Stopping

Duarte Gonçalves
University College London

Topics in Economic Theory

Overview

- 1. Why Economic Theory
- 2. Overview of the Course
- 3. Stopping: Searching for a Job
- 4. Optimal Stopping: Existence and Regularity

Overview

- 1. Why Economic Theory
- Overview of the Course
- Stopping: Searching for a Job
- Optimal Stopping: Existence and Regularity

Economic Theory

Goals

Studies behaviour

Understand how different forces interact and lead to different outcomes

Positive view: Explain patterns, make predictions

Normative view: Prescribe behaviour

Examples: consumer demand and firm pricing, student applications to university, voting, technology adoption, hospital residency program management

(Not particular to theory: in essence, all science strives for generality)

Models as maps, simplified description of reality

Behavioural implications = Empirical content

This course

Develop building blocks

Overview of the Course

This term: how people make decisions when faced with uncertainty, limited information, and evolving opportunities

Topics

- 1. Stopping: accepting a job offer.
- 2. Stopping and choosing: selling a house.
- 3. Learning and Choosing: buying a computer.
- 4. Searching: shopping for clothes
- 5. Social Learning: checking neighbours' crop yields.
- 6. Remembering: ordering at a restaurant.
- 7. Learning in Games: adjusting prices.
- 8. Common Learning: attacking a currency.

Very unlikely that we'll cover all the topics.

Overview of the Course

Lectures provide fundamentals.

Presentations:

Every week starting from next week.

Everyone required to prepare a 15 minute presentation on an assigned paper.

One person will be selected at random to present.

Overview

- 1. Why Economic Theory
- 2. Overview of the Course
- 3. Stopping: Searching for a Job
 - Job Search
 - Job Search with Discounting
- 4. Optimal Stopping: Existence and Regularity

Job Search

Accept offer Y_t , continue searching with a per period cost of c.

Interpretation:

Job search (McCall 1970 QJE): TIOLI salary offers Y_t, cost to search c.

Selling a house/asset: TIOLI offers Y_t , council tax/management fees c.

 $Y_t \sim F$, iid; F continuous, strictly increasing.

Assume $\mathbb{E}[\mathbf{1}_{Y_t>0}Y_t] < \infty$; $Y_0 = 0$; $\mathbb{P}(Y_t > c) > 0$.

Job search

Accept and get Y_t (present value of getting same wage forever); Refuse and get z and face same problem tomorrow Markov problem; state variable = Y_t

Job search

Define $\tilde{y} := \bar{V} - c$

```
Accept and get Y_t (present value of getting same wage forever); Refuse and get z and face same problem tomorrow Markov problem; state variable = Y_t Set up Bellman equation; V(Y_t) = \max\{Y_t, \mathbb{E}[V(Y_{t+1})] - c\} (iid \Longrightarrow stationary problem) Value: V(Y_t) (handwavy: this presumes a solution and we don't know yet if/why we can do this) Define V_t := V(Y_t) and \bar{V} = \mathbb{E}[V(Y_t)]
```

Job search

```
Accept and get Y_t (present value of getting same wage forever);
    Refuse and get z and face same problem tomorrow
Markov problem; state variable = Y_t
Set up Bellman equation; V(Y_t) = \max\{Y_t, \mathbb{E}[V(Y_{t+1})] - c\}
    (iid ⇒ stationary problem)
Value: V(Y_t)
    (handwayy: this presumes a solution and we don't know yet if/why we can do this)
Define V_t := V(Y_t) and \bar{V} = \mathbb{E}[V(Y_t)]
Define \tilde{v} := \bar{V} - c
Take expectations and get \tilde{y} + c = \mathbb{E}[\max\{Y_t, \tilde{y}\}] \iff c = \mathbb{E}[(Y_t - \tilde{y})^+] = \int_{\tilde{y}}^{\infty} y \, dF(y)
F continuous and strictly increasing: \exists ! \tilde{y} : c = \mathbb{E}[(Y_t - \tilde{y})^+]
\tilde{y}: reservation value
Optimal rule: continue if and only if Y_t < \tilde{y}
```

Accept offer Y_t , continue searching and receive z; discount factor $\beta \in (0,1)$. Interpretation:

Job search: TIOLI salary offers Y_t , unemployment subsidy z, cost of time β .

Selling a house/asset: TIOLI offers Y_t , rent acrued z, interest rate r, discount factor $\beta = (1 + r)^{-1}$.

 $Y_t \sim F$, iid; F continuous, strictly increasing.

Assume $\mathbb{E}[\mathbf{1}_{Y_t>0}Y_t] < \infty$; $Y_0 = 0$; $\mathbb{P}(Y_t > c) > 0$.

```
Define \hat{Y}_t := \frac{\beta^t}{1-\beta} Y_t (present value).
```

Accept and get Y_t forever \equiv Accept and get \hat{Y}_t

Refuse, get z, and face same problem tomorrow but discounted by β .

Markov problem; state variable = \hat{Y}_t

```
Define \hat{Y}_t := \frac{\beta^t}{1-\beta} Y_t (present value).
```

Accept and get Y_t forever \equiv Accept and get \hat{Y}_t

Refuse, get z, and face same problem tomorrow but discounted by β .

Markov problem; state variable = \hat{Y}_t

Set up Bellman equation; $V(\hat{Y}_t) = \max{\{\hat{Y}_t, z + \beta \mathbb{E}[V(\hat{Y}_{t+1})]\}}$

Value: $V(\hat{Y}_t)$

Brief refresher...

Definition

 $T:X\to X \text{ is a contraction on } (X,d) \text{ if } \exists \delta\in[0,1): d(T(x),T(y))\leq \delta d(x,y) \ \forall x,y\in X.$

Definition

 $T:X\to X \text{ is a contraction on } (X,d) \text{ if } \exists \delta\in[0,1): d(T(x),T(y))\leq \delta d(x,y) \ \forall x,y\in X.$

Banach Fixed-Point Theorem

Let (X, d) be a non-empty complete metric space and T a contraction mapping on (X, d). Then, $\exists ! x^* \in X : T(x^*) = x^*$. Moreover, for any $x_0 \in X$, $x^* = \lim_{n \to \infty} T^n(x_0)$, where $T^{n+1} := T \circ T^n$ and $T^1 := T$.

Definition

 $\mathcal{T}: X \to X \text{ is a contraction on } (X,d) \text{ if } \exists \delta \in [0,1): d(\mathcal{T}(x),\mathcal{T}(y)) \leq \delta d(x,y) \ \forall x,y \in X.$

Banach Fixed-Point Theorem

Let (X,d) be a non-empty complete metric space and T a contraction mapping on (X,d). Then, $\exists ! x^* \in X : T(x^*) = x^*$. Moreover, for any $x_0 \in X$, $x^* = \lim_{n \to \infty} T^n(x_0)$, where $T^{n+1} := T \circ T^n$ and $T^1 := T$.

Proof

Let $x_n := T^n(x_0)$. Then $d(x_{n+1}, x_n) = d(T^n(x_1), T^n(x_0)) \le \delta^n d(x_1, x_0)$, hence $\{x_n\}_n$ is a Cauchy sequence.

(X,d) complete \equiv Cauchy sequences converge $\implies x_n$ converges to some $x^* = T(x^*)$. Take any $y_0 \in X \setminus \{x_0\}$; define $y_n := T^n(y_0)$; $y_n \to y^*$.

If $x^* \neq y^*$, then $d(y^*, x^*) = d(T^n(y^*), T^n(x^*)) = \delta^n d(y^*, x^*) < d(y^*, x^*)$, a contradiction.

Blackwell's Conditions for Contraction Mapping

Let B(X) denote the set of bounded real functions on some nonempty set X endowed with the sup-metric d_{∞} . Suppose $T:B(X)\to B(X)$ satisfies (i) $\forall f,g\in B(X):f\geq g\Longrightarrow T(f)\geq T(g)$, and (ii) $\exists \delta\in [0,1)$ s.t. $T(f+\alpha)\leq T(f)+\delta\alpha\ \forall f\in B(X)$ and $\forall \alpha\in \mathbb{R}_+$. Then T is a contraction.

Blackwell's Conditions for Contraction Mapping

Let B(X) denote the set of bounded real functions on some nonempty set X endowed with the sup-metric d_{∞} . Suppose $T:B(X)\to B(X)$ satisfies (i) $\forall f,g\in B(X):f\geq g\implies T(f)\geq T(g)$, and (ii) $\exists \delta\in [0,1)$ s.t. $T(f+\alpha)\leq T(f)+\delta\alpha\ \forall f\in B(X)$ and $\forall \alpha\in \mathbb{R}_+$. Then T is a contraction.

Proof

```
For any f, g \in B(X) and x \in X, f(x) - g(x) \le |f(x) - g(x)| \le d_{\infty}(f, g).

(i) and (ii): f \le g + d_{\infty}(f, g) \implies T(f) \le T(g) + \delta d_{\infty}(f, g) and, symmetrically, T(g) \le T(f) + \delta d_{\infty}(f, g).

This implies d_{\infty}(T(f), T(g)) < \delta d_{\infty}(f, g).
```

```
Define \hat{Y}_t := \frac{\beta^t}{1-\beta} Y_t (present value). 
 Accept and get Y_t forever \equiv Accept and get \hat{Y}_t Refuse, get z, and face same problem tomorrow but discounted by \beta.
```

Markov problem; state variable = \hat{Y}_t

Set up Bellman equation; $V(\hat{Y}_t) = \max\{\hat{Y}_t, z + \beta \mathbb{E}[V(\hat{Y}_{t+1})]\}$

Value: $V(\hat{Y}_t)$, well-defined

Define $V_t := V(\hat{Y}_t)$ and $\bar{V} = \mathbb{E}[V(\hat{Y}_t)]$

```
Define \hat{Y}_t := \frac{\beta^t}{1-\beta} Y_t (present value).
```

Accept and get Y_t forever \equiv Accept and get \hat{Y}_t

Refuse, get z, and face same problem tomorrow but discounted by β_{\cdot}

Markov problem; state variable = \hat{Y}_t

Set up Bellman equation; $V(\hat{Y}_t) = \max\{\hat{Y}_t, z + \beta \mathbb{E}[V(\hat{Y}_{t+1})]\}$

Value: $V(\hat{Y}_t)$, well-defined

Define $V_t := V(\hat{Y}_t)$ and $\bar{V} = \mathbb{E}[V(\hat{Y}_t)]$

Take expectations and get

$$\bar{V} = \mathbb{E}[\max\{\hat{Y}_t, z + \beta \bar{V}\}] \iff \bar{V}(1-\beta) = z + \mathbb{E}[(\hat{Y}_t - (z + \beta \bar{V}))^+] = \int_{z+\beta \bar{V}}^{\infty} \frac{1}{1-\beta} y \, \mathrm{d}F(y)$$

F continuous:
$$\exists ! \overline{V} : \overline{V}(1 - \beta) = z + \mathbb{E}[(\hat{Y}_t - (z + \beta \overline{V}))^+]$$

 $\tilde{y} := (1 - \beta)(z + \beta \bar{V})$: reservation value

Optimal rule: continue if and only if $Y_t < \tilde{y}$

Gonçalves (UCL) Stopping 1

Overview

- Why Economic Theory
- 2. Overview of the Course
- 3. Stopping: Searching for a Job
- 4. Optimal Stopping: Existence and Regularity
 - General Setup
 - Regular Stopping Times
 - Existence
 - Characterisation

Going Beyond the Basic Setting

Y_t may not be iid

- Depend on time of unemployment
- Result from underlying dynamic game between recruiting firms
- Uncertain market conditions (hence perception of F evolves over time depending on past Y_{ℓ})

..

Going Beyond the Basic Setting

Y_t may not be iid

- Depend on time of unemployment
- Result from underlying dynamic game between recruiting firms
- Uncertain market conditions (hence perception of F evolves over time depending on past Y_ℓ)

..

Introduce general tools to tackle the problem

Setup and Assumptions

 $\{X_0, X_1, X_2, ...\}$ rv whose joint distribution is assumed to be known; write $X^t := (X_\ell)_{\ell=1,...,t}$.

Sequence of functions $x^t \mapsto y_t(x^t) \in \mathbb{R}$; write $Y_t := y_t(x^t)$.

Filtration $\mathbb{F} = \{\mathcal{F}_t\} = \sigma(X^t)$.

Adapted payoff process $\{Y_t\}$; terminal Y_{∞} (possibly $-\infty$).

Stopping time τ : $\{\tau \leq t\} \in \mathcal{F}_t$ for all t; feasible set \mathbb{T} .

Objective: maximise value of Y by adequately choosing stopping time, $\sup_{\tau \in \mathbb{T}} \mathbb{E}[Y_{\tau}]$.

Setup and Assumptions

 $\{X_0, X_1, X_2, ...\}$ rv whose joint distribution is assumed to be known; write $X^t := (X_\ell)_{\ell=1,...,t}$.

Sequence of functions $x^t \mapsto y_t(x^t) \in \mathbb{R}$; write $Y_t := y_t(x^t)$.

Filtration $\mathbb{F} = \{\mathcal{F}_t\} = \sigma(X^t)$.

Adapted payoff process $\{Y_t\}$; terminal Y_{∞} (possibly $-\infty$).

Stopping time τ : $\{\tau \leq t\} \in \mathcal{F}_t$ for all t; feasible set \mathbb{T} .

Objective: maximise value of Y by adequately choosing stopping time, $\sup_{\tau \in \mathbb{T}} \mathbb{E}[Y_{\tau}]$.

Two questions:

- 1. When is there actually an optimal stopping time? (Is sup actually a max?)
- 2. If so, what does it look like?

Previous applications: guess and verify or use specific structural assumptions. Now: use very general assumptions.

Setup and Assumptions

 $\{X_0, X_1, X_2, ...\}$ rv whose joint distribution is assumed to be known; write $X^t := (X_\ell)_{\ell=1,...,t}$

Sequence of functions $x^t \mapsto y_t(x^t) \in \mathbb{R}$; write $Y_t := y_t(x^t)$.

Filtration $\mathbb{F} = \{\mathcal{F}_t\} = \sigma(X^t)$.

Adapted payoff process $\{Y_t\}$; terminal Y_{∞} (possibly $-\infty$).

Stopping time τ : $\{\tau \leq t\} \in \mathcal{F}_t$ for all t; feasible set \mathbb{T} .

Objective: maximise value of Y by adequately choosing stopping time, $\sup_{\tau \in \mathbb{T}} \mathbb{E}[Y_{\tau}]$.

Two questions:

- 1. When is there actually an optimal stopping time? (Is sup actually a max?)
- 2. If so, what does it look like?

Previous applications: guess and verify or use specific structural assumptions. Now: use very general assumptions.

Standing assumptions

- (A1) $\mathbb{E}[\sup_{t>0} Y_t] < \infty$.
- (A2) $\lim_{t\to\infty} \mathbb{E}[Y_t] \leq Y_\infty$ a.s.

Note: (A1) implies $\sup_{\tau} \mathbb{E}[Y_{\tau}] < \infty$

Regular Stopping Times

Definition (Regularity)

 τ is regular if for all t, $\mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] > Y_t$ a.s. on $\{\tau > t\}$.

Regular Stopping Times

Definition (Regularity)

 τ is regular if for all t, $\mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] > Y_t$ a.s. on $\{\tau > t\}$.

Lemma 1 (Regularity is wloo)

Under (A1), for any stopping time τ there exists a *regular* stopping time $\rho \leq \tau$ with $\mathbb{E}[Y_\rho] \geq \mathbb{E}[Y_\tau]$.

Regular Stopping Times

Definition (Regularity)

 τ is regular if for all t, $\mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] > Y_t$ a.s. on $\{\tau > t\}$.

Lemma 1 (Regularity is wloo)

Under (A1), for any stopping time τ there exists a *regular* stopping time $\rho \leq \tau$ with $\mathbb{E}[Y_\rho] \geq \mathbb{E}[Y_\tau]$.

Lemma 2 (Regularity is closed under ∨)

 $\text{Under (A1), if } \tau \text{ and } \rho \text{ are regular, then } \xi \coloneqq \tau \vee \rho \text{ is regular and } \mathbb{E}[Y_{\xi}] \geq \text{max}\{\mathbb{E}[Y_{\tau}], \mathbb{E}[Y_{\rho}]\}.$

Proof

Fix τ with $\mathbb{E}[|Y_{\tau}|]<\infty$ (true by (A1) since $Y_{\tau}\leq \sup_{\mathbb{S}}Y_{\mathbb{S}}).$

Proof

Fix τ with $\mathbb{E}[|Y_{\tau}|]<\infty$ (true by (A1) since $Y_{\tau}\leq \sup_{\mathbb{S}}Y_{\mathbb{S}}).$

Define $Z_t := \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$ and let $\rho := \inf\{t \geq 0 : Z_t \leq Y_t\}$.

On $\{\rho > t\}$: $Y_t < Z_t = \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$, so ρ is regular.

Proof

Fix τ with $\mathbb{E}[|Y_{\tau}|]<\infty$ (true by (A1) since $Y_{\tau}\leq sup_{_{S}}\,Y_{_{S}}).$

Define $Z_t := \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$ and let $\rho := \inf\{t \geq \mathbf{0} : Z_t \leq Y_t\}$.

On $\{\rho > t\}$: $Y_t < Z_t = \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$, so ρ is regular.

 $\text{On }\{\rho=t\}: Y_{\rho}=Y_{t}\geq Z_{t}=\mathbb{E}[Y_{\tau}\mid \mathcal{F}_{t}]. \quad \text{On }\{\rho=\infty\}: Y_{\rho}=Y_{\infty}=Y_{\tau} \text{ a.s. }$

Proof

Fix τ with $\mathbb{E}[|Y_{\tau}|] < \infty$ (true by (A1) since $Y_{\tau} \leq \sup_{S} Y_{S}$).

Define $Z_t := \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$ and let $\rho := \inf\{t \geq \mathbf{0} : Z_t \leq Y_t\}$.

On $\{\rho > t\}$: $Y_t < Z_t = \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$, so ρ is regular.

$$\text{On } \{\rho=t\}: Y_{\rho}=Y_{t}\geq Z_{t}=\mathbb{E}[Y_{\tau}\mid \mathcal{F}_{t}]. \quad \text{On } \{\rho=\infty\}: Y_{\rho}=Y_{\infty}=Y_{\tau} \text{ a.s. }$$

Hence

$$\mathbb{E}[Y_{\rho}] = \sum_{t=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{\rho=t\}}Y_t] + \mathbb{E}[\mathbf{1}_{\{\rho=\infty\}}Y_{\infty}]$$

Proof

Fix τ with $\mathbb{E}[|Y_{\tau}|]<\infty$ (true by (A1) since $Y_{\tau}\leq \sup_{\mathbb{S}}Y_{\mathbb{S}}).$

Define $Z_t := \mathbb{E}[Y_t \mid \mathcal{F}_t]$ and let $\rho := \inf\{t \geq \mathbf{0} : Z_t \leq Y_t\}$.

On $\{\rho > t\}$: $Y_t < Z_t = \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$, so ρ is regular.

$$\text{On } \{\rho=t\}\!\!: Y_\rho=Y_t\geq Z_t=\mathbb{E}[Y_\tau\mid \mathcal{F}_t].\quad \text{On } \{\rho=\infty\}\!\!: Y_\rho=Y_\infty=Y_\tau \text{ a.s.}$$

Hence

$$\begin{split} \mathbb{E}[Y_{\rho}] &= \sum_{t=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{\rho=t\}} Y_t] + \mathbb{E}[\mathbf{1}_{\{\rho=\infty\}} Y_{\infty}] \\ &\geq \sum_{t=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{\rho=t\}} \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t]] + \mathbb{E}[\mathbf{1}_{\{\rho=\infty\}} Y_{\tau}] \end{split}$$

Proof

Fix τ with $\mathbb{E}[|Y_{\tau}|] < \infty$ (true by (A1) since $Y_{\tau} \leq \sup_{S} Y_{S}$).

Define $Z_t := \mathbb{E}[Y_t \mid \mathcal{F}_t]$ and let $\rho := \inf\{t \geq \mathbf{0} : Z_t \leq Y_t\}$.

On $\{\rho > t\}$: $Y_t < Z_t = \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$, so ρ is regular.

$$\text{On } \{\rho=t\}: Y_{\rho}=Y_{t}\geq Z_{t}=\mathbb{E}[Y_{\tau}\mid \mathcal{F}_{t}]. \quad \text{On } \{\rho=\infty\}: Y_{\rho}=Y_{\infty}=Y_{\tau} \text{ a.s.}$$

Hence

$$\begin{split} \mathbb{E}[Y_{\rho}] &= \sum_{t=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{\rho=t\}} Y_t] + \mathbb{E}[\mathbf{1}_{\{\rho=\infty\}} Y_{\infty}] \\ &\geq \sum_{t=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{\rho=t\}} \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t]] + \mathbb{E}[\mathbf{1}_{\{\rho=\infty\}} Y_{\tau}] \\ &\geq \sum_{t=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{\rho=t\}} Y_{\tau}] + \mathbb{E}[\mathbf{1}_{\{\rho=\infty\}} Y_{\tau}] \\ &= \mathbb{E}[Y_{\tau}]. \end{split}$$

Proof of Lemma 1 (Regularity wloo)

Proof

Fix τ with $\mathbb{E}[|Y_{\tau}|] < \infty$ (true by (A1) since $Y_{\tau} \leq \sup_{S} Y_{S}$).

Define $Z_t := \mathbb{E}[Y_t \mid \mathcal{F}_t]$ and let $\rho := \inf\{t \geq \mathbf{0} : Z_t \leq Y_t\}$.

On $\{\rho > t\}$: $Y_t < Z_t = \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$, so ρ is regular.

On
$$\{\rho=t\}$$
: $Y_{\rho}=Y_{t}\geq Z_{t}=\mathbb{E}[Y_{\tau}\mid\mathcal{F}_{t}]$. On $\{\rho=\infty\}$: $Y_{\rho}=Y_{\infty}=Y_{\tau}$ a.s.

Hence

$$\begin{split} \mathbb{E}[Y_{\rho}] &= \sum_{t=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{\rho=t\}} Y_t] + \mathbb{E}[\mathbf{1}_{\{\rho=\infty\}} Y_{\infty}] \\ &\geq \sum_{t=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{\rho=t\}} \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t]] + \mathbb{E}[\mathbf{1}_{\{\rho=\infty\}} Y_{\tau}] \\ &\geq \sum_{t=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{\rho=t\}} Y_{\tau}] + \mathbb{E}[\mathbf{1}_{\{\rho=\infty\}} Y_{\tau}] \\ &= \mathbb{E}[Y_{\tau}]. \end{split}$$

Suppose $\neg(\rho \le \tau)$; note that, at $\{\rho > \tau = t\}$, $Z_t = Z_\tau = Y_\tau < Z_t$, a contradiction.

Proof

1. Proving ξ is regular:

$$\{\xi > t\} = \{\xi = \tau > t\} \cup \{\xi = \rho > t\}.$$

Proof

1. Proving ξ is regular:

$$\{\xi > t\} = \{\xi = \tau > t\} \cup \{\xi = \rho > t\}.$$

On
$$\{\xi = \tau > t\}$$
, $\mathbb{E}[Y_{\xi} \mid \mathcal{F}_t] = \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] > Y_t \text{ a.s.} \because \tau \text{ is regular.}$

Proof

1. Proving ξ is regular:

$$\{\xi > t\} = \{\xi = \tau > t\} \cup \{\xi = \rho > t\}.$$

On
$$\{\xi = \tau > t\}$$
, $\mathbb{E}[Y_{\xi} \mid \mathcal{F}_t] = \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] > Y_t$ a.s. τ is regular.

Symmetrically, on
$$\{\xi = \rho > t\}$$
, $\mathbb{E}[Y_{\xi} \mid \mathcal{F}_t] = \mathbb{E}[Y_{\rho} \mid \mathcal{F}_t] > Y_t \text{ a.s. } :: \rho \text{ is regular.}$

Proof

Proving ξ is regular:

$$\{\xi > t\} = \{\xi = \tau > t\} \cup \{\xi = \rho > t\}.$$
On $\{\xi = \tau > t\}$, $\mathbb{E}[Y_{\xi} \mid \mathcal{F}_t] = \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] > Y_t \text{ a.s.} \because \tau \text{ is regular.}$

Symmetrically, on $\{\xi = \rho > t\}$, $\mathbb{E}[Y_{\xi} \mid \mathcal{F}_t] = \mathbb{E}[Y_{\rho} \mid \mathcal{F}_t] > Y_t$ a.s. $\therefore \rho$ is regular.

2. Proving
$$\mathbb{E}[Y_{\xi}] \ge \mathbb{E}[Y_{\tau}] \lor \mathbb{E}[Y_{\rho}]$$
:
On $\{\xi = \tau = t\}, Y_{\tau} = Y_{\tau} = Y_{\tau}$

On
$$\{\xi = \tau = t\}$$
, $Y_{\xi} = Y_{\tau} = Y_{t}$.

Proof

Proving ξ is regular:

$$\begin{aligned} \{\xi > t\} &= \{\xi = \tau > t\} \cup \{\xi = \rho > t\}. \\ \text{On } \{\xi = \tau > t\}, \, \mathbb{E}[Y_{\xi} \mid \mathcal{F}_t] &= \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] > Y_t \text{ a.s. } \because \tau \text{ is regular.} \end{aligned}$$

Symmetrically, on $\{\xi = \rho > t\}$, $\mathbb{E}[Y_{\xi} \mid \mathcal{F}_t] = \mathbb{E}[Y_{\rho} \mid \mathcal{F}_t] > Y_t$ a.s. $\therefore \rho$ is regular.

2. Proving
$$\mathbb{E}[Y_{\xi}] \ge \mathbb{E}[Y_{\tau}] \lor \mathbb{E}[Y_{\rho}]$$
:
On $\{\xi = \tau = t\}$, $Y_{\xi} = Y_{\tau} = Y_{t}$.

On
$$\{\xi = \rho > \tau = t\}$$
, $\xi = \rho$ and $\mathbb{E}[Y_{\xi} \mid \mathcal{F}_t] = \mathbb{E}[Y_{\rho} \mid \mathcal{F}_t] > Y_t = Y_{\tau}$ a.s.

On
$$\{\xi = \rho > \tau = t\}$$
, $\xi = \rho$ and $\mathbb{E}[Y_{\xi} \mid \mathcal{F}_t] = \mathbb{E}[Y_{\rho} \mid \mathcal{F}_t] > Y_t = Y_{\tau}$ a.s

Proof

Proving ξ is regular:

$$\{\xi > t\} = \{\xi = \tau > t\} \cup \{\xi = \rho > t\}.$$
 On $\{\xi = \tau > t\}$, $\mathbb{E}[Y_{\xi} \mid \mathcal{F}_t] = \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] > Y_t \text{ a.s. } \because \tau \text{ is regular.}$ Symmetrically, on $\{\xi = \rho > t\}$, $\mathbb{E}[Y_{\xi} \mid \mathcal{F}_t] = \mathbb{E}[Y_{\rho} \mid \mathcal{F}_t] > Y_t \text{ a.s. } \because \rho \text{ is regular.}$

2. Proving $\mathbb{E}[Y_{\xi}] \geq \mathbb{E}[Y_{\tau}] \vee \mathbb{E}[Y_{\rho}]$:

On
$$\{\xi = \tau = t\}$$
, $Y_{\xi} = Y_{\tau} = Y_{t}$.

On
$$\{\xi = \rho > \tau = t\}$$
, $\xi = \rho$ and $\mathbb{E}[Y_{\xi} \mid \mathcal{F}_t] = \mathbb{E}[Y_{\rho} \mid \mathcal{F}_t] > Y_t = Y_{\tau}$ a.s.

Hence

On
$$\{\xi = \rho > \tau = t\}$$
, $\xi = \rho$ and $\mathbb{E}[Y_{\xi} \mid \mathcal{F}_t] = \mathbb{E}[Y_{\rho} \mid \mathcal{F}_t] > Y_t = Y_{\tau}$ a.s.

$$\begin{split} \mathbb{E}[Y_{\xi}] &= \sum_{t=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{\tau=t\}}Y_{\xi}] + \mathbb{E}[\mathbf{1}_{\{\tau=\infty\}}Y_{\xi}] = \sum_{t=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{\tau=t\}}\mathbb{E}[Y_{\xi} \mid \mathcal{F}_{t}]] + \mathbb{E}[\mathbf{1}_{\{\tau=\infty\}}Y_{\xi}] \\ &\geq \sum_{t=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{\tau=t\}}Y_{\tau}] + \mathbb{E}[\mathbf{1}_{\{\tau=\infty\}}Y_{\tau}] = \mathbb{E}[Y_{\tau}]. \end{split}$$

$$_{\infty}Y_{\tau}]=\mathbb{E}[Y_{\tau}].$$

Proof

1. Proving ξ is regular:

$$\{\xi > t\} = \{\xi = \tau > t\} \cup \{\xi = \rho > t\}.$$

On
$$\{\xi = \tau > t\}$$
, $\mathbb{E}[Y_{\xi} \mid \mathcal{F}_t] = \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] > Y_t \text{ a.s. } : \tau \text{ is regular.}$

Symmetrically, on $\{\xi = \rho > t\}$, $\mathbb{E}[Y_{\xi} \mid \mathcal{F}_t] = \mathbb{E}[Y_{\rho} \mid \mathcal{F}_t] > Y_t \text{ a.s. } : \rho \text{ is regular.}$

2. Proving $\mathbb{E}[Y_{\varepsilon}] \geq \mathbb{E}[Y_{\tau}] \vee \mathbb{E}[Y_{\rho}]$:

On
$$\{\xi = \tau = t\}$$
, $Y_{\xi} = Y_{\tau} = Y_{t}$.

On
$$\{\xi=\rho>\tau=t\}$$
, $\xi=\rho$ and $\mathbb{E}[Y_{\xi}\mid\mathcal{F}_t]=\mathbb{E}[Y_{\rho}\mid\mathcal{F}_t]>Y_t=Y_{\tau}$ a.s.

Hence

$$\begin{split} \mathbb{E}[Y_{\xi}] &= \sum_{t=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{\tau=t\}}Y_{\xi}] + \mathbb{E}[\mathbf{1}_{\{\tau=\infty\}}Y_{\xi}] = \sum_{t=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{\tau=t\}}\mathbb{E}[Y_{\xi} \mid \mathcal{F}_{t}]] + \mathbb{E}[\mathbf{1}_{\{\tau=\infty\}}Y_{\xi}] \\ &\geq \sum_{t=0}^{\infty} \mathbb{E}[\mathbf{1}_{\{\tau=t\}}Y_{\tau}] + \mathbb{E}[\mathbf{1}_{\{\tau=\infty\}}Y_{\tau}] = \mathbb{E}[Y_{\tau}]. \end{split}$$

By a symmetric argument, $\mathbb{E}[Y_{\xi}] \geq \max{\{\mathbb{E}[Y_{\tau}], \mathbb{E}[Y_{\rho}]\}}$.

Theorem (Existence)

Under (A1) and (A2), there is a regular τ such that $\mathbb{E}[Y_{\tau}] = \sup_{\rho \in \mathbb{T}} \mathbb{E}[Y_{\rho}]$.

Proof

Take the case $V^* := \sup_{\rho \in \mathbb{T}} \mathbb{E}[Y_{\rho}] > -\infty$.

Theorem (Existence)

Under (A1) and (A2), there is a regular τ such that $\mathbb{E}[Y_{\tau}] = \sup_{\rho \in \mathbb{T}} \mathbb{E}[Y_{\rho}]$.

Proof

Take the case $V^* := \sup_{\rho \in \mathbb{T}} \mathbb{E}[Y_{\rho}] > -\infty$.

By definition of sup, \exists sequence $\hat{\tau}_1, \hat{\tau}_2, ...$ such that $\mathbb{E}[Y_{\hat{\tau}_n}] \to V^*$.

Theorem (Existence)

Under (A1) and (A2), there is a regular τ such that $\mathbb{E}[Y_{\tau}] = \sup_{\rho \in \mathbb{T}} \mathbb{E}[Y_{\rho}]$.

Proof

Take the case $V^* := \sup_{\rho \in \mathbb{T}} \mathbb{E}[Y_{\rho}] > -\infty$.

By definition of sup, \exists sequence $\hat{\tau}_1, \hat{\tau}_2, ...$ such that $\mathbb{E}[Y_{\hat{\tau}_n}] \to V^*$.

 $\text{Define regularised } \rho_{\textit{n}} \coloneqq \inf\{t \geq 0 : \mathbb{E}[Y_{\hat{\tau}_{\textit{n}}} \mid \mathcal{F}_{\textit{t}}] \leq Y_{\textit{t}}\}; \text{ let } \tau_{\textit{n}} \coloneqq \max\{\rho_{1}, \rho_{2}, ..., \rho_{\textit{n}}\}, \text{ regular.}$

Theorem (Existence)

Under (A1) and (A2), there is a regular τ such that $\mathbb{E}[Y_{\tau}] = \sup_{\rho \in \mathbb{T}} \mathbb{E}[Y_{\rho}]$.

Proof

Take the case $V^* := \sup_{\rho \in \mathbb{T}} \mathbb{E}[Y_{\rho}] > -\infty$.

By definition of sup, \exists sequence $\hat{\tau}_1, \hat{\tau}_2, ...$ such that $\mathbb{E}[Y_{\hat{\tau}_n}] \to V^*$.

Define regularised $\rho_n := \inf\{t \geq 0 : \mathbb{E}[Y_{\hat{\tau}_n} \mid \mathcal{F}_t] \leq Y_t\}$; let $\tau_n := \max\{\rho_1, \rho_2, ..., \rho_n\}$, regular.

By the lemmas, $V^* \geq \mathbb{E}[Y_{\tau_n}] \geq \max_{\ell=1,\dots,n} \mathbb{E}[Y_{\rho_n}] \geq \mathbb{E}[Y_{\hat{\tau}_n}] \to V^*$.

Theorem (Existence)

Under (A1) and (A2), there is a regular τ such that $\mathbb{E}[Y_{\tau}] = \sup_{\rho \in \mathbb{T}} \mathbb{E}[Y_{\rho}]$.

Proof

Take the case $V^* := \sup_{\rho \in \mathbb{T}} \mathbb{E}[Y_{\rho}] > -\infty$.

By definition of sup, \exists sequence $\hat{\tau}_1, \hat{\tau}_2, ...$ such that $\mathbb{E}[Y_{\hat{\tau}_n}] \to V^*$.

Define regularised $\rho_n := \inf\{t \geq 0 : \mathbb{E}[Y_{\hat{\tau}_n} \mid \mathcal{F}_t] \leq Y_t\}$; let $\tau_n := \max\{\rho_1, \rho_2, ..., \rho_n\}$, regular.

By the lemmas, $V^* \geq \mathbb{E}[Y_{\tau_n}] \geq \max_{\ell=1,\dots,n} \mathbb{E}[Y_{\rho_n}] \geq \mathbb{E}[Y_{\hat{\tau}_n}] \to V^*$.

Define $\tau_{\infty} := \sup_{n \in \mathbb{N}} \rho_n$. τ_n pointwise increasing \Longrightarrow pointwise converges to τ_{∞} . Moreover, $\limsup_{n \to \infty} Y_{\tau_n} \le Y_{\tau_{\infty}}$ a.s. (from (A2)).

Theorem (Existence)

Under (A1) and (A2), there is a regular τ such that $\mathbb{E}[Y_{\tau}] = \sup_{\rho \in \mathbb{T}} \mathbb{E}[Y_{\rho}]$.

Proof

Take the case $V^* := \sup_{\rho \in \mathbb{T}} \mathbb{E}[Y_{\rho}] > -\infty$.

By definition of sup, \exists sequence $\hat{\tau}_1, \hat{\tau}_2, ...$ such that $\mathbb{E}[Y_{\hat{\tau}_n}] \to V^*$.

Define regularised $\rho_n := \inf\{t \geq 0 : \mathbb{E}[Y_{\hat{\tau}_n} \mid \mathcal{F}_t] \leq Y_t\}$; let $\tau_n := \max\{\rho_1, \rho_2, ..., \rho_n\}$, regular.

By the lemmas, $V^* \geq \mathbb{E}[Y_{\tau_n}] \geq \text{max}_{\ell=1,\dots,n} \, \mathbb{E}[Y_{\rho_n}] \geq \mathbb{E}[Y_{\hat{\tau}_n}] \to V^*.$

Define $\tau_{\infty} := \sup_{n \in \mathbb{N}} \rho_n$. τ_n pointwise increasing \Longrightarrow pointwise converges to τ_{∞} . Moreover, $\limsup_{n \to \infty} Y_{\tau_n} < Y_{\tau_{\infty}}$ a.s. (from (A2)).

Note: by construction, $\mathbb{E}[\limsup_n Y_{\tau_n}] \leq \mathbb{E}[Y_{\tau_\infty}]$. Since $Y_{\tau_n} \leq \sup_n Y_n$, by Fatou's lemma and (A1), $\mathbb{E}[\liminf_{n \to \infty} \sup_m Y_m - Y_{\tau_n}] \leq \liminf_{n \to \infty} \mathbb{E}[\sup_m Y_m - Y_{\tau_n}] \implies V^* = \limsup_{n \to \infty} \mathbb{E}[Y_{\tau_n}] \leq \mathbb{E}[\limsup_{n \to \infty} Y_{\tau_n}] \leq \mathbb{E}[Y_{\tau_\infty}]$.

Theorem (Existence)

Under (A1) and (A2), there is a regular τ such that $\mathbb{E}[Y_{\tau}] = \sup_{\rho \in \mathbb{T}} \mathbb{E}[Y_{\rho}]$.

Proof

Take the case $V^* := \sup_{\rho \in \mathbb{T}} \mathbb{E}[Y_{\rho}] > -\infty$.

By definition of sup, \exists sequence $\hat{\tau}_1, \hat{\tau}_2, ...$ such that $\mathbb{E}[Y_{\hat{\tau}_n}] \to V^*$.

Define regularised $\rho_n := \inf\{t \geq 0 : \mathbb{E}[Y_{\hat{\tau}_n} \mid \mathcal{F}_t] \leq Y_t\}$; let $\tau_n := \max\{\rho_1, \rho_2, ..., \rho_n\}$, regular.

By the lemmas, $V^* \geq \mathbb{E}[Y_{\tau_n}] \geq \text{max}_{\ell=1,\dots,n} \, \mathbb{E}[Y_{\rho_n}] \geq \mathbb{E}[Y_{\hat{\tau}_n}] \to V^*.$

Define τ_{∞} := $\sup_{n \in \mathbb{N}} \rho_n$. τ_n pointwise increasing \Longrightarrow pointwise converges to τ_{∞} . Moreover, $\limsup_{n \to \infty} Y_{\tau_n} \le Y_{\tau_{\infty}}$ a.s. (from (A2)).

Note: by construction, $\mathbb{E}[\limsup_n Y_{\tau_n}] \leq \mathbb{E}[Y_{\tau_\infty}]$. Since $Y_{\tau_n} \leq \sup_n Y_n$, by Fatou's lemma and (A1), $\mathbb{E}[\liminf_{n \to \infty} \sup_m Y_m - Y_{\tau_n}] \leq \liminf_{n \to \infty} \mathbb{E}[\sup_m Y_m - Y_{\tau_n}] \implies V^* = \limsup_{n \to \infty} \mathbb{E}[Y_{\tau_n}] \leq \mathbb{E}[\limsup_{n \to \infty} Y_{\tau_n}] \leq \mathbb{E}[Y_{\tau_\infty}]$.

Conclude: $V^* = \sup_{\rho \in \mathbb{T}} \mathbb{E}[Y_{\rho}] \ge \mathbb{E}[Y_{\tau_{\infty}}] \ge V^*.$

Example

Let $X_t \sim$ Bernoulli(1/2) iid; $Y_0 := 0$, $Y_t := (2^t - 1) \prod_{\ell=1}^t X_\ell$ for $t \in \mathbb{N}$, $Y_\infty := 0$.

Example

Let $X_t \sim \text{Bernoulli}(1/2)$ iid; $Y_0 := 0$, $Y_t := (2^t - 1) \prod_{\ell=1}^t X_\ell$ for $t \in \mathbb{N}$, $Y_\infty := 0$.

Fails (A1): Note $\sup_{k \le t} Y_k = 2^k - 1$ with probability $2^{-(k+1)}$ for k = 0, 1, ..., t - 1 and with probability 2^{-t} for k = t. Hence $\mathbb{E}[\sup_t Y_t] = \sum_{t=0}^{\infty} (2^t - 1)2^{-(t+1)} = \infty$.

Example

Let $X_t \sim \text{Bernoulli}(1/2)$ iid; $Y_0 := 0$, $Y_t := (2^t - 1) \prod_{\ell=1}^t X_\ell$ for $t \in \mathbb{N}$, $Y_\infty := 0$.

Fails (A1): Note $\sup_{k \leq t} Y_k = 2^k - 1$ with probability $2^{-(k+1)}$ for k = 0, 1, ..., t - 1 and with probability 2^{-t} for k = t. Hence $\mathbb{E}[\sup_t Y_t] = \sum_{t=0}^{\infty} (2^t - 1)2^{-(t+1)} = \infty$.

Satisfies (A2): $Y_t \rightarrow \mathbf{0}$ a.s.

Example

Let $X_t \sim \text{Bernoulli}(1/2)$ iid; $Y_0 := 0$, $Y_t := (2^t - 1) \prod_{\ell=1}^t X_\ell$ for $t \in \mathbb{N}$, $Y_\infty := 0$.

Fails (A1): Note $\sup_{k \le t} Y_k = 2^k - 1$ with probability $2^{-(k+1)}$ for k = 0, 1, ..., t - 1 and with probability 2^{-t} for k = t. Hence $\mathbb{E}[\sup_t Y_t] = \sum_{t=0}^{\infty} (2^t - 1)2^{-(t+1)} = \infty$.

Satisfies (A2): $Y_t \rightarrow \mathbf{0}$ a.s.

Indeed, no optimal stopping time. Conditional on reaching t with $Y_t > 0 \iff \prod_{\ell=1}^t X_\ell = 1$, then don't want to stop: $Y_t = 2^t - 1 < 2^t - 1/2 = (1/2)(2^{t+1} - 1) = \mathbb{E}[Y_{t+1}|Y_t > 0]$.

Example

Let $Y_0:=\mathbf{0},\,Y_t:=\mathbf{1}-\mathbf{1}/t \text{ for } t\in\mathbb{N},\,Y_\infty:=\mathbf{0}.$

Example

Let $Y_0 := \mathbf{0}$, $Y_t := \mathbf{1} - \mathbf{1}/t$ for $t \in \mathbb{N}$, $Y_\infty := \mathbf{0}$.

Satisfies (A1): $Y_t \leq 1$.

Example

Let $Y_0 := \mathbf{0}$, $Y_t := \mathbf{1} - \mathbf{1}/t$ for $t \in \mathbb{N}$, $Y_\infty := \mathbf{0}$.

Satisfies (A1): $Y_t \leq 1$.

Fails (A2): $Y_t \rightarrow 1 > 0 = Y_{\infty}$.

Example

Let $Y_0 := 0$, $Y_t := 1 - 1/t$ for $t \in \mathbb{N}$, $Y_\infty := 0$.

Satisfies (A1): $Y_t \leq 1$.

Fails (A2): $Y_t \rightarrow 1 > 0 = Y_{\infty}$.

Indeed, no optimal stopping time as $Y_t < Y_{t+1}$.

Want something like Bellman equation/DPP: stop today or continue assuming optimal stopping from then on

Need some definitions first...

Want something like Bellman equation/DPP: stop today or continue assuming optimal stopping from then on

Need some definitions first...

Definition

Let $(X_t)_{t\in T}$ be a collection of rv. Z rv is essential supremum of $(X_t)_{t\in T}$, Z = ess sup $_{t\in T}$ X_t , if (i) $\mathbb{P}(Z\geq X_t)$ = 1 $\forall t\in T$ ('probabilistic upper bound'), and (ii) $\forall Z': \mathbb{P}(Z'\geq X_t)$ = 1 $\forall t\in T, \mathbb{P}(Z'\geq Z)$ = 1 (smallest probabilistic upper bound).

Want something like Bellman equation/DPP: stop today or continue assuming optimal stopping from then on

Need some definitions first...

Definition

Let $(X_t)_{t\in \mathcal{T}}$ be a collection of rv. Z rv is essential supremum of $(X_t)_{t\in \mathcal{T}}$, Z = ess sup $_{t\in \mathcal{T}}$ X_t , if (i) $\mathbb{P}(Z\geq X_t)$ = 1 $\forall t\in \mathcal{T}$ ('probabilistic upper bound'), and (ii) $\forall Z': \mathbb{P}(Z'\geq X_t)$ = 1 $\forall t\in \mathcal{T}, \mathbb{P}(Z'\geq Z)$ = 1 (smallest probabilistic upper bound).

Lemma 3

Let $(X_t)_{t \in T}$ be any collection of rv.

An essential supremum always exists.

Furthermore, \exists a countable $C \subset T$: $\sup_{t \in C} X_t = \text{ess sup}_{t \in T} X_t$.

Want something like Bellman equation/DPP: stop today or continue assuming optimal stopping from then on

Need some definitions first...

Definition

Let $(X_t)_{t\in\mathcal{T}}$ be a collection of rv. Z rv is essential supremum of $(X_t)_{t\in\mathcal{T}}$, Z = ess $\sup_{t\in\mathcal{T}} X_t$, if (i) $\mathbb{P}(Z\geq X_t)$ = 1 $\forall t\in\mathcal{T}$ ('probabilistic upper bound'), and (ii) $\forall Z':\mathbb{P}(Z'\geq X_t)$ = 1 $\forall t\in\mathcal{T}$, $\mathbb{P}(Z'\geq Z)$ = 1 (smallest probabilistic upper bound).

Lemma 3

Let $(X_t)_{t \in T}$ be any collection of rv.

An essential supremum always exists.

Furthermore, \exists a countable $C \subset T$: $\sup_{t \in C} X_t = \text{ess sup}_{t \in T} X_t$.

Let
$$U \sim U(\mathbf{0}, \mathbf{1})$$
, $T = [\mathbf{0}, \mathbf{1}]$, and $X_t = \mathbf{1}_{\{c=t\}}$. $\sup_{t \in T} X_t = \mathbf{1} \neq \text{ess sup}_{t \in T} X_t = \mathbf{0}$.

Notation:

$$"X \geq Y" \equiv \mathbb{P}(X \geq Y) = 1.$$

"
$$X \ge Y \text{ on } A$$
" $\equiv \mathbb{P}(\{X \ge Y\} \cap A) = \mathbb{P}(A)$.

Notation:

"
$$X \geq Y$$
" $\equiv \mathbb{P}(X \geq Y) = 1$.

"
$$X \ge Y$$
 on A " $\equiv \mathbb{P}(X \ge Y) \cap A = \mathbb{P}(A)$.

Definition (Regularity from T **onward)**

 $\tau \geq T$ is regular from T onward if for all $t \geq T$, $\mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] > Y_t$ a.s. on $\{\tau > t\}$.

Notation:

"
$$X \ge Y$$
" $\equiv \mathbb{P}(X \ge Y) = 1$.

"
$$X \ge Y$$
 on A " $\equiv \mathbb{P}(X \ge Y) \cap A = \mathbb{P}(A)$.

Definition (Regularity from T **onward)**

 $\tau \geq T$ is regular from T onward if for all $t \geq T$, $\mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] > Y_t$ a.s. on $\{\tau > t\}$.

Lemma 1' (Regularity is wloo)

Under (A1), for any stopping time $\tau \geq \mathcal{T}$ there exists a *regular* stopping time from \mathcal{T} $\rho \geq \mathcal{T}$ such that on $\rho \leq \tau$ with $\mathbb{E}[Y_{\rho}] \geq \mathbb{E}[Y_{\tau}]$.

Notation:

$$"X \ge Y" \equiv \mathbb{P}(X \ge Y) = 1.$$

"
$$X \ge Y$$
 on A " $\equiv \mathbb{P}(X \ge Y) \cap A = \mathbb{P}(A)$.

Definition (Regularity from T **onward)**

 $\tau \geq T$ is regular from T onward if for all $t \geq T$, $\mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] > Y_t$ a.s. on $\{\tau > t\}$.

Lemma 1' (Regularity is wloo)

Under (A1), for any stopping time $\tau \geq T$ there exists a *regular* stopping time from T $\rho \geq T$ such that on $\rho \leq \tau$ with $\mathbb{E}[Y_{\rho}] \geq \mathbb{E}[Y_{\tau}]$.

Lemma 2' (Regularity is closed under ∨)

Under (A1), if $\tau \geq T$ and $\rho \geq T$ are regular from T onward, then $\xi := \tau \vee \rho$ is regular from T onward and $\mathbb{E}[Y_{\xi}] \geq \max\{\mathbb{E}[Y_{\tau}], \mathbb{E}[Y_{\rho}]\}$.

Define:

$$V_t^* := \underset{\tau \geq t}{\operatorname{ess \, sup}} \, \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$$

(optimise from t onward)

Define:

$$V_t^* := \underset{\tau \geq t}{\operatorname{ess sup}} \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t]$$

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), $V_t^* = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}.$

Define:

$$V_t^* := \operatorname{ess\,sup} \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t]$$

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), $V_t^* = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}.$

Proof

1. WTS $V_t^* \leq \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}$.

Take any stopping time τ . On $\{\tau > t\}$, $\mathbb{E}[Y_{\tau} \mid \mathcal{F}_{t+1}] < V_{t+1}^*$.

Define:

$$V_t^* := \operatorname{ess\,sup} \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$$

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), $V_t^* = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}.$

Proof

1. WTS $V_t^* \le \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}.$

Take any stopping time τ . On $\{\tau > t\}$, $\mathbb{E}[Y_{\tau} \mid \mathcal{F}_{t+1}] < V_{t+1}^*$

$$\implies \mathbb{E}[Y_t \mid \mathcal{F}_t] = \mathbb{E}[\mathbb{E}[Y_t \mid \mathcal{F}_{t+1}] \mid \mathcal{F}_t] \le \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t].$$

Define:

$$V_t^* := \underset{\tau > t}{\operatorname{ess sup}} \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t]$$

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), $V_t^* = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}.$

Proof

1. WTS $V_t^* \leq \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}$.

Take any stopping time τ . On $\{\tau > t\}$, $\mathbb{E}[Y_{\tau} \mid \mathcal{F}_{t+1}] < V_{t+1}^*$.

$$\implies \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] = \mathbb{E}[\mathbb{E}[Y_{\tau} \mid \mathcal{F}_{t+1}] \mid \mathcal{F}_t] \leq \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t].$$

$$\implies \mathbb{E}[Y_{\tau}\mid \mathcal{F}_t] = \mathbf{1}_{\{\tau=t\}}Y_t + \mathbf{1}_{\{\tau>t\}}\mathbb{E}[Y_{\tau}\mid \mathcal{F}_t] \leq \max\{Y_t, \mathbb{E}[V_{t+1}^*\mid \mathcal{F}_t]\}.$$

Define:

$$V_t^* := \operatorname{ess\,sup} \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$$
 $\tau \geq t$

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), $V_t^* = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}.$

Proof

1. WTS $V_t^* \leq \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}$.

Take any stopping time τ . On $\{\tau > t\}$, $\mathbb{E}[Y_{\tau} \mid \mathcal{F}_{t+1}] \leq V_{t+1}^*$.

$$\implies \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] = \mathbb{E}[\mathbb{E}[Y_{\tau} \mid \mathcal{F}_{t+1}] \mid \mathcal{F}_t] \leq \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t].$$

$$\implies \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] = \mathbf{1}_{\{\tau = t\}} Y_t + \mathbf{1}_{\{\tau > t\}} \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t] \leq \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}.$$

$$\implies V_t^* \leq \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}.$$

Define:

$$V_t^* := \underset{\tau > t}{\operatorname{ess sup}} \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t]$$

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), $V_t^* = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}.$

Proof

2. WTS $V_t^* \ge \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}$.

Define:

$$V_t^* := \operatorname{ess\,sup} \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t]$$

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), $V_t^* = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}.$

Proof

2. WTS $V_t^* \ge \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}$.

By Lemma 3, \exists sequence $\hat{\tau}_1, \hat{\tau}_2, ...$ with $\hat{\tau}_n \geq t+1$ such that $\mathbb{E}[Y_{\hat{\tau}_n} \mid \mathcal{F}_t] \to V_{t+1}^*$.

Define:

$$V_t^* := \operatorname{ess\,sup} \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t]$$

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), $V_t^* = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}.$

Proof

2. WTS $V_t^* \ge \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}$.

By Lemma 3, \exists sequence $\hat{\tau}_1, \hat{\tau}_2, ...$ with $\hat{\tau}_n \geq t + 1$ such that $\mathbb{E}[Y_{\hat{\tau}_n} \mid \mathcal{F}_t] \to V_{t+1}^*$.

Define regularised from t+1 onward $\rho_n := \inf\{\ell > t \mid \mathbb{E}[Y_{\hat{\tau}_n}] \leq Y_\ell\}$; let $\tau_n := \max\{\rho_1, \rho_2, ..., \rho_n\}$, regular from t onward.

Define:

$$V_t^* := \operatorname{ess\,sup} \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$$

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), $V_t^* = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}$.

Proof

2. WTS $V_t^* \geq \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}$.

By Lemma 3, \exists sequence $\hat{\tau}_1, \hat{\tau}_2, ...$ with $\hat{\tau}_n \geq t + 1$ such that $\mathbb{E}[Y_{\hat{\tau}_n} \mid \mathcal{F}_t] \to V_{t+1}^*$.

Define regularised from t+1 onward $\rho_n := \inf\{\ell > t \mid \mathbb{E}[Y_{\hat{\tau}_n}] \leq Y_\ell\}$; let $\tau_n := \max\{\rho_1, \rho_2, ..., \rho_n\}$, regular from t onward.

By the lemmas 1' and 2',

by the lemmas 1 and 2,
$$V_t^* \geq \mathbb{E}[Y_{\tau_n} \mid \mathcal{F}_t] = \mathbb{E}[\mathbb{E}[Y_{\tau_n} \mid \mathcal{F}_{t+1}] \mid \mathcal{F}_t] \geq \mathbb{E}\left[\max_{\ell=1,\dots,n} \mathbb{E}[Y_{\hat{\tau}_\ell} \mid \mathcal{F}_{t+1}] \middle| \mathcal{F}_t\right] \rightarrow \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]$$

Define:

$$V_t^* := \operatorname{ess\,sup} \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$$

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), $V_t^* = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}.$

Proof

2. WTS $V_t^* \geq \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}$.

By Lemma 3, \exists sequence $\hat{\tau}_1, \hat{\tau}_2, ...$ with $\hat{\tau}_n \geq t + 1$ such that $\mathbb{E}[Y_{\hat{\tau}_n} \mid \mathcal{F}_t] \to V_{t+1}^*$.

Define regularised from t+1 onward $\rho_n := \inf\{\ell > t \mid \mathbb{E}[Y_{\hat{\tau}_n}] \leq Y_\ell\}$; let $\tau_n := \max\{\rho_1, \rho_2, ..., \rho_n\}$, regular from t onward.

Dutha large as 1' and 0'

By the lemmas 1' and 2',
$$V_t^* \geq \mathbb{E}[Y_{\tau_n} \mid \mathcal{F}_t] = \mathbb{E}[\mathbb{E}[Y_{\tau_n} \mid \mathcal{F}_{t+1}] \mid \mathcal{F}_t] \geq \mathbb{E}\left[\max_{\ell=1,\dots,n} \mathbb{E}[Y_{\hat{\tau}_\ell} \mid \mathcal{F}_{t+1}] \middle| \mathcal{F}_t\right] \rightarrow \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]$$

Since, trivially, $V_t^* \ge Y_t$, we get $V_t^* \ge \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}$.

23

$$V_t^* := \underset{\tau \geq t}{\text{ess sup}} \, \mathbb{E}[Y_\tau \mid \mathcal{F}_t] = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}; \qquad \tau^* := \inf\{t \geq \mathbf{0} \mid Y_t = V_t^*\}$$

Example

Let $Y_0 := 0$, $Y_t := 1 - 1/t$ for $t \in \mathbb{N}$, $Y_{\infty} := 0$.

Satisfies (A1): $Y_t \leq 1$.

Fails (A2): $Y_t \rightarrow 1 > 0 = Y_{\infty}$.

Indeed, no optimal stopping time as $Y_t < Y_{t+1}$.

Note: $\tau^* = \infty$ and $Y_{\tau^*} = 0 < V_t^*$.

$$V_t^* := \underset{\tau > t}{\text{ess sup}} \, \mathbb{E}[Y_\tau \mid \mathcal{F}_t] = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}; \qquad \tau^* := \inf\{t \geq \mathbf{0} \mid Y_t = V_t^*\}$$

Lemma

Take any stopping time τ . Under (A1), $\mathbb{E}[Y_{\tau \wedge \tau^*}] \geq \mathbb{E}[Y_{\tau}]$.

$$V_t^* := \underset{\tau > t}{\text{ess sup}} \, \mathbb{E}[Y_\tau \mid \mathcal{F}_t] = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}; \qquad \tau^* := \inf\{t \geq \mathbf{0} \mid Y_t = V_t^*\}$$

Lemma

Take any stopping time $\tau.$ Under (A1), $\mathbb{E}[Y_{\tau \wedge \tau^*}] \geq \mathbb{E}[Y_{\tau}].$

Stopping whenever τ^* says to stop can only improve the expected payoff.

$$V_t^* := \text{ess sup } \mathbb{E}[Y_\tau \mid \mathcal{F}_t] = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}; \qquad \tau^* := \inf\{t \ge 0 \mid Y_t = V_t^*\}$$

Lemma

Take any stopping time τ . Under (A1), $\mathbb{E}[Y_{\tau \wedge \tau^*}] \geq \mathbb{E}[Y_{\tau}]$.

On
$$\{\tau^* = t < \tau\}$$
, $Y_{\tau^*} = Y_t = V_t^* \ge \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$.

$$V_t^* := \text{ess sup } \mathbb{E}[Y_\tau \mid \mathcal{F}_t] = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}; \qquad \tau^* := \inf\{t \ge 0 \mid Y_t = V_t^*\}$$

Lemma

Take any stopping time τ . Under (A1), $\mathbb{E}[Y_{\tau \wedge \tau^*}] \geq \mathbb{E}[Y_{\tau}]$.

On
$$\{\tau^* = t < \tau\}$$
, $Y_{\tau^*} = Y_t = V_t^* \ge \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$. Hence,
$$\mathbb{E}[Y_{\tau \wedge \tau^*}] = \mathbb{E}[\mathbf{1}_{\{\tau^* < \tau\}}Y_{\tau^*}] + \mathbb{E}[\mathbf{1}_{\{\tau^* \ge \tau\}}Y_\tau]$$

$$V_t^* := \text{ess sup } \mathbb{E}[Y_\tau \mid \mathcal{F}_t] = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}; \qquad \tau^* := \inf\{t \ge 0 \mid Y_t = V_t^*\}$$

Lemma

Take any stopping time τ . Under (A1), $\mathbb{E}[Y_{\tau \wedge \tau^*}] \geq \mathbb{E}[Y_{\tau}]$.

On
$$\{\tau^* = t < \tau\}$$
, $Y_{\tau^*} = Y_t = V_t^* \ge \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t]$. Hence,
$$\mathbb{E}[Y_{\tau \wedge \tau^*}] = \mathbb{E}[\mathbf{1}_{\{\tau^* < \tau\}}Y_{\tau^*}] + \mathbb{E}[\mathbf{1}_{\{\tau^* \ge \tau\}}Y_{\tau}]$$
$$= \mathbb{E}\left[\sum_{t=0}^{\infty} \mathbf{1}_{\{\tau^* = t < \tau\}}Y_t\right] + \mathbb{E}[\mathbf{1}_{\{\tau^* \ge \tau\}}Y_{\tau}]$$

$$V_t^* := \text{ess sup } \mathbb{E}[Y_\tau \mid \mathcal{F}_t] = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}; \qquad \tau^* := \inf\{t \ge 0 \mid Y_t = V_t^*\}$$

Lemma

Take any stopping time τ . Under (A1), $\mathbb{E}[Y_{\tau \wedge \tau^*}] \geq \mathbb{E}[Y_{\tau}]$.

On
$$\{\tau^* = t < \tau\}$$
, $Y_{\tau^*} = Y_t = V_t^* \ge \mathbb{E}[Y_{\tau} \mid \mathcal{F}_t]$. Hence,
$$\mathbb{E}[Y_{\tau \wedge \tau^*}] = \mathbb{E}[\mathbf{1}_{\{\tau^* < \tau\}}Y_{\tau^*}] + \mathbb{E}[\mathbf{1}_{\{\tau^* \ge \tau\}}Y_{\tau}]$$
$$= \mathbb{E}\left[\sum_{t=0}^{\infty} \mathbf{1}_{\{\tau^* = t < \tau\}}Y_t\right] + \mathbb{E}[\mathbf{1}_{\{\tau^* \ge \tau\}}Y_{\tau}]$$
$$= \mathbb{E}\left[\sum_{t=0}^{\infty} \mathbf{1}_{\{\tau^* = t < \tau\}}V_t^*\right] + \mathbb{E}[\mathbf{1}_{\{\tau^* \ge \tau\}}Y_{\tau}]$$

$$V_t^* := \underset{\tau > t}{\text{ess sup }} \mathbb{E}[Y_\tau \mid \mathcal{F}_t] = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}; \qquad \tau^* := \inf\{t \geq 0 \mid Y_t = V_t^*\}$$

Lemma

Take any stopping time τ . Under (A1), $\mathbb{E}[Y_{\tau \wedge \tau^*}] \geq \mathbb{E}[Y_{\tau}]$.

On
$$\{\tau^* = t < \tau\}$$
, $Y_{\tau^*} = Y_t = V_t^* \ge \mathbb{E}[Y_\tau \mid \mathcal{F}_t]$. Hence,
$$\mathbb{E}[Y_{\tau \wedge \tau^*}] = \mathbb{E}[\mathbf{1}_{\{\tau^* < \tau\}}Y_{\tau^*}] + \mathbb{E}[\mathbf{1}_{\{\tau^* \ge \tau\}}Y_\tau]$$

$$= \mathbb{E}\left[\sum_{t=0}^{\infty} \mathbf{1}_{\{\tau^* = t < \tau\}}Y_t\right] + \mathbb{E}[\mathbf{1}_{\{\tau^* \ge \tau\}}Y_\tau]$$

$$= \mathbb{E}\left[\sum_{t=0}^{\infty} \mathbf{1}_{\{\tau^* = t < \tau\}}V_t^*\right] + \mathbb{E}[\mathbf{1}_{\{\tau^* \ge \tau\}}Y_\tau]$$

$$\ge \mathbb{E}\left[\sum_{t=0}^{\infty} \mathbf{1}_{\{\tau^* = t < \tau\}}\mathbb{E}[Y_\tau \mid \mathcal{F}_t]\right] + \mathbb{E}[\mathbf{1}_{\{\tau^* \ge \tau\}}Y_\tau] = \mathbb{E}[Y_\tau].$$

$$V_t^* := \underset{\tau > t}{\text{ess sup}} \, \mathbb{E}[Y_\tau \mid \mathcal{F}_t] = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}; \qquad \tau^* := \inf\{t \geq \mathbf{0} \mid Y_t = V_t^*\}$$

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, τ^* is optimal.

$$V_t^* := \underset{\tau > t}{\text{ess sup}} \, \mathbb{E}[Y_\tau \mid \mathcal{F}_t] = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}; \qquad \tau^* := \inf\{t \geq \mathbf{0} \mid Y_t = V_t^*\}$$

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, $\boldsymbol{\tau}^*$ is optimal.

Proof

Let τ be an optimal stopping time.

$$V_t^* := \operatorname{ess\,sup} \mathbb{E}[Y_\tau \mid \mathcal{F}_t] = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}; \qquad \tau^* := \inf\{t \geq \mathbf{0} \mid Y_t = V_t^*\}$$

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, $\boldsymbol{\tau}^*$ is optimal.

Proof

Let τ be an optimal stopping time.

By Lemma 4, $\tau' := \tau \wedge \tau^*$ must also be optimal.

$$V_t^* := \text{ess sup } \mathbb{E}[Y_\tau \mid \mathcal{F}_t] = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}; \qquad \tau^* := \inf\{t \geq 0 \mid Y_t = V_t^*\}$$

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, $\boldsymbol{\tau}^*$ is optimal.

Proof

Let τ be an optimal stopping time.

By Lemma 4, $\tau' := \tau \wedge \tau^*$ must also be optimal.

By Lemma 1, there is a regular $\tau'': \mathbb{E}[Y_{\tau''}] \geq \mathbb{E}[Y_{\tau'}]$ and $\tau'' \leq \tau' \leq \tau^*$. Hence, τ'' must also be optimal.

$$V_t^* := \underset{\tau \geq t}{\text{ess sup}} \, \mathbb{E}[Y_\tau \mid \mathcal{F}_t] = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}; \qquad \tau^* := \inf\{t \geq \mathbf{0} \mid Y_t = V_t^*\}$$

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, τ^* is optimal.

Proof

Let τ be an optimal stopping time.

By Lemma 4, $\tau' := \tau \wedge \tau^*$ must also be optimal.

By Lemma 1, there is a regular $\tau'': \mathbb{E}[Y_{\tau''}] \geq \mathbb{E}[Y_{\tau'}]$ and $\tau'' \leq \tau' \leq \tau^*$. Hence, τ'' must also be optimal.

Finally, by Lemma 2, $\tau'' \lor \tau^*$ must also be optimal. Note that $\tau'' \lor \tau^* = \tau^*$ by construction.

$$\begin{aligned} V_t^* &:= \operatorname{ess\,sup} \mathbb{E}[Y_\tau \mid \mathcal{F}_t] = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}; \\ \tau^* &:= \inf\{t \geq 0 \mid Y_t = V_t^*\} = \inf\{t \geq 0 \mid Y_t \geq \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\} \end{aligned}$$

It can be shown that τ^* is the **earliest optimal stopping time**, i.e., $\tau^* \leq \tau \; \forall \; \text{optimal } \tau$. (Intuition: If $\tau = t < \tau^*$, then $Y_t < V_t^*$ and an improvement can be reached)

$$\begin{aligned} & V_t^* := \operatorname{ess\,sup} \mathbb{E}[Y_\tau \mid \mathcal{F}_t] = \max\{Y_t, \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}; \\ & \tau \geq t \\ & \tau^* := \inf\{t \geq 0 \mid Y_t = V_t^*\} = \inf\{t \geq 0 \mid Y_t \geq \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\} \end{aligned}$$

It can be shown that τ^* is the **earliest optimal stopping time**, i.e., $\tau^* \leq \tau \, \forall$ optimal τ . (Intuition: If $\tau = t < \tau^*$, then $Y_t < V_t^*$ and an improvement can be reached)

Another stopping time: $\tau^{**} := \inf\{t \geq 0 \mid Y_t > \mathbb{E}[V_{t+1}^* \mid \mathcal{F}_t]\}$

It can be shown that τ^{**} is the **latest optimal stopping time**, i.e., $\tau \leq \tau^{**} \ \forall$ optimal τ .

Gonçalves (UCL) Stopping 28