E[V(Y})]
Take expectations and get
V = Elmax{V;,z+BV)] < V(1-B)=z+E[Y; - (z+BV))"] = fzoffs\‘/ ﬁy dr(y)
F continuous: 3V : V(1 - B) = 2+ E[(V; — (z+ BV))']
7= (1-B)(z + BV): reservation value

Optimal rule: continue if and only if Y; < ¥

Gongalves (UCL) Stopping



Overview

4. Optimal Stopping: Existence and Regularity
— General Setup
— Regular Stopping Times
— Existence
— Characterisation



Going Beyond the Basic Setting

Y may not be iid
- Depend on time of unemployment
- Result from underlying dynamic game between recruiting firms
- Uncertain market conditions (hence perception of F evolves over time depending
on past Yy)
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Going Beyond the Basic Setting

Y may not be iid
- Depend on time of unemployment
- Result from underlying dynamic game between recruiting firms
- Uncertain market conditions (hence perception of F evolves over time depending
on past Yy)

Introduce general tools to tackle the problem
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Setup and Assumptions

{X0, X1, X2, ...} rv whose joint distribution is assumed to be known; write X' := (Xe)p=1

Sequence of functions x! — y;(x') € R; write Y; := yy(x}).
Filtration F = {F} = o(XY).

Adapted payoff process {Y}; terminal Yoo (possibly —oo).
Stopping time t: {t < t} € F; for all t, feasible set T.

Objective: maximise value of Y by adequately choosing stopping time, sup E[Yz].
weT
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Setup and Assumptions

{X0, X1, X2, ...} rv whose joint distribution is assumed to be known; write X' := Xe)g=1,..t-
Sequence of functions x! — y;(x') € R; write Y; := yy(x}).

Filtration F = {F} = o(XY).

Adapted payoff process {Y}; terminal Yoo (possibly —oo).

Stopping time t: {t < t} € F; for all t, feasible set T.

Objective: maximise value of Y by adequately choosing stopping time, sup E[Yz].
weT

Two questions:
1. When is there actually an optimal stopping time? (Is sup actually a max?)
2. If so, what does it look like?

Previous applications: guess and verify or use specific structural assumptions.
Now: use very general assumptions.
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Setup and Assumptions

{X0, X1, X2, ...} rv whose joint distribution is assumed to be known; write X' := (Xe)g=1,

Sequence of functions x! — y;(x') € R; write Y; := yy(x}).
Filtration F = {F} = o(XY).

Adapted payoff process {Y}; terminal Yoo (possibly —oo).
Stopping time t: {t < t} € F; for all t, feasible set T.

Objective: maximise value of Y by adequately choosing stopping time, sup E[Yz].
weT

Two questions:
1. When is there actually an optimal stopping time? (Is sup actually a max?)
2. If so, what does it look like?

Previous applications: guess and verify or use specific structural assumptions.

Now: use very general assumptions.
Standing assumptions
(A1) E[sup;q Vi) < oc.
(A2) limi_y o0 E[Y4] < Yoo a.s.
Note: (A1) implies sup, E[Yz] < oo
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Regular Stopping Times

Definition (Regularity)

tisregularif forall t, E[Yz | 7{] > Yy a.s. on{t > t}.
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Regular Stopping Times

{ Definition (Regularity)

tisregularif forall t, E[Yz | 7{] > Yy a.s. on{t > t}.

{ Lemma 1 (Regularity is wloo)

Under (A1), for any stopping time t there exists a regular stopping time p < t with
E[Ypl > ElYz].
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Regular Stopping Times

{ Definition (Regularity)
tisregularif forall t, E[Yz | 7{] > Yy a.s. on{t > t}.

{ Lemma 1 (Regularity is wloo)

Under (A1), for any stopping time t there exists a regular stopping time p < t with
E[Ypl > ElYz].

{ Lemma 2 (Regularity is closed under V)

Under (A1), if tand p are regular, then & := TtV p is regular and E[Yg] > max{E[Yz], E[Yp]}.
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Proof of Lemma 1 (Regularity wloo)
Proof

Fix T with E[|Yz[] < co (true by (A1) since Yz < supg Ys).



Proof of Lemma 1 (Regularity wloo)
Proof

Fix T with E[|Yz[] < co (true by (A1) since Yz < supg Ys).
Define Z; := E[Yz | Ff]and let p := inf{t > 0: Z; < Yy
On{p >t} Y¢ < Z; = E[Yx | F3], so p is regular.
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Proof of Lemma 1 (Regularity wloo)

Proof

Fix T with E[|Yz[] < co (true by (A1) since Yz < supg Ys).

Define Z; := E[Yz | Ff]and let p := inf{t > 0: Z; < Yy

On{p >t} Y¢ < Z; = E[Yx | F3], so p is regular.

On{p=th Yo=Y >Zi =E[Ys | Ft]. On{p =00} Yp =Y = Yz as.
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Proof of Lemma 1 (Regularity wloo)

Proof

Fix T with E[|Yz[] < co (true by (A1) since Yz < supg Ys).

Define Z; := E[Yz | Ff]and let p := inf{t > 0: Z; < Yy

On{p >t} Y¢ < Z; = E[Yx | F3], so p is regular.

On{p=th Yo=Y >Zi =E[Ys | Ft]. On{p =00} Yp =Y = Yz as.
Hence

EDVpl = > Ellipo Vil + Ellipoqy Yool
t=0

> Z E['I{pzt}E[Yr | Fll + E[1(p=oo}YT]
0

~
11

M

Ellp= Y<l + Ellip=oc) Vsl
t=

=

X o

].

Suppose —(p < 1); note that, at {p > t© = t}, Z; = Z¢ = Yz < Z;, a contradiction.
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Proof of Lemma 2 (Regularity is closed under V)
Proof

1. Proving & is regular:

E>t={=1>00Uf=p>1



Proof of Lemma 2 (Regularity is closed under V)
Proof

1. Proving & is regular:

E>t=€=1>u{L=p>1
On{§=1>1t},ElVe | il =E[Yz | 7] > Yyas. - tisregular.



Proof of Lemma 2 (Regularity is closed under V)

Proof

1. Proving & is regular:
E>t=€=1>u{L=p>1
On{&=1>thE[Ve | Fil = ElYz | Fi] > Yras. -~ tisregular.
Symmetrically, on {§ = p > t}, E[Vg | F¢l = E[Yp | Fi] > Yrass. - pisregular.



Proof of Lemma 2 (Regularity is closed under V)

Proof

1. Proving & is regular:

E>t={E=1>u{=p>1}

On{&=1>thE[Ve | Fil = ElYz | Fi] > Yras. -~ tisregular.

Symmetrically, on {§ = p > t}, E[Vg | F¢l = E[Yp | Fi] > Yrass. - pisregular.
2. Proving E[Yg] > E[Yq] V E[Ypl:

on{E=t=1, Y =Ye = Y.



Proof of Lemma 2 (Regularity is closed under V)
Proof

1. Proving & is regular:

E>t={E=1>u{=p>1}

On{&=1>thE[Ve | Fil = ElYz | Fi] > Yras. -~ tisregular.

Symmetrically, on {§ = p > t}, E[Vg | F¢l = E[Yp | Fi] > Yrass. - pisregular.
2. Proving E[Yg] > E[Yq] V E[Ypl:

on{E=t=1, Y =Ye = Y.

On{E=p>t=t,&=pandE[Ye | F] =ElVp | Fil > Yt = Yz as.



Proof of Lemma 2 (Regularity is closed under V)
Proof

1. Proving & is regular:
E>t={E=1>u{=p>1}
On{&=1>thE[Ve | Fil = ElYz | Fi] > Yras. -~ tisregular.
Symmetrically, on {§ = p > t}, E[Vg | F¢l = E[Yp | Fi] > Yrass. - pisregular.
2. Proving E[Yg] > E[Yq] V E[Ypl:
on{E=t=1, Y =Ye = Y.
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Proof of Lemma 2 (Regularity is closed under V)
Proof

1. Proving & is regular:

E>t={E=1>u{=p>1}

On{&=1>thE[Ve | Fil = ElYz | Fi] > Yras. -~ tisregular.

Symmetrically, on {§ = p > t}, E[Vg | F¢l = E[Yp | Fi] > Yrass. - pisregular.
2. Proving E[Yg] > E[Yq] V E[Ypl:

on{E=t=1, Y =Ye = Y.

On{E=p>t=t,&=pandE[Ye | F] =ElVp | Fil > Yt = Yz as.

Hence

E[Yg] = Z E[‘I{T:t}yﬁ] + E[1(r:oo}yi] = Z E[1{T=T}E[Y§ | ]:t]] + E[1(r=oo}yi]

t=0 t=0
> E[‘I(th) Yzl + E[1{1:OO}YT] = E[Yx].
t=0

By a symmetric argument, E[Yg] > max{E[Yz], E[Yp]}.
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Theorem (Existence)
Under (A1) and (A2), there is a regular t such that E[Yz] = supyct E[p.

Proof

Take the case V* := sup, et E[Vp] > —oo.
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Theorem (Existence)

Under (A1) and (A2), there is a regular t such that E[Yz] = supyct E[p.

Proof

Take the case V* = supyer E[Yp] > —c0.
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Theorem (Existence)

Under (A1) and (A2), there is a regular t such that E[Yz] = supyct E[p.

Proof

Take the case V* = supyer E[Yp] > —c0.
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Existence

Theorem (Existence)

Under (A1) and (A2), there is a regular t such that E[Yz] = supyct E[p.

Proof

Take the case V* = supyer E[Yp] > —c0.

By definition of sup, 3 sequence 1y, %y, ... such that E[Y; ] — V*.

Define regularised pn = inf{t > 0 : E[Y; | F] < Y3} let 1y := max{ps, p2, ... pn}, regular.
By the lemmas, V* > E[Yr,] > max,=1_, E[Yp,] > E[Yz ] — V*.

Define Too = SUPen Ph- Th POINtwise increasing = pointwise converges to Teo.
Moreover, lim supp_, o Y1, < Yz a.s. (from (A2)).

Note: by construction, E[lim sup,, Y<,] < E[Yz__]. Since Yz, < sup, Yn, by Fatou's lemma

and (A1), Elliminfr— oo SUPy Ym = Ya,] < liminfr—oo ElSUPy, Ym = Yr,] = V* =
[im SUPp_s o0 ElYz,] < Ellim sup,_, oo Ya] < ElVz .

Conclude: V* = suppet E[Yp] > E[Yr ] > V™.
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Assumptions

Example

Let X; ~Bernoulli(1/2) iid; Yg := 0, Yy = (2' = ) [T}, X¢ fort € N, Yoo := 0.

Fails (A1): Note supy<; Yy = 2€ = 1 with probability 2~**" for k = 0,1,...,t - 1and with
probability 2" for k = t. Hence Elsup; Y] = 335520 - )27 = o0,

Satisfies (A2): Y; — 0 a.s.

Indeed, no optimal stopping time. Conditional onreachingtwith Y; >0 <= HTH Xo =
1, then don't want to stop: Y; = 20 = 1< 2! =1/2 = (1/2)(2"" = 1) = E[Y;11Y; > 0).
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Assumptions

[ Example

LletYg:=0,Y;:=1-1/tfort €N, Y = 0.
Satisfies (A1): Yy < 1.
Fails (A2): Y =+ 1>0 = Y.

Indeed, no optimal stopping time as Y; < Yi1.
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Dynamic Programming Principle

Want something like Bellman equation/DPP: stop today or continue assuming optimal
stopping from then on

Need some definitions first...
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Dynamic Programming Principle

Want something like Bellman equation/DPP: stop today or continue assuming optimal
stopping from then on

Need some definitions first...

Definition

Let (X;);e7 be a collection of rv. Z rv is essential supremum of (Xi)ie7, Z = €SS supset X,
if () P(Z > X;) = 1Vt € T (‘probabilistic upper bound’), and (ii) VZ' : P(Z/ > X;) = 1
vt € T,P(Z' > Z) = 1 (smallest probabilistic upper bound).
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Dynamic Programming Principle

Want something like Bellman equation/DPP: stop today or continue assuming optimal
stopping from then on

Need some definitions first...

Definition

Let (X;);e7 be a collection of rv. Z rv is essential supremum of (Xi)ie7, Z = €SS supset X,
if () P(Z > X;) = 1Vt € T (‘probabilistic upper bound’), and (ii) VZ' : P(Z/ > X;) = 1
vt € T,P(Z' > Z) = 1 (smallest probabilistic upper bound).

Lemma 3

Let (X¢)teT be any collection of rv.
An essential supremum always exists.
Furthermore, 3 a countable C C T : supyce Xt = €SS supset Xt.
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Dynamic Programming Principle

Want something like Bellman equation/DPP: stop today or continue assuming optimal
stopping from then on

Need some definitions first...

Definition

Let (X;);e7 be a collection of rv. Z rv is essential supremum of (Xi)ie7, Z = €SS supset X,
if () P(Z > X;) = 1Vt € T (‘probabilistic upper bound’), and (ii) VZ' : P(Z/ > X;) = 1
vt € T,P(Z' > Z) = 1 (smallest probabilistic upper bound).

Lemma 3

Let (X¢)teT be any collection of rv.
An essential supremum always exists.
Furthermore, 3 a countable C C T : supyce Xt = €SS supset Xt.

LetU~ U(0,1), T =[0,1], and X; = T(o=py. SUPte7 Xt = 17 €SSSUPs7 Xp = 0.
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Regularity from T Onward

Notation:
X>Y'=PX>Y)=1
X >YonA =P{X > Y}NA) = P(A).
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Regularity from T Onward

Notation:
XK>Y'=PX>Y)=1
X >YonA =P{X > Y}NA) = P(A).

Definition (Regularity from T onward)

T > Tisregular from T onward if forallt > T, E[Y: | 7¢] > Y+ a.s. on {t > t}.
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Regularity from T Onward

Notation:
X>Y'=PX>Y)=1
X >YonA =P{X > Y}NA) = P(A).

Definition (Regularity from T onward)

T > Tisregular from T onward if forallt > T, E[Y: | 7¢] > Y+ a.s. on {t > t}.

{ Lemma 1’ (Regularity is wloo)

Under (A1), for any stopping time © > T there exists a regular stopping time from T
p > T such that on p < t with E[Yp] > E[Yz].
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Regularity from T Onward

Notation:
X>Y'=PX>Y)=1
X >YonA =P{X > Y}NA) = P(A).

Definition (Regularity from T onward)

T > Tisregular from T onward if forallt > T, E[Y: | 7¢] > Y+ a.s. on {t > t}.

{ Lemma 1’ (Regularity is wloo)

Under (A1), for any stopping time © > T there exists a regular stopping time from T
p > T such that on p < t with E[Yp] > E[Yz].

{ Lemma 2’ (Regularity is closed under V)

Under (A1),ift > Tand p > T are regular from T onward, then & := tV p is regular from
T onward and E[Y¢] > max{E[Yz], E[Yp]}.
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Dynamic Programming Principle
Define:
V{ = esssupE[Yz | Fi]
>t

(optimise from t onward)
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Dynamic Programming Principle

Define:

V{ = esssup E[Yz | il
>t

(optimise from t onward)

Theorem (Dynamic Programming Principle)
Under (A1), Vi = max{Yy, E[V}}; | Fil}.
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>t

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), Vi = max{Y, E[V},; | ).

Proof

1. WTS V< max{Y, EIV5i, | Fi.
Take any stopping time 1. On {t > t}, E[Yz | Fy] < Vi
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Define:

V{ = esssup E[Yz | il
>t

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), Vi = max{Y, E[V},; | ).

Proof

1. WTS V< max{Y, EIV5i, | Fi.
Take any stopping time 1. On {t > t}, E[Yz | Fy] < Vi
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Dynamic Programming Principle

Define:

V{ = esssup E[Yz | il
>t

(optimise from t onward)

Theorem (Dynamic Programming Principle)
Under (A1), Vi = max{Yy, E[Vj;q | Fil}.

Proof

1. WTS Vi < max{Yt, E[Vjiy | Fi}.
Take any stopping time 1. On {t > t}, E[Yz | Fy] < Vi
= E[Vz | F] = E[E[Vz | Fr] | F] < EIVi | AL
= ElVe | Fil = Yooy Yt + Voo ElYz | il < max{Yy, EV{y | Fil}
— V§ < max{Yy,EIV} | Fil)
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Dynamic Programming Principle

Define:
V{ = esssup E[Yz | il
>t
(optimise from t onward)

Theorem (Dynamic Programming Principle)
Under (A1), Vi = max{Y:, E[V{i; | Fl}.

Proof

2. WTS Vi > max{Ys, E[Vj,, | Fi}.
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Dynamic Programming Principle

Define:

V{ = esssup E[Yz | il
>t

(optimise from t onward)

Theorem (Dynamic Programming Principle)
Under (A1), Vi = max{Y:, E[V{i; | Fl}.

Proof

2. WTS Vi > max{Ys, E[Vj,, | Fi}.
By Lemma 3, 3 sequence 17, T, ... with T, > t+ 1 such that E[Y; | F] — V{iq.

Define regularised from t+1onward py := inf{¢ > t | E[Y; ] < Y,}; lettn := max{p1, p2, ... pn}.
regular from t onward.

By the lemmas 1" and 2,
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Dynamic Programming Principle

Define:

V{ = esssup E[Yz | il
>t

(optimise from t onward)

Theorem (Dynamic Programming Principle)
Under (A1), Vi = max{Y:, E[V{i; | Fl}.

Proof

2. WTS Vi > max{Ys, E[Vj,, | Fi}.
By Lemma 3, 3 sequence 17, T, ... with T, > t+ 1 such that E[Y; | F] — V{iq.

Define regularised from t+1onward py := inf{¢ > t | E[Y; ] < Y,}; lettn := max{p1, p2, ... pn}.
regular from t onward.

By the lemmas 1" and 2,

Vi > ElYs, | Fi] = E[E[Yx, | Fenl | ] > E | max ElYz, | Finl

Since, trivially, Vi > Y, we get Vi > max{Y;, E[V}4 | Fil}-

]:t:| — E[Vi | F]
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Dynamic Programming Principle

Vi = esssup E[Yz | 71l = max{Yy, E[Vii | Fil);
>t

=inf{t > 01 Yy = Vi)

Example

LetYg:=0,Y;:=1-1/tfort €N, Yo = 0.
Satisfies (A1): Yy < 1.

Fails (A2): Y; — 1> 0 = Yeo.

Indeed, no optimal stopping time as Y; < Y.
Note: 7* = co and Y¢= = 0 < V.
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Characterising Optimal Stopping Time

Vi = esssup E[Yz | 71l = max{Yy, E[Vii | Fil);
>t

=inf{t > 01 Yy = Vi)

Lemma

Take any stopping time t. Under (A1), E[Yzag<] > E[Y4].
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Characterising Optimal Stopping Time

Vi = esssUpE[Ye | F] = max{Y, E[Viq | il 5 =inf{t > 01 Y, = V{}
>t

Lemma

Take any stopping time t. Under (A1), E[Yzag<] > E[Y4].

Stopping whenever t* says to stop can only improve the expected payoff.
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Characterising Optimal Stopping Time

Vi = esssup E[Yz | 71l = max{Yy, E[Vii | Fil);
>t

=inf{t > 01 Yy = Vi)

Lemma

Take any stopping time t. Under (A1), E[Yzar] > E[Y4].

Proof

On{t* = t<m, Yor = Yy = V& > ElYz | AL
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Characterising Optimal Stopping Time

Vi = esssUpE[Ye | F] = max{Y, E[Viq | il 5 =inf{t > 01 Y, = V{}
>t

Lemma

Take any stopping time t. Under (A1), E[Yzar] > E[Y4].

Proof

On{t* =t<1}, Ye= = Y; = V{ > E[Yc | F] Hence,
E[YT/\T*] = E[1{1*<1}Y’C*] + E[1{1* ZT}Y’C]

=E [Z 1(1**1}\4] + E[le > Yal

t=0

=E [Z 1(1*:@%*] +Ellgge > Yal
t=0

>E [Zurhm)E[YT | ]—}]] +Ellgz- > Yal = ElY4l.
t=0
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Characterising Optimal Stopping Time

Vi = esssUpE[Ye | F] = max{Y, E[Viq | il 5 =inf{t > 01 Y, = V{}
>t

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, ©* is optimal.
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Characterising Optimal Stopping Time

Vi = esssupE[Yr | F] = max{Yy, E[Viq | Fil) =inf{t > 01 Yy = Vi)
>t

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, ©* is optimal.

Proof

Let t be an optimal stopping time.
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Vi = esssUpE[Ye | F] = max{Y, E[Viq | il 5 =inf{t > 01 Y, = V{}
>t

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, ©* is optimal.

Proof

Let t be an optimal stopping time.

By Lemma 4, 7" := © A " must also be optimal.
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Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, ©* is optimal.

Proof

Let t be an optimal stopping time.
By Lemma 4, 7" := © A " must also be optimal.
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Characterising Optimal Stopping Time

Vi = esssUpE[Ye | F] = max{Y, E[Viq | il 5 =inf{t > 01 Y, = V{}
>t

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, ©* is optimal.

Proof

Let t be an optimal stopping time.
By Lemma 4, 7" := © A " must also be optimal.

By Lemma 1, there is a reqular ©” : E[Yy] > E[Yy]and 7 < v < t*. Hence, ©/ must
also be optimal.

Finally, by Lemma 2, 7" vt* must also be optimal. Note thatt”/ vt* = ©* by construction.
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Characterising Optimal Stopping Time

Vi = esssup ElYz | A = max{Y;, E[V{iq | Ak
>t

T=inf{t > 01 Ye = Vi =inf{t > 01 Yy > E[Vi | A}

It can be shown that t* is the earliest optimal stopping time, i.e.,, t* < tV optimal t.

(Intuition: If T =t < t*, then Y; < V{ and an improvement can be reached)
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Characterising Optimal Stopping Time

Vi = esssup ElYz | A = max{Y;, E[V{iq | Ak
>t

T=inf{t > 01 Ye = Vi =inf{t > 01 Yy > E[Vi | A}

It can be shown that t* is the earliest optimal stopping time, i.e.,, t* < tV optimal t.

(Intuition: If T =t < t*, then Y; < V{ and an improvement can be reached)

Another stopping time: ©** = inf{t > 0| Y; > E[V}}; | Fil}

It can be shown that t** is the latest optimal stopping time, i.e., T < t** V optimal 1.
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