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Economic Theory

Goals
Studies behaviour
Understand how different forces interact and lead to different outcomes
Positive view: Explain patterns, make predictions
Normative view: Prescribe behaviour
Examples: consumer demand and firm pricing, student applications to university,
voting, technology adoption, hospital residency program management

(Not particular to theory: in essence, all science strives for generality)

Models as maps, simplified description of reality
Behavioural implications = Empirical content

This course
Develop building blocks
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Overview of the Course

This term: how people make decisions when faced with uncertainty, limited
information, and evolving opportunities

Topics
1. Stopping: accepting a job offer.
2. Stopping and choosing: selling a house.
3. Learning and Choosing: buying a computer.
4. Searching: shopping for clothes
5. Social Learning: checking neighbours’ crop yields.
6. Remembering: ordering at a restaurant.
7. Learning in Games: adjusting prices.
8. Common Learning: attacking a currency.

Very unlikely that we’ll cover all the topics.
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Overview of the Course

Lectures provide fundamentals.

Presentations:
Every week starting from next week.
Everyone required to prepare a 15 minute presentation on an assigned paper.
One person will be selected at random to present.

Gonçalves (UCL) Stopping 3



Overview

1. Why Economic Theory

2. Overview of the Course

3. Stopping: Searching for a Job
– Job Search
– Job Search with Discounting

4. Optimal Stopping: Existence and Regularity



Job Search

Accept offer Yt, continue searching with a per period cost of c.

Interpretation:
Job search (McCall 1970 QJE): TIOLI salary offers Yt, cost to search c.
Selling a house/asset: TIOLI offers Yt, council tax/management fees c.

Yt ∼ F, iid; F continuous, strictly increasing.

Assume E[1Yt≥0Yt] < ∞; Y0 = 0; P(Yt > c) > 0.
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Job search

Accept and get Yt (present value of getting same wage forever);
Refuse and get z and face same problem tomorrow

Markov problem; state variable = Yt

Set up Bellman equation; V(Yt) = max{Yt,E[V(Yt+1)] – c}
(iid =⇒ stationary problem)

Value: V(Yt)
(handwavy: this presumes a solution and we don’t know yet if/why we can do this)

Define Vt := V(Yt) and V̄ = E[V(Yt)]

Define ỹ := V̄ – c

Take expectations and get ỹ + c = E[max{Yt, ỹ}] ⇐⇒ c = E[(Yt – ỹ)+] =
∫∞
ỹ y dF(y)

F continuous and strictly increasing: ∃!ỹ : c = E[(Yt – ỹ)+]

ỹ: reservation value

Optimal rule: continue if and only if Yt < ỹ
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Job Search with Discounting

Accept offer Yt, continue searching and receive z; discount factor β ∈ (0, 1).

Interpretation:
Job search: TIOLI salary offers Yt, unemployment subsidy z, cost of time β.
Selling a house/asset: TIOLI offers Yt, rent acrued z, interest rate r, discount factor

β = (1 + r)–1.

Yt ∼ F, iid; F continuous, strictly increasing.

Assume E[1Yt≥0Yt] < ∞; Y0 = 0; P(Yt > c) > 0.
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Job Search with Discounting

Define Ŷt :=
β
t

1–β
Yt (present value).

Accept and get Yt forever ≡ Accept and get Ŷt
Refuse, get z, and face same problem tomorrow but discounted by β.

Markov problem; state variable = Ŷt

Set up Bellman equation; V(Ŷt) = max{Ŷt, z + βE[V(Ŷt+1)]}

Value: V(Ŷt)

Brief refresher...
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β
t

1–β
Yt (present value).

Accept and get Yt forever ≡ Accept and get Ŷt
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Refresher

Definition

T : X → X is a contraction on (X, d) if ∃δ ∈ [0, 1) : d(T(x),T(y)) ≤ δd(x, y) ∀x, y ∈ X.

Banach Fixed-Point Theorem

Let (X, d) be a non-empty completemetric space and T a contractionmapping on (X, d).
Then, ∃!x∗ ∈ X : T(x∗) = x∗. Moreover, for any x0 ∈ X, x∗ = limn→∞ Tn(x0), where
Tn+1 := T ◦ Tn and T1 := T.

Proof

Let xn := Tn(x0). Then d(xn+1, xn) = d(Tn(x1),Tn(x0)) ≤ δ
nd(x1, x0), hence {xn}n is a Cauchy

sequence.
(X, d) complete ≡ Cauchy sequences converge =⇒ xn converges to some x∗ = T(x∗).
Take any y0 ∈ X \ {x0}; define yn := Tn(y0); yn → y∗.
If x∗ ̸= y∗, then d(y∗, x∗) = d(Tn(y∗),Tn(x∗)) = δ

nd(y∗, x∗) < d(y∗, x∗), a contradiction.
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Refresher

Blackwell’s Conditions for Contraction Mapping

Let B(X) denote the set of bounded real functions on some nonempty set X endowed
with the sup-metric d∞. Suppose T : B(X) → B(X) satisfies (i) ∀f , g ∈ B(X) : f ≥ g =⇒
T(f) ≥ T(g), and (ii) ∃δ ∈ [0, 1) s.t. T(f + α) ≤ T(f) + δα ∀f ∈ B(X) and ∀α ∈ R+. Then T
is a contraction.

Proof

For any f , g ∈ B(X) and x ∈ X, f(x) – g(x) ≤ |f(x) – g(x)| ≤ d∞(f , g).
(i) and (ii): f ≤ g + d∞(f , g) =⇒ T(f) ≤ T(g) + δd∞(f , g)
and, symmetrically, T(g) ≤ T(f) + δd∞(f , g).
This implies d∞(T(f),T(g)) ≤ δd∞(f , g).
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Job Search with Discounting

Define Ŷt :=
β
t

1–β
Yt (present value).

Accept and get Yt forever ≡ Accept and get Ŷt
Refuse, get z, and face same problem tomorrow but discounted by β.

Markov problem; state variable = Ŷt

Set up Bellman equation; V(Ŷt) = max{Ŷt, z + βE[V(Ŷt+1)]}

Value: V(Ŷt), well-defined

Define Vt := V(Ŷt) and V̄ = E[V(Ŷt)]

Take expectations and get
V̄ = E[max{Ŷt, z + βV̄}] ⇐⇒ V̄(1 – β) = z + E[(Ŷt – (z + βV̄))+] =

∫∞
z+βV̄

1
1–β

y dF(y)

F continuous: ∃!V̄ : V̄(1 – β) = z + E[(Ŷt – (z + βV̄))+]

ỹ := (1 – β)(z + βV̄): reservation value

Optimal rule: continue if and only if Yt < ỹ
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Overview

1. Why Economic Theory

2. Overview of the Course

3. Stopping: Searching for a Job

4. Optimal Stopping: Existence and Regularity
– General Setup
– Regular Stopping Times
– Existence
– Characterisation



Going Beyond the Basic Setting

Yt may not be iid
- Depend on time of unemployment
- Result from underlying dynamic game between recruiting firms
- Uncertain market conditions (hence perception of F evolves over time depending
on past Yℓ)
...

Introduce general tools to tackle the problem
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Setup and Assumptions
{X0,X1,X2, ...} rv whose joint distribution is assumed to be known; write Xt := (Xℓ)ℓ=1,...,t.

Sequence of functions xt 7→ yt(xt) ∈ R; write Yt := yt(xt).

Filtration F = {Ft} = σ(Xt).

Adapted payoff process {Yt}; terminal Y∞ (possibly –∞).

Stopping time τ: {τ ≤ t} ∈ Ft for all t; feasible set T.

Objective: maximise value of Y by adequately choosing stopping time, sup
τ∈T

E[Yτ].

Two questions:
1. When is there actually an optimal stopping time? (Is sup actually a max?)
2. If so, what does it look like?

Previous applications: guess and verify or use specific structural assumptions.
Now: use very general assumptions.

Standing assumptions
(A1) E

[
supt≥0 Yt

]
< ∞.

(A2) limt→∞ E[Yt] ≤ Y∞ a.s.

Note: (A1) implies supτ E[Yτ] < ∞
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Regular Stopping Times

Definition (Regularity)

τ is regular if for all t, E[Yτ | Ft] > Yt a.s. on {τ > t}.

Lemma 1 (Regularity is wloo)

Under (A1), for any stopping time τ there exists a regular stopping time ρ ≤ τ with
E[Yρ] ≥ E[Yτ].

Lemma 2 (Regularity is closed under ∨)

Under (A1), if τ and ρ are regular, then ξ := τ∨ρ is regular and E[Yξ] ≥ max{E[Yτ],E[Yρ]}.
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Proof of Lemma 1 (Regularity wloo)
Proof

Fix τ with E[|Yτ|] < ∞ (true by (A1) since Yτ ≤ sups Ys).

Define Zt := E[Yτ | Ft] and let ρ := inf{t ≥ 0 : Zt ≤ Yt}.

On {ρ > t}: Yt < Zt = E[Yτ | Ft], so ρ is regular.

On {ρ = t}: Yρ = Yt ≥ Zt = E[Yτ | Ft]. On {ρ = ∞}: Yρ = Y∞ = Yτ a.s.

Hence

E[Yρ] =
∞∑
t=0

E[1{ρ=t}Yt] + E[1{ρ=∞}Y∞]

≥
∞∑
t=0

E[1{ρ=t}E[Yτ | Ft]] + E[1{ρ=∞}Yτ]

≥
∞∑
t=0

E[1{ρ=t}Yτ] + E[1{ρ=∞}Yτ]

= E[Yτ].

Suppose ¬(ρ ≤ τ); note that, at {ρ > τ = t}, Zt = Zτ = Yτ < Zt, a contradiction.

Gonçalves (UCL) Stopping 14



Proof of Lemma 1 (Regularity wloo)
Proof

Fix τ with E[|Yτ|] < ∞ (true by (A1) since Yτ ≤ sups Ys).

Define Zt := E[Yτ | Ft] and let ρ := inf{t ≥ 0 : Zt ≤ Yt}.

On {ρ > t}: Yt < Zt = E[Yτ | Ft], so ρ is regular.

On {ρ = t}: Yρ = Yt ≥ Zt = E[Yτ | Ft]. On {ρ = ∞}: Yρ = Y∞ = Yτ a.s.

Hence

E[Yρ] =
∞∑
t=0

E[1{ρ=t}Yt] + E[1{ρ=∞}Y∞]

≥
∞∑
t=0

E[1{ρ=t}E[Yτ | Ft]] + E[1{ρ=∞}Yτ]

≥
∞∑
t=0

E[1{ρ=t}Yτ] + E[1{ρ=∞}Yτ]

= E[Yτ].

Suppose ¬(ρ ≤ τ); note that, at {ρ > τ = t}, Zt = Zτ = Yτ < Zt, a contradiction.

Gonçalves (UCL) Stopping 14



Proof of Lemma 1 (Regularity wloo)
Proof

Fix τ with E[|Yτ|] < ∞ (true by (A1) since Yτ ≤ sups Ys).

Define Zt := E[Yτ | Ft] and let ρ := inf{t ≥ 0 : Zt ≤ Yt}.

On {ρ > t}: Yt < Zt = E[Yτ | Ft], so ρ is regular.

On {ρ = t}: Yρ = Yt ≥ Zt = E[Yτ | Ft]. On {ρ = ∞}: Yρ = Y∞ = Yτ a.s.

Hence

E[Yρ] =
∞∑
t=0

E[1{ρ=t}Yt] + E[1{ρ=∞}Y∞]

≥
∞∑
t=0

E[1{ρ=t}E[Yτ | Ft]] + E[1{ρ=∞}Yτ]

≥
∞∑
t=0

E[1{ρ=t}Yτ] + E[1{ρ=∞}Yτ]

= E[Yτ].

Suppose ¬(ρ ≤ τ); note that, at {ρ > τ = t}, Zt = Zτ = Yτ < Zt, a contradiction.

Gonçalves (UCL) Stopping 14



Proof of Lemma 1 (Regularity wloo)
Proof

Fix τ with E[|Yτ|] < ∞ (true by (A1) since Yτ ≤ sups Ys).

Define Zt := E[Yτ | Ft] and let ρ := inf{t ≥ 0 : Zt ≤ Yt}.

On {ρ > t}: Yt < Zt = E[Yτ | Ft], so ρ is regular.

On {ρ = t}: Yρ = Yt ≥ Zt = E[Yτ | Ft]. On {ρ = ∞}: Yρ = Y∞ = Yτ a.s.

Hence

E[Yρ] =
∞∑
t=0

E[1{ρ=t}Yt] + E[1{ρ=∞}Y∞]

≥
∞∑
t=0

E[1{ρ=t}E[Yτ | Ft]] + E[1{ρ=∞}Yτ]

≥
∞∑
t=0

E[1{ρ=t}Yτ] + E[1{ρ=∞}Yτ]

= E[Yτ].

Suppose ¬(ρ ≤ τ); note that, at {ρ > τ = t}, Zt = Zτ = Yτ < Zt, a contradiction.

Gonçalves (UCL) Stopping 14



Proof of Lemma 1 (Regularity wloo)
Proof

Fix τ with E[|Yτ|] < ∞ (true by (A1) since Yτ ≤ sups Ys).

Define Zt := E[Yτ | Ft] and let ρ := inf{t ≥ 0 : Zt ≤ Yt}.

On {ρ > t}: Yt < Zt = E[Yτ | Ft], so ρ is regular.

On {ρ = t}: Yρ = Yt ≥ Zt = E[Yτ | Ft]. On {ρ = ∞}: Yρ = Y∞ = Yτ a.s.

Hence

E[Yρ] =
∞∑
t=0

E[1{ρ=t}Yt] + E[1{ρ=∞}Y∞]

≥
∞∑
t=0

E[1{ρ=t}E[Yτ | Ft]] + E[1{ρ=∞}Yτ]

≥
∞∑
t=0

E[1{ρ=t}Yτ] + E[1{ρ=∞}Yτ]

= E[Yτ].

Suppose ¬(ρ ≤ τ); note that, at {ρ > τ = t}, Zt = Zτ = Yτ < Zt, a contradiction.

Gonçalves (UCL) Stopping 14



Proof of Lemma 1 (Regularity wloo)
Proof

Fix τ with E[|Yτ|] < ∞ (true by (A1) since Yτ ≤ sups Ys).

Define Zt := E[Yτ | Ft] and let ρ := inf{t ≥ 0 : Zt ≤ Yt}.

On {ρ > t}: Yt < Zt = E[Yτ | Ft], so ρ is regular.

On {ρ = t}: Yρ = Yt ≥ Zt = E[Yτ | Ft]. On {ρ = ∞}: Yρ = Y∞ = Yτ a.s.

Hence

E[Yρ] =
∞∑
t=0

E[1{ρ=t}Yt] + E[1{ρ=∞}Y∞]

≥
∞∑
t=0

E[1{ρ=t}E[Yτ | Ft]] + E[1{ρ=∞}Yτ]

≥
∞∑
t=0

E[1{ρ=t}Yτ] + E[1{ρ=∞}Yτ]

= E[Yτ].

Suppose ¬(ρ ≤ τ); note that, at {ρ > τ = t}, Zt = Zτ = Yτ < Zt, a contradiction.

Gonçalves (UCL) Stopping 14



Proof of Lemma 1 (Regularity wloo)
Proof

Fix τ with E[|Yτ|] < ∞ (true by (A1) since Yτ ≤ sups Ys).

Define Zt := E[Yτ | Ft] and let ρ := inf{t ≥ 0 : Zt ≤ Yt}.

On {ρ > t}: Yt < Zt = E[Yτ | Ft], so ρ is regular.

On {ρ = t}: Yρ = Yt ≥ Zt = E[Yτ | Ft]. On {ρ = ∞}: Yρ = Y∞ = Yτ a.s.

Hence

E[Yρ] =
∞∑
t=0

E[1{ρ=t}Yt] + E[1{ρ=∞}Y∞]

≥
∞∑
t=0

E[1{ρ=t}E[Yτ | Ft]] + E[1{ρ=∞}Yτ]

≥
∞∑
t=0

E[1{ρ=t}Yτ] + E[1{ρ=∞}Yτ]

= E[Yτ].

Suppose ¬(ρ ≤ τ); note that, at {ρ > τ = t}, Zt = Zτ = Yτ < Zt, a contradiction.
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Proof of Lemma 2 (Regularity is closed under ∨)
Proof

1. Proving ξ is regular:

{ξ > t} = {ξ = τ > t} ∪ {ξ = ρ > t}.

On {ξ = τ > t}, E[Yξ | Ft] = E[Yτ | Ft] > Yt a.s. ∵ τ is regular.

Symmetrically, on {ξ = ρ > t}, E[Yξ | Ft] = E[Yρ | Ft] > Yt a.s. ∵ ρ is regular.

2. Proving E[Yξ] ≥ E[Yτ] ∨ E[Yρ]:
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On {ξ = ρ > τ = t}, ξ = ρ and E[Yξ | Ft] = E[Yρ | Ft] > Yt = Yτ a.s.

Hence
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E[1{τ=t}E[Yξ | Ft]] + E[1{τ=∞}Yξ]

≥
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E[1{τ=t}Yτ] + E[1{τ=∞}Yτ] = E[Yτ].

By a symmetric argument, E[Yξ] ≥ max{E[Yτ],E[Yρ]}.
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Existence

Theorem (Existence)

Under (A1) and (A2), there is a regular τ such that E[Yτ] = supρ∈T E[Yρ].

Proof

Take the case V∗ := supρ∈T E[Yρ] > –∞.

By definition of sup, ∃ sequence τ̂1, τ̂2, ... such that E[Yτ̂n ] → V∗.

Define regularised ρn := inf{t ≥ 0 : E[Yτ̂n | Ft] ≤ Yt}; let τn := max{ρ1, ρ2, ..., ρn}, regular.

By the lemmas, V∗ ≥ E[Yτn ] ≥ maxℓ=1,...,n E[Yρn ] ≥ E[Yτ̂n ] → V∗.

Define τ∞ := supn∈N ρn. τn pointwise increasing =⇒ pointwise converges to τ∞.
Moreover, lim supn→∞ Yτn ≤ Yτ∞ a.s. (from (A2)).

Note: by construction, E[lim supn Yτn ] ≤ E[Yτ∞ ]. Since Yτn ≤ supn Yn, by Fatou’s lemma
and (A1), E[lim infn→∞ supm Ym – Yτn ] ≤ lim infn→∞ E[supm Ym – Yτn ] =⇒ V∗ =
lim supn→∞ E[Yτn ] ≤ E[lim supn→∞ Yτn ] ≤ E[Yτ∞ ].

Conclude: V∗ = supρ∈T E[Yρ] ≥ E[Yτ∞ ] ≥ V∗.
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Assumptions

Example

Let Xt ∼Bernoulli(1/2) iid; Y0 := 0, Yt := (2t – 1)
∏t

ℓ=1 Xℓ for t ∈ N, Y∞ := 0.

Fails (A1): Note supk≤t Yk = 2k – 1 with probability 2–(k+1) for k = 0, 1, ..., t – 1 and with
probability 2–t for k = t. Hence E[supt Yt] =

∑∞
t=0(2

t – 1)2–(t+1) = ∞.

Satisfies (A2): Yt → 0 a.s.

Indeed, no optimal stopping time. Conditional on reaching twithYt > 0 ⇐⇒
∏t

ℓ=1 Xℓ =
1, then don’t want to stop: Yt = 2t – 1 < 2t – 1/2 = (1/2)(2t+1 – 1) = E[Yt+1|Yt > 0].
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Assumptions

Example

Let Y0 := 0, Yt := 1 – 1/t for t ∈ N, Y∞ := 0.

Satisfies (A1): Yt ≤ 1.

Fails (A2): Yt → 1 > 0 = Y∞.

Indeed, no optimal stopping time as Yt < Yt+1.
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Dynamic Programming Principle
Want something like Bellman equation/DPP: stop today or continue assuming optimal

stopping from then on

Need some definitions first...

Definition

Let (Xt)t∈T be a collection of rv. Z rv is essential supremumof (Xt)t∈T , Z = ess supt∈T Xt,
if (i) P(Z ≥ Xt) = 1 ∀t ∈ T (‘probabilistic upper bound’), and (ii) ∀Z′ : P(Z′ ≥ Xt) = 1
∀t ∈ T, P(Z′ ≥ Z) = 1 (smallest probabilistic upper bound).

Lemma 3

Let (Xt)t∈T be any collection of rv.
An essential supremum always exists.
Furthermore, ∃ a countable C ⊂ T : supt∈C Xt = ess supt∈T Xt.

Let U ∼ U(0, 1), T = [0, 1], and Xt = 1{c=t}. supt∈T Xt = 1 ̸= ess supt∈T Xt = 0.

Gonçalves (UCL) Stopping 19
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Regularity from T Onward

Notation:
“X ≥ Y” ≡ P(X ≥ Y) = 1.
“X ≥ Y on A” ≡ P({X ≥ Y} ∩ A) = P(A).

Definition (Regularity from T onward)

τ ≥ T is regular from T onward if for all t ≥ T, E[Yτ | Ft] > Yt a.s. on {τ > t}.

Lemma 1’ (Regularity is wloo)

Under (A1), for any stopping time τ ≥ T there exists a regular stopping time from T
ρ ≥ T such that on ρ ≤ τ with E[Yρ] ≥ E[Yτ].

Lemma 2’ (Regularity is closed under ∨)

Under (A1), if τ ≥ T and ρ ≥ T are regular from T onward, then ξ := τ∨ρ is regular from
T onward and E[Yξ] ≥ max{E[Yτ],E[Yρ]}.
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Dynamic Programming Principle
Define:

V∗
t := ess sup

τ≥t
E[Yτ | Ft]

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), V∗
t = max{Yt,E[V∗

t+1 | Ft]}.

Gonçalves (UCL) Stopping 21



Dynamic Programming Principle
Define:

V∗
t := ess sup

τ≥t
E[Yτ | Ft]

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), V∗
t = max{Yt,E[V∗

t+1 | Ft]}.

Gonçalves (UCL) Stopping 21



Dynamic Programming Principle
Define:

V∗
t := ess sup

τ≥t
E[Yτ | Ft]

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), V∗
t = max{Yt,E[V∗

t+1 | Ft]}.

Proof

1. WTS V∗
t ≤ max{Yt,E[V∗

t+1 | Ft]}.

Take any stopping time τ. On {τ > t}, E[Yτ | Ft+1] ≤ V∗
t+1.

=⇒ E[Yτ | Ft] = E[E[Yτ | Ft+1] | Ft] ≤ E[V∗
t+1 | Ft].

=⇒ E[Yτ | Ft] = 1{τ=t}Yt + 1{τ>t}E[Yτ | Ft] ≤ max{Yt,E[V∗
t+1 | Ft]}.

=⇒ V∗
t ≤ max{Yt,E[V∗

t+1 | Ft]}.
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Dynamic Programming Principle
Define:

V∗
t := ess sup

τ≥t
E[Yτ | Ft]

(optimise from t onward)

Theorem (Dynamic Programming Principle)

Under (A1), V∗
t = max{Yt,E[V∗

t+1 | Ft]}.

Proof

2. WTS V∗
t ≥ max{Yt,E[V∗

t+1 | Ft]}.

By Lemma 3, ∃ sequence τ̂1, τ̂2, ... with τ̂n ≥ t + 1 such that E[Yτ̂n | Ft] → V∗
t+1.

Define regularised from t+1onwardρn := inf{ℓ > t | E[Yτ̂n ] ≤ Yℓ}; let τn := max{ρ1, ρ2, ..., ρn},
regular from t onward.

By the lemmas 1’ and 2’,

V∗
t ≥ E[Yτn | Ft] = E[E[Yτn | Ft+1] | Ft] ≥ E

[
max
ℓ=1,...,n

E[Yτ̂ℓ
| Ft+1]

∣∣∣Ft

]
→ E[V∗

t+1 | Ft]

Since, trivially, V∗
t ≥ Yt, we get V∗

t ≥ max{Yt,E[V∗
t+1 | Ft]}.
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Dynamic Programming Principle

V∗
t := ess sup

τ≥t
E[Yτ | Ft] = max{Yt,E[V∗

t+1 | Ft]}; τ
∗ := inf{t ≥ 0 | Yt = V∗

t }

Example

Let Y0 := 0, Yt := 1 – 1/t for t ∈ N, Y∞ := 0.

Satisfies (A1): Yt ≤ 1.

Fails (A2): Yt → 1 > 0 = Y∞.

Indeed, no optimal stopping time as Yt < Yt+1.

Note: τ
∗ = ∞ and Yτ∗ = 0 < V∗

t .
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Characterising Optimal Stopping Time

V∗
t := ess sup

τ≥t
E[Yτ | Ft] = max{Yt,E[V∗

t+1 | Ft]}; τ
∗ := inf{t ≥ 0 | Yt = V∗

t }

Lemma

Take any stopping time τ. Under (A1), E[Yτ∧τ∗ ] ≥ E[Yτ].

Stopping whenever τ
∗ says to stop can only improve the expected payoff.
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Characterising Optimal Stopping Time

V∗
t := ess sup

τ≥t
E[Yτ | Ft] = max{Yt,E[V∗

t+1 | Ft]}; τ
∗ := inf{t ≥ 0 | Yt = V∗

t }

Lemma

Take any stopping time τ. Under (A1), E[Yτ∧τ∗ ] ≥ E[Yτ].

Proof

On {τ∗ = t < τ}, Yτ∗ = Yt = V∗
t ≥ E[Yτ | Ft].

Hence,

E[Yτ∧τ∗ ] = E[1{τ∗<τ}Yτ∗ ] + E[1{τ∗≥τ}Yτ]

= E

[ ∞∑
t=0

1{τ∗=t<τ}Yt

]
+ E[1{τ∗≥τ}Yτ]

= E

[ ∞∑
t=0

1{τ∗=t<τ}V
∗
t

]
+ E[1{τ∗≥τ}Yτ]

≥ E

[ ∞∑
t=0

1{τ∗=t<τ}E[Yτ | Ft]

]
+ E[1{τ∗≥τ}Yτ] = E[Yτ].
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Characterising Optimal Stopping Time

V∗
t := ess sup

τ≥t
E[Yτ | Ft] = max{Yt,E[V∗

t+1 | Ft]}; τ
∗ := inf{t ≥ 0 | Yt = V∗

t }

Theorem (Optimal Stopping Time)

Under (A1), if an optimal stopping time exists, τ
∗ is optimal.

Proof

Let τ be an optimal stopping time.

By Lemma 4, τ
′ := τ ∧ τ

∗ must also be optimal.

By Lemma 1, there is a regular τ
′′ : E[Yτ′′ ] ≥ E[Yτ′ ] and τ

′′ ≤ τ
′ ≤ τ

∗. Hence, τ
′′ must

also be optimal.

Finally, by Lemma2, τ′′∨τ
∗ must also be optimal. Note that τ

′′∨τ
∗ = τ

∗ by construction.
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By Lemma 1, there is a regular τ
′′ : E[Yτ′′ ] ≥ E[Yτ′ ] and τ

′′ ≤ τ
′ ≤ τ

∗. Hence, τ
′′ must

also be optimal.

Finally, by Lemma2, τ′′∨τ
∗ must also be optimal. Note that τ

′′∨τ
∗ = τ

∗ by construction.
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Characterising Optimal Stopping Time

V∗
t := ess sup

τ≥t
E[Yτ | Ft] = max{Yt,E[V∗

t+1 | Ft]};

τ
∗ := inf{t ≥ 0 | Yt = V∗

t } = inf{t ≥ 0 | Yt ≥ E[V∗
t+1 | Ft]}

It can be shown that τ
∗ is the earliest optimal stopping time, i.e., τ

∗ ≤ τ ∀ optimal τ.
(Intuition: If τ = t < τ

∗, then Yt < V∗
t and an improvement can be reached)

Another stopping time: τ
∗∗ := inf{t ≥ 0 | Yt > E[V∗

t+1 | Ft]}

It can be shown that τ
∗∗ is the latest optimal stopping time, i.e., τ ≤ τ

∗∗ ∀ optimal τ.

Gonçalves (UCL) Stopping 28



Characterising Optimal Stopping Time

V∗
t := ess sup

τ≥t
E[Yτ | Ft] = max{Yt,E[V∗

t+1 | Ft]};

τ
∗ := inf{t ≥ 0 | Yt = V∗

t } = inf{t ≥ 0 | Yt ≥ E[V∗
t+1 | Ft]}

It can be shown that τ
∗ is the earliest optimal stopping time, i.e., τ

∗ ≤ τ ∀ optimal τ.
(Intuition: If τ = t < τ

∗, then Yt < V∗
t and an improvement can be reached)

Another stopping time: τ
∗∗ := inf{t ≥ 0 | Yt > E[V∗

t+1 | Ft]}

It can be shown that τ
∗∗ is the latest optimal stopping time, i.e., τ ≤ τ

∗∗ ∀ optimal τ.

Gonçalves (UCL) Stopping 28


	Why Economic Theory
	Overview of the Course
	Stopping: Searching for a Job
	Job Search
	Job Search with Discounting

	Optimal Stopping: Existence and Regularity
	General Setup
	Regular Stopping Times
	Existence
	Characterisation


